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ON THE COHOMOLOGY SPACE OF
LIE TRIPLE SYSTEM

Kiyosi YAMAGUTI

(Received September 30, 1960)

It is well known that a Lie group can be characterized locally by a Lie algebra.
More generally, the algebraic system which characterizes locally a totally geodesic
subspace in a group space or a symmetric space is a Lie triple system [1, 9, 1010. A
Lie algebra and a special Jordan algebra are the typical examples which may be a Lie
triple system and the systematic study of this system was done by N. Jacobson [6] and
W. G. Lister [7]. In this paper, we give a method defining a cohomology space of a Lie
triple system and a relation between a cohomology space of order 3 and an extension of
a Lie triple system. Next, we prove for a non-degenerate Lie triple system an analogue
of the Casimir theorem. We see that an identity (3), which is called the Ricci formula
in the differential geometry, plays a fundamental role in this study.

Recently, Professor B. Harris studied on the cohomology of Lie triple system inde-
pendently of us [3], his detailed results will appear in [4]. The author wishes to
express his sincere thanks for his kind informations.

1. We begin with the definition of the Lie triple system.

DEFINITION 1. A Lie triple system (L.t.s.) is a vector space T over a field @2,
which is closed with respect to a trilinear multiplication [@bc] and satisfying

ey [aab] =0,

) ‘ [abc] + [beca] + [cab] =0,

(3 [[abclde] + [[bad]ce] + [ba[cde]l] + [cd [abe]]=0.

PROPOSITION 1.» In L.t.s. it holds the following identities:

€Y [[abclde] + [[bad]ce] + [[cdalbe] + [[dcb]ae] =0,

(5 [[[abcldelfg] + [[[bacldfleg] + [[[abd]cf]eg] + [[[bad]ce]fg]
+[[[cdelfalbg] + [[[dcelfblag] + [[[cdf1eblag] + [[[dcf]ea]bs]
+[[[efalbcldg] + [[[fealbdleg] + [[[efblad]cg] + [[[feblacldg] =o.

PROOF. Interchanging pairs (a,b) and (¢,d) in (3), we have

1) Numbers in brackets refer to the references at the end of the paper.

2) Throughout this paper we shall assume that the characteristic of the base field # is 0 and
L.t.s. has a finite dimension. See [6, 7, 10] as to the terminologies for L.t.s. in this paper.

3) These identities were first stated by N. Jacobson [5] and W.G. Lister first pointed out that
(1), (2), (3) imply (4), (5), but he did not publish. This is derived also from [5, § 3] and [10,
Theorem 2. 1].
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(8Y [[cdalbe] +[[dcblae] + [dc[abe]] + [ab[cde]] =0.
The addition of (3) and (3) implies (4). For a proof of (5) we use twice 3.

S{[[Labcldelfe] + [[[bacldfleg] + [[[abd]cfleg] + [[[bad]celfe]}
=& {[[abc]ldlefg]]1—[ef[[abcldg]] + [[abd]cl feg]]— [fel [abd]cg]]}
=& {[ab[cd[efg]]]—[cdlablefg]1]—[ef[ablcdg]]]+ [ef[cd [abg]]]}
::0’

where © denotes the summation obtained by cyclic permutations of the pairs (a,b),

(¢, d), (e, ).

DEFINITION 2. Let ¥ be a L.t.s. and let V be a vector space over @. Suppose
that there exists a bilinear mapping 6: (@, b)—0(a,b) of X into an associative
algebra of linear transformations of V. Then, V is called a S—module if 6 satisfies the
following conditions:

(6 6(c,d)6(a, b)—0(b, d)6(a, c)—6(a, [bed]) +D(b, ¢)6(a, d) =,

¢ 6(c,d)D(a,b)—D(a,b)0(c, d)+6([abc], d) +6(c, [abd]) =0,
where

®) D(a, b)=06(b, a)—6(a, b).

From (7) we obtain '

©) D(c,d)D(a,b)—D(a,b)D(c,d)+D([abc], d) +D(c, [abd]) =0,

hence the vector space spanned by >D(a; b,), a;, bl is a subalgebra of SI(T).

InaL.ts £, let (a,b) be a linear mapping x—[xab] of T into itself, @, b being
in ¥, then we can prove that < is a T-module by using (3), and in this case D(a b)
becomes a linear mapping X—[abx] by (2) (inner derivation). An ideal of L.t.s. & is
an invariant subspace of the mappings 6(a,b) for all @,b in Z.

