ON THE COHOMOLOGY SPACE OF LIE TRIPLE SYSTEM

Kiyosi YAMAGUTI

(Received September 30, 1960)

It is well known that a Lie group can be characterized locally by a Lie algebra. More generally, the algebraic system which characterizes locally a totally geodesic subspace in a group space or a symmetric space is a Lie triple system [1, 9, 10]¹⁾. A Lie algebra and a special Jordan algebra are the typical examples which may be a Lie triple system and the systematic study of this system was done by N. Jacobson [6] and W.G. Lister [7]. In this paper, we give a method defining a cohomology space of a Lie triple system and a relation between a cohomology space of order 3 and an extension of a Lie triple system. Next, we prove for a non-degenerate Lie triple system an analogue of the Casimir theorem. We see that an identity (3), which is called the Ricci formula in the differential geometry, plays a fundamental role in this study.

Recently, Professor B. Harris studied on the cohomology of Lie triple system independently of us [3], his detailed results will appear in [4]. The author wishes to express his sincere thanks for his kind informations.

1. We begin with the definition of the Lie triple system.

DEFINITION 1. A Lie triple system (L. t. s.) is a vector space \mathfrak{T} over a field Φ^2 , which is closed with respect to a trilinear multiplication [abc] and satisfying

- [aab] = 0,
- (2) [abc] + [bca] + [cab] = 0,
- (3) [[abc]de] + [[bad]ce] + [ba[cde]] + [cd[abe]] = 0.

PROPOSITION 1.3) In L.t.s. it holds the following identities:

- (4) [[abc]de] + [[bad]ce] + [[cda]be] + [[dcb]ae] = 0,

PROOF. Interchanging pairs (a,b) and (c,d) in (3), we have

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ Throughout this paper we shall assume that the characteristic of the base field \emptyset is 0 and L.t.s. has a finite dimension. See [6, 7, 10] as to the terminologies for L.t.s. in this paper.

³⁾ These identities were first stated by N. Jacobson [5] and W.G. Lister first pointed out that (1), (2), (3) imply (4), (5), but he did not publish. This is derived also from [5, § 3] and [10, Theorem 2.1].

(3)'
$$[[cda]be] + [[dcb]ae] + [dc[abe]] + [ab[cde]] = 0.$$

The addition of (3) and (3)' implies (4). For a proof of (5) we use twice (3).

where \mathfrak{S} denotes the summation obtained by cyclic permutations of the pairs (a,b), (c,d), (e,f).

DEFINITION 2. Let $\mathfrak T$ be a L.t.s. and let V be a vector space over Φ . Suppose that there exists a bilinear mapping $\theta\colon (a,b){\to}\theta(a,b)$ of $\mathfrak T\times\mathfrak T$ into an associative algebra of linear transformations of V. Then, V is called a $\mathfrak T$ -module if θ satisfies the following conditions:

(6)
$$\theta(c,d)\theta(a,b) - \theta(b,d)\theta(a,c) - \theta(a,[bcd]) + D(b,c)\theta(a,d) = 0,$$

(7)
$$\theta(c,d)D(a,b)-D(a,b)\theta(c,d)+\theta([abc],d)+\theta(c,[abd])=0,$$

where

(8)
$$D(a,b) = \theta(b,a) - \theta(a,b).$$

From (7) we obtain

(9)
$$D(c,d)D(a,b)-D(a,b)D(c,d)+D([abc],d)+D(c,[abd])=0,$$

hence the vector space spanned by $\sum_{i} D(a_i, b_i)$, $a_i, b_i \in \mathfrak{T}$ is a subalgebra of $\mathfrak{Gl}(V)$.