REMARK. Let a—R, be a linear mapping of L.t.s. £ into an associative algebra
of linear transformations of a vector space V and satisfies R =[[R.R,] R,] for all
a,b in T, where [R,R,]=R.,R,—R,R.. Then, from Rigorcsra=[[R. B+ R,] Ry+
R.], it follows Riwe+Riewy=[[R.Rs] R,]+[[R.R.]1 R,]. Hence Ripooy + Ry =[[ R, R, ]
R]+[[R,R]R,]. By using (2) and the Jacobi identity, from the last two relations we
have Riwa=[[R.R,] R.]. If we put 6(a, b)=R,R,, then D(a, b)=[R.R,]. Since
these operators satisfy (6) and (7), it follows that V is a T-module.

W.G. Lister [7] defined a representation of L.t.s. in a natural sense as a L.t.s.
homomorphism of a L.t.s. into a L.t.s. of linear transformations of a vector space.
Therefore, the mappmg 60 may be considered as a representation of L.t.s. in a general
sense.
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Let V be a $-module defined. by a bilinear mapping ¢ and let f be an #-linear
mapping of £X -+ X< into V satisfying
Al

n times
f(xb x2: ) xn—Sy x; x; x,,,) =O

and”
Sty %oy oy Xcs, 2,9, 2) T F(X4y Koy oy Xy, ¥, 2, ) +F (%, %y o, Koy 2, %, ¥) =0.

We denote the vector space spanned by such #-linear mappings by C*(%, V), (n=o,
1,2, ), where we define C'(Z, V)=V.

Next, we define a linear mapping 6 of C*(Z, V) into C***(Z, V) by the following
formulas:

(10) of (x,, %) =0(x, x)f for fEC'(E, V),
(11> 6f<xly Koy **y x2n+1)
:ﬁ<x2ny x2n+l>f<xly ny Yy x2n—-1> —0<x21t—1; x27l+1>f<x1) x2; Yy xzn—-z: x?.n)

n
+}21 <_1)"+LD<x2k—ly xzk)f(-xl) xZ; Ty &Zk—l; £2k) ) x2n+1>
n 2n+1

+kZ_l j_%ﬂ(—l)’ﬁ“lff(xu Bye s Kestoury By * [Zop-1 2025, -+, Xyms1)
for fEC*'(Z, V), n=1,2,3, -,
(12> oy, %, %, o, Lansr)
=0( Loy Zons)S (D, 2y 2oy -, Fonr) =0 (Konosy Zonsi)F Y, Hay Xy 5 Loy Xpn)
+§} (=10 D (Lapmr, X) F (Y, X1y Koy, Bonoy Bty 5 Famer)

n 2n+1

+§ j§+l(_1)’l+k+lf'<y, xlr x27 ) 221:—1; 2'2/1'1 ) [xzk—1x2kxj], Tty x2n+1)
for fECZ’"(z: V); n:]-y 2, 3’ )

where the sign ~ over a letter indicates that this letter is to be omitted. The operator
¢ is as follows for lower orders:

It n=l, 5f<xb X2y x3) :ﬁ(xb x3>f(x1> "U(xn xa)f(xz> +D(x1’ xz)f(xs> _f<[x1xzxa]>:
n=2, 5f(x, x,, X5, %) =0 (1, x)f(x, %) —0(x,, %) (s, x:) +D(x,, %a) f (2, %)
—f(x, [xex]).

Now, if f€EC'(Z,V), then

601 (%1, %o, %3, x,)
=00, £)0f (1, 2,) =0 (25, %) 6 (203, %) + D (%, %)67 (2, %) —f G, [2a52,])
=0, 20, 1) =05, 20, 2) + D (s, )0y, 5 — 0, [1220))
=0

by (6). Similarly, 66f=0 for fEC'(T, V) by (3), (6), (7), (9).
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For @, bET we define a linear mapping #(a,b) of C*'(E,V) into C" (L, V)
and a linear mapping ¢«(a@, ) of C* (L, V) into C**(Z, V) as follows:

a3 («(a, B, - A
:(_1>"+1 (D(ax b>f<x17 ) x2n—1> —2gf<x1; Ty [abx.j]! ) x2n—1>>’

(14) (l(ﬂ, b)f) (xlr ) x2n—8) =f<ay b; Xy, - Tty xz'n—3>;
%—:2, 3’

Then we have the following relations.
LEMMA 1. For a,b,c,d€Z and fEC*™'(Z,V) (n=2,3, )
(i) (c(a, 0)3—0:(a,0))f =(a, B,
(i) Cea, b)ee, d)+e(c, dywla, b))f=(~1y"(«([abc], d) +<(c, [abd])),
(iii) (x(a, b)e(c, d) —x(c, dx(a, b)) f=(—1""(k([abc], d) +«(c, [abd]))f,
(iv) (6c(a, b) +«(a, b)s) f=o.