In a L.t.s. \mathfrak{T} , let $\theta(a,b)$ be a linear mapping $x \to [xab]$ of \mathfrak{T} into itself, a,b being in \mathfrak{T} , then we can prove that \mathfrak{T} is a \mathfrak{T} -module by using (3), and in this case D(a,b) becomes a linear mapping $x \to [abx]$ by (2) (inner derivation). An ideal of L.t.s. \mathfrak{T} is an invariant subspace of the mappings $\theta(a,b)$ for all a,b in \mathfrak{T} .

REMARK. Let $a \to R_a$ be a linear mapping of L.t.s. $\mathfrak T$ into an associative algebra of linear transformations of a vector space V and satisfies $R_{[abb]} = [[R_a R_b] R_b]$ for all a,b in $\mathfrak T$, where $[R_a R_b] \equiv R_a R_b - R_b R_a$. Then, from $R_{[a\ b+c\ b+c]} = [[R_a R_b + R_c] R_b + R_c]$, it follows $R_{[abc]} + R_{[acb]} = [[R_a R_b] R_c] + [[R_a R_c] R_b]$. Hence $R_{[bac]} + R_{[bca]} = [[R_b R_a] R_c] + [[R_b R_c] R_a]$. By using (2) and the Jacobi identity, from the last two relations we have $R_{[abc]} = [[R_a R_b] R_c]$. If we put $\theta(a,b) = R_b R_a$, then $D(a,b) = [R_a R_b]$. Since these operators satisfy (6) and (7), it follows that V is a $\mathfrak T$ -module.

W.G. Lister [7] defined a representation of L.t.s. in a natural sense as a L.t.s. homomorphism of a L.t.s. into a L.t.s. of linear transformations of a vector space. Therefore, the mapping θ may be considered as a representation of L.t.s. in a general sense.

Let V be a \mathfrak{T} -module defined by a bilinear mapping θ and let f be an n-linear mapping of $\underbrace{\mathfrak{T} \times \cdots \times \mathfrak{T}}_{n \ times}$ into V satisfying

$$f(x_1, x_2, \dots, x_{n-3}, x, x, x_n) = 0$$

and

$$f(x_1, x_2, \dots, x_{n-3}, x, y, z) + f(x_1, x_2, \dots, x_{n-3}, y, z, x) + f(x_1, x_2, \dots, x_{n-3}, z, x, y) = 0$$

We denote the vector space spanned by such n-linear mappings by $C^n(\mathfrak{T}, V)$, $(n=0, 1, 2, \cdots)$, where we define $C^0(\mathfrak{T}, V) = V$.

Next, we define a linear mapping \hat{o} of $C^n(\mathfrak{T},V)$ into $C^{n+2}(\mathfrak{T},V)$ by the following formulas:

$$(10) \qquad \delta f(x_1, x_2) = \theta(x_1, x_2) f \qquad \qquad \text{for } f \in C^0(\mathfrak{T}, V),$$

(11)
$$\delta f(x_{1}, x_{2}, \dots, x_{2n+1})$$

$$= \theta(x_{2n}, x_{2n+1}) f(x_{1}, x_{2}, \dots, x_{2n-1}) - \theta(x_{2n-1}, x_{2n+1}) f(x_{1}, x_{2}, \dots, x_{2n-2}, x_{2n})$$

$$+ \sum_{k=1}^{n} (-1)^{n+k} D(x_{2k-1}, x_{2k}) f(x_{1}, x_{2}, \dots, \hat{x}_{2k-1}, \hat{x}_{2k}, \dots, x_{2n+1})$$

$$+ \sum_{k=1}^{n} \sum_{j=2k+1}^{2n+1} (-1)^{n+k+1} f(x_{1}, x_{2}, \dots, \hat{x}_{2k-1}, \hat{x}_{2k}, \dots, [x_{2k-1}x_{2k}x_{j}], \dots, x_{2n+1})$$
for $f \in C^{2n-1}(\mathfrak{T}, V), n=1, 2, 3, \dots$