PROOF. Since it is easy to prove (i) and (ii), we shall prove (iii) and (iv).
(iii): If fEC*(T, V), then it follows easily (iii). Hence, we assume (iii) holds for
JEC™ (L, V). Then for fEC™ (S, V) and arbitrary &, IES

‘(ky l) (KS(CZ, b)/c(C, d) —IC(C, d)”(a: b) + (—1)"x([abc], d) + ("1)”’{(6) [abd]>)f

=—r(a,b)(k, Dr(c, d)f+ (—1)"«([abk], D« (c, A)f+(=1)"«(k, [abl])e(c, d)f
tr(e, d)e(k, Dr(a, b)f— (—1)"([cdk], Dx(a, b) f— (=1)"e(k, [cdl])k(a, b)f
+(=1)"(k, Dr([abel, d)f+ (—1)"e(k, Dr(c, [abd])f

= (IC(CZ, b)/((C, d> —K<C’ d)"c(ar b) - <_1)n"'< [abC], d) - (“‘1>ﬂ’€<c: [abd]>)[<k’ l)f
+ (e([cd[abk]], 1) —«([ablcdk]], 1) + ([ [abc]dE], ) —c([[abd]ck], D) f
+ («(&, [cd[abl]]) —e(k, [ablcdi]]) + (&, [[abcldl]) —(k, [[abd]ci]))f

=0, . :

by (ii) and (3). Therefore, (iii) holds for fEC* (T, V).

(iv): For fEC*(Z, V) we obtain (iv). Therefore, we assume that (iv) holds for
all fEC™°(Z, V). Then, in the case fEC*" (T, V), by using (i), (ii), (iii) for arbitrary
¢, deg

e(c,d)ék(a, b)f+(c, d)r(a, b)5f

=6e(c, d)x(a, b)f+«(c, d)r(a, b)f—k(a, b)e(c, d)sf
+(—=1)""e([abc], d)6f+ (—1)"""e(c, [abd])5f

=—(or(a,b)+r(a, b)s)(c, d)f

—(e(a, bc(c, d)—r(c, (@, b) + (~1)"k([abe], d) + (=1)"«(c, [abd]))f
=0,
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by the inductive assumption. Hence, (iv) holds for fEC*"7'(Z, V).
For every @,bEX and fEC™'(Z,V) (n=2,3,--), by using Lemma 1 and ‘the
induction we obtain

(a,b)(6of)=éc(a, b)of +r(a,b)of
=s6c(a,b)f+bc(a,b)f+r(a,b)of
=0,

hence 66f=0 for fECz"_’(E, V) (n=1,2,--). Then it follows immediately that 66f=0
for fEC™(E, V) (n=1,2, ).

Thus we have the following main theorem.

THEOREM 1. For the operator & defined above, it holds that &6f=0 for any fE
C'(%,V),n=0,1,2,

The mapping fEC"(E,V) is called a cocycle of order # if 6f=0. We denote by
Z"(%,V) a subspace spanned by cocycles of order 7. The element of B"(E,V)
=5C""%(Z, V) is a coboundary. From Theorem 1, B"(%, V) is a subspace of Z (%, V).
Therefore we can define a cohomology space H'(Z,V) of order # of £ as the factor

space Z°(8,V)/B"(%,V), (n=0,1,2, ).

2.9 DEFINITION 3. Let £, I, mt be L.t.s. over the same base field. ¥ is an exiension
of 1 by m if there exists an exact sequence of L.t.s.:

0——>m——‘—>z—l>u——>0
Two extensions & and T’ are said to be equivalent if the following diagram is commuta-
tive:

>0

o—m—IT —>1U

Pk

—m——--'——U—0

As a special case of a solvable ideal in a L. t.s. defined by W. G. Lister [7], we define
an abelian ideal M in £ as an ideal such that [Emm]=(0). We consider the case that
% is an extension of U by abelian ideal m in %, that is [ZTe(m)e(m)]=(0). Then, for
elements #=x+p,v=y+q (x, YEZ, p, gcm), 0 (u, v)m=[muv] = [mxy]. Therefore, M
is an U-module by defining '

0(u, v)m=[mit'] ~ for any ¢, ! in T such that #(#)=u, z(¢')=v.