(12)
$$\delta f(y, x_{1}, x_{2}, \dots, x_{2n+1})$$

$$= \theta(x_{2n}, x_{2n+1}) f(y, x_{1}, x_{2}, \dots, x_{2n-1}) - \theta(x_{2n-1}, x_{2n+1}) f(y, x_{1}, x_{2}, \dots, x_{2n-2}, x_{2n})$$

$$+ \sum_{k=1}^{n} (-1)^{n+k} D(x_{2k-1}, x_{2k}) f(y, x_{1}, x_{2}, \dots, \hat{x}_{2k-1}, \hat{x}_{2k}, \dots, x_{2n+1})$$

$$+ \sum_{k=1}^{n} \sum_{j=2k+1}^{2n+1} (-1)^{n+k+1} f(y, x_{1}, x_{2}, \dots, \hat{x}_{2k-1}, \hat{x}_{2k}, \dots, [x_{2k-1}x_{2k}x_{j}], \dots, x_{2n+1})$$

$$\text{for } f \in C^{2n}(\mathfrak{T}, V), n=1, 2, 3, \dots.$$

where the sign $^{\wedge}$ over a letter indicates that this letter is to be omitted. The operator δ is as follows for lower orders:

If
$$n=1$$
, $\delta f(x_1, x_2, x_3) = \theta(x_2, x_3) f(x_1) - \theta(x_1, x_3) f(x_2) + D(x_1, x_2) f(x_3) - f([x_1x_2x_3])$, $n=2$, $\delta f(x_1, x_2, x_3, x_4) = \theta(x_3, x_4) f(x_1, x_2) - \theta(x_2, x_4) f(x_1, x_3) + D(x_2, x_3) f(x_1, x_4) - f(x_1, [x_2x_3x_4])$.

Now, if $f \in C^0(\mathfrak{T}, V)$, then

$$\begin{split} & \delta \delta f(x_1, x_2, x_3, x_4) \\ &= \theta(x_3, x_4) \delta f(x_1, x_2) - \theta(x_2, x_4) \delta f(x_1, x_3) + D(x_2, x_3) \delta f(x_1, x_4) - \delta f(x_1, [x_2 x_3 x_4]) \\ &= (\theta(x_3, x_4) \theta(x_1, x_2) - \theta(x_2, x_4) \theta(x_1, x_3) + D(x_2, x_3) \theta(x_1, x_4) - \theta(x_1, [x_2 x_3 x_4])) f \\ &= 0 \end{split}$$

by (6). Similarly, $\partial \delta f = 0$ for $f \in C^1(\mathfrak{T}, V)$ by (3), (6), (7), (9).

For $a, b \in \mathbb{Z}$ we define a linear mapping $\kappa(a, b)$ of $C^{2n-1}(\mathbb{Z}, V)$ into $C^{2n-1}(\mathbb{Z}, V)$ and a linear mapping $\iota(a, b)$ of $C^{2n-1}(\mathbb{Z}, V)$ into $C^{2n-3}(\mathbb{Z}, V)$ as follows:

(13)
$$(\kappa(a,b)f)(x_{1}, \dots, x_{2n-1})$$

$$= (-1)^{n+1} (D(a,b)f(x_{1}, \dots, x_{2n-1}) - \sum_{j=1}^{2n-1} f(x_{1}, \dots, [abx_{j}], \dots, x_{2n-1})),$$
(14)
$$(\iota(a,b)f)(x_{1}, \dots, x_{2n-3}) = f(a,b,x_{1}, \dots, x_{2n-3}),$$

$$n = 2, 3, \dots$$

Then we have the following relations.