Let [ be a section of the extension ¥ of U by an abelian ideal in T, that is, /
is a linear mapping of U into T such that 7z/=1. Next, we put

(15) Iz, %5, x3> = [le)l(xz)l(xa)] —iC o]y x,€1 (7=1,2,3),

4) In this section, we follow the method in [2].
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then, f is a trilinear mapping of UXU XU into m, since 7 is a homomorphism of <
onto U, and f belongs to C)(U,m). We identify mXUl and T as vector spaces by
(m, x)—>m+I(x). In ¥ the following relation holds:

[me, +1(x,) m,+1(x,) ms+1(x5)]
= [m(2:)1(%:) ] — [mad(2,)0(25)] + [2(x)I(x)ms] + f(4, %, xa) +I( [x.x22.] ).

Hence we can define a Lie triple product on m XU by

(16> [(mu xl)(mz, x2><m3: xa)]
= (0%, X ), — (2%, )M+ D (%, 2,)M5+ F( %, %2y Xs), [2.2:2:]).

From this we obtain
[(my, x;) (m,, x1)<m2, %:)]1=Cf (%, %5, %), 0),

[(my, ) (91, 22) (915, %) ] + [ (912, 2) (9, 25) (omy, 2,) ]+ [ (12, ) (1, %,) (12, %3) ]
= (f(%:, %o, %5) + f (%2, %o, %) + (%, %, %)),

L[y, x,) (9ma, %) (12, 25) ] (14, %,) (135, %5) ]
+ LLGme, 2.) (oma, 2,) (2, 201 (0, 20) (5, %) ]
+ L (s, %) (o1, %) [(m2, %5) (m2,, 2,) (91, 25) 1]
+ [(ms, ) (my, 2) [ (my, 2,) (1, 202) (s, 25)] ]

(0(2s, 25)0( %5, x5) — 0 (%5, %5)0( %5, x0) —O(z, [%52,%5]) + D (%, )60 (22, %)),
—(0(C2xy, 2)0(20y, %5) —0(x5, 25)0 (%1, 2,) —O0( %1, [2:%,5]) + D (%4, 2)0( %1, %)),
+(0(xy, ) D(xy, %,) + D (%5, 2)0(x,, x5) —O([ 22,21, 25) +60(x,, [2:20:25]1)) 2,

+ (0(%s, 25) D (%, %) —D (%3, 2,)0(%s, x5) —O([ 2,255, x5) —O0( s, [2:20:25]) ),

+ (D (%, 2,)D (%5, x,) + D (%, 2)D (%, %,) + D([2,%:%,], x0) + D([2:2:%,], %) )
+0(xy, 2:)0(%5, %, X5) —0(x5, 2501 (21, X, £) — D (21, %) (5, %4, %5)

+ D (%, 2) (%1, %2, %) + [ [2:%:%:], X0, %) + (s, [227:2,], %5)

+ (%, x4, [2220205]) —f (23, %0, [2020%5])

= (81 (%1, X2 s, X1 %s), 0),

in which we used (3), (6), (7), (9). Therefore f is a cocycle of order 3.

Conversely, let m be a (U, #)-module and abelian L.t.s. and let f be a cocycle of
order 3. We define a ternary product on a vector space m XU by (16), then the vector
space $=mx 1 becomes a L.t.s. with respect to this composition. Next we define the
exact sequence:

by ¢(m)=(m,0) and 7(m, x)=x. Since ¢ and = are homomorphism, < is an extension
of I by m, and it is easy to see that ¢(m) is an abelian in ¥. For a special section

I(x)=(0,x) (x€)
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L)1) ()1 — L[ %1221 ) = (F (%1, %oy %s), 0),

hence f is a cocycle defined by this extension.

If there exists another section I, then g(x)=I'(x)—I(x) in m, and f'(x,, xz, X3)
=7V (@)l ()] =1 ([0:50:%1) = (%1, Xz, %) +6 (%, %) 8(20) —6 (%3, %) &(%x,) + D(xy,
2)8( %) — ([ %5251 ) = (%1, %2, %) +88( %1, X2, X5), therefore f and f' belong to the same
cohomology class.