LEMMA 1. For $a, b, c, d \in \mathbb{Z}$ and $f \in C^{2n-1}(\mathfrak{T}, V)$ $(n=2, 3, \cdots)$

(i)
$$(\iota(a,b)\delta - \delta\iota(a,b))f = \kappa(a,b)f,$$

(ii)
$$(\kappa(a,b)\iota(c,d)+\iota(c,d)\kappa(a,b))f=(-1)^n(\iota(\lceil abc\rceil,d)+\iota(c,\lceil abd\rceil))f,$$

(iii)
$$(\kappa(a,b)\kappa(c,d) - \kappa(c,d)\kappa(u,b))f = (-1)^{n+1}(\kappa([abc],d) + \kappa(c,[abd]))f,$$

(iv)
$$(\delta \kappa(a,b) + \kappa(a,b)\delta) f = 0.$$

PROOF. Since it is easy to prove (i) and (ii), we shall prove (iii) and (iv). (iii): If $f \in C^{\mathfrak{s}}(\mathfrak{T}, V)$, then it follows easily (iii). Hence, we assume (iii) holds for $f \in C^{2n-\mathfrak{s}}(\mathfrak{T}, V)$. Then for $f \in C^{2n-1}(\mathfrak{T}, V)$ and arbitrary $k, l \in \mathfrak{T}$

$$\iota(k,l)(\kappa(a,b)\kappa(c,d) - \kappa(c,d)\kappa(a,b) + (-1)^{n}\kappa([abc],d) + (-1)^{n}\kappa(c,[abd]))f$$

$$= -\kappa(a,b)\iota(k,l)\kappa(c,d)f + (-1)^{n}\iota([abk],l)\kappa(c,d)f + (-1)^{n}\iota(k,[abl])\kappa(c,d)f$$

$$+ \kappa(c,d)\iota(k,l)\kappa(a,b)f - (-1)^{n}\iota([cdk],l)\kappa(a,b)f - (-1)^{n}\iota(k,[cdl])\kappa(a,b)f$$

$$+ (-1)^{n}\iota(k,l)\kappa([abc],d)f + (-1)^{n}\iota(k,l)\kappa(c,[abd])f$$

$$= (\kappa(a,b)\kappa(c,d) - \kappa(c,d)\kappa(a,b) - (-1)^{n}\kappa([abc],d) - (-1)^{n}\kappa(c,[abd]))\iota(k,l)f$$

$$+ (\iota([cd[abk]],l) - \iota([ab[cdk]],l) + \iota([[abc]dk],l) - \iota([[abd]ck],l))f$$

$$+ (\iota(k,[cd[abl]]) - \iota(k,[ab[cdl]]) + \iota(k,[[abc]dl]) - \iota(k,[[abd]cl]))f$$

$$= 0.$$

by (ii) and (3). Therefore, (iii) holds for $f \in C^{2n-1}(\mathfrak{T}, V)$.

(iv): For $f \in C^3(\mathfrak{T}, V)$ we obtain (iv). Therefore, we assume that (iv) holds for all $f \in C^{2n-3}(\mathfrak{T}, V)$. Then, in the case $f \in C^{2n-1}(\mathfrak{T}, V)$, by using (i), (ii), (iii) for arbitrary $c, d \in \mathfrak{T}$

$$\iota(c,d)\delta\kappa(a,b)f + \iota(c,d)\kappa(a,b)\delta f
= \delta\iota(c,d)\kappa(a,b)f + \kappa(c,d)\kappa(a,b)f - \kappa(a,b)\iota(c,d)\delta f
+ (-1)^{n+1}\iota([abc],d)\delta f + (-1)^{n+1}\iota(c,[abd])\delta f
= -(\delta\kappa(a,b) + \kappa(a,b)\delta)\iota(c,d)f
-(\kappa(a,b)\kappa(c,d) - \kappa(c,d)\kappa(a,b) + (-1)^{n}\kappa([abc],d) + (-1)^{n}\kappa(c,[abd]))f
= 0,$$

by the inductive assumption. Hence, (iv) holds for $f \in C^{2n-1}(\mathfrak{T}, V)$.