Summarizing above results we have the following

THEOREM 2. An exiension T of U by an abelian zdeal m in T defines an element
of H*(W, m). Conversely, if m is abelian, an extension £ of W by m corresponds to any
element of H* (W, m) and m becomes abelian in %.

4 s
The extension: 0 >m——>F——>11—>0 is said to be inessential if there exists a

subsystem ' such that £ is a vector direct sum of ¢(m) and T'. Then

COROLLARY. An extension & of W by an abelian ideal m in T is inessential if and
only if H*(U, m)=(0).

39 Let 6(a,b) be a linear mapping x—[xba] of L. t.s. &, 4, bEZ. Put ¢(a,b)
=Tr0(a,b), and call this form ¢ a Killing form of <

An 1-to-1 mapping A of T is called an automorphism of T if A[xyz]= [AxAyAz]
for all x,¥,2€Z. A derivation D of £ is a linear mapping of ¥ such that D[xyz]
=[(Dx)yz] + [x(Dy)z] + [xy(Dz)] for all x,y, 2EZ.

LEMMA 2. Let ¢(a,b) be a Killing form of L.t.s. <, then

(i) ¢(Ax, Ay)=¢(x,) for automorphism A of T,

(ii) ¢(Dx,y) +¢(x, Dy)=0 for derivation D of &

i.e. ¢ is an invariant of D.

PROOF. From the definition of an automorphism, we have A6 (x,y)=0(Ax, Ay)A,
hence ¢ (Ax, Ay)=Tr0 (Ax, Ay)=Tr(A6 (x,y) A™)=Tr0 (x,y)=¢(x, ¥). The proof
is similar for the derivation, therefore we shall omit it.

Since the mapping: x—>2[a b:x] is an (inner) derivation of 3, we have the
following

COROLLARY. A Killing form is an invariant of an inner derivation.

Let (V,6) be a T-module for L.t.s. £ and let X;, X, ---, X. be a base of T. We
call £ non-degenerate if

¢(‘X’1y Xl); " ¢<X1y Xﬂ)
¢(Xm Xl): ) ¢<X'm Xn)

5) In this section, we follow the method in [8].

det
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Then, we may define a linear operator C of V as
C: 2 nji@CXi: X7>;
Z,d=1

where () is an inverse matrix of (¢(X;, X;)) and O(XL,X)—(?(X_,, X.). We call
this operator C a Casimir operator of 0. If we put Y;= Z 7 X; (1=1,2, - ﬂ), (XY, X5,

Y.) is a base of € and ¢(X,, Y,) =64, and C= EO(X},Y)
i=1

Let (X, -, X,) and (X, ---, X.) be bases of € and let ¢(X;, X;) and ¢(Xi, X3)
be Killing forms with inverse matrix () and (7i;) respectively. Denote by C and C’
Casimir operators correspondmg to bases (X;) and (X;) respectively. Then, puttmg
Xi= E a;X;, Y= 2 bqu ey E 0(X,Y)= E atsbLtO<Xsy Y)= Z 0(X,, Y.)=C, since
2300 =>) @i b= C1brp (X, Y)=¢(Xi, Yi)=64 .Hence, the Casimir operator is
3 st 8.1
independent to the base of <

THEOREM 3. Let (V,0) be a S-module of a non- degenerale L. t.s. 2. Then the

Casimir operator C of 6 commutes with D(x,%) for all x,9 in <, where D(x,y)=0(y, %)
—6(x, ).

PROOF. From the fact that V is a S-module using (7) we have
D(x,5)C—CD(x, 9)=3{D(x,9)0(X,, ¥.) —0(X,, Y:)D(x, )}
=Z{@([xyXi], Y)+e(X, [xyY.])},
where 0(X,, Y,)=0(Y,, X;). Putting [xyX;] =>1a;X; and [xyY,]=315,Y;, it follows
3 7
that @;;+b8;,=0, because a Killing form is an invariant of an inner derivation. Hence
D(x,y)C—CD(x,) =2>{aub( X, Yo) +0a0(X,, Vi) } =o0.
This proves the theorem.

In conclusion, the author wishes to express his deep appreciation to Professor K.
Morinaga for his kind guidance.

Departiment of Mathematics,
Faculty of Science,
Kumamoto University
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