For every $a,b\in \mathfrak{T}$ and $f\in C^{2n-1}(\mathfrak{T},V)$ $(n=2,3,\cdots)$, by using Lemma 1 and the induction we obtain

$$\iota(a,b)(\delta \delta f) = \delta \iota(a,b)\delta f + \kappa(a,b)\delta f
= \delta \delta \iota(a,b)f + \delta \kappa(a,b)f + \kappa(a,b)\delta f
= 0,$$

hence $\partial \delta f = 0$ for $f \in C^{2n-1}(\mathfrak{T}, V)$ $(n=1, 2, \cdots)$. Then it follows immediately that $\partial \delta f = 0$ for $f \in C^{2n}(\mathfrak{T}, V)$ $(n=1, 2, \cdots)$.

Thus we have the following main theorem.

THEOREM 1. For the operator δ defined above, it holds that $\delta \delta f = 0$ for any $f \in C^n(\mathfrak{T}, V)$, $n = 0, 1, 2, \cdots$

The mapping $f \in C^n(\mathfrak{T},V)$ is called a *cocycle* of order n if $\partial f = 0$. We denote by $Z^n(\mathfrak{T},V)$ a subspace spanned by cocycles of order n. The element of $B^n(\mathfrak{T},V)$ $\Longrightarrow \partial C^{n-2}(\mathfrak{T},V)$ is a *coboundary*. From Theorem 1, $B^n(\mathfrak{T},V)$ is a subspace of $Z^n(\mathfrak{T},V)$. Therefore we can define a *cohomology space* $H^n(\mathfrak{T},V)$ of order n of \mathfrak{T} as the factor space $Z^n(\mathfrak{T},V)/B^n(\mathfrak{T},V)$, $(n=0,1,2,\cdots)$.

2.4) DEFINITION 3. Let \mathfrak{T} , \mathfrak{N} , \mathfrak{m} be L.t.s. over the same base field. \mathfrak{T} is an extension of \mathfrak{U} by \mathfrak{m} if there exists an exact sequence of L.t.s.:

$$0 \longrightarrow \mathfrak{m} \stackrel{\iota}{\longrightarrow} \mathfrak{T} \stackrel{\pi}{\longrightarrow} \mathfrak{U} \longrightarrow 0.$$

Two extensions $\mathfrak T$ and $\mathfrak T'$ are said to be *equivalent* if the following diagram is commutative:

As a special case of a solvable ideal in a L.t.s. defined by W.G. Lister [7], we define an abelian ideal m in $\mathfrak T$ as an ideal such that $[\mathfrak Tmm]=(0)$. We consider the case that $\mathfrak T$ is an extension of $\mathfrak U$ by abelian ideal m in $\mathfrak T$, that is $[\mathfrak T\iota(\mathfrak m)\iota(\mathfrak m)]=(0)$. Then, for elements u=x+p, v=y+q $(x,y\in\mathfrak T,p,q\in\mathfrak m), \theta(u,v)m\equiv[muv]=[mxy]$. Therefore, m is an $\mathfrak U$ -module by defining

$$\theta(u,v)m=[mtt']$$
 for any t,t' in $\mathfrak T$ such that $\pi(t)=u,\pi(t')=v$.

Let l be a section of the extension $\mathfrak T$ of $\mathfrak U$ by an abelian ideal in $\mathfrak T$, that is, l is a linear mapping of $\mathfrak U$ into $\mathfrak T$ such that $\pi l = 1$. Next, we put

(15)
$$f(x_1, x_2, x_3) = [l(x_1)l(x_2)l(x_3)] - l([x_1x_2x_3])$$
 $x_i \in \mathbb{U} (i=1, 2, 3),$

⁴⁾ In this section, we follow the method in [2].

then, f is a trilinear mapping of $\mathbb{U} \times \mathbb{U} \times \mathbb{U}$ into \mathbb{U} , since π is a homomorphism of \mathbb{Z} onto \mathbb{U} , and f belongs to $C^{3}(\mathbb{U},\mathbb{W})$. We identify $\mathbb{W} \times \mathbb{U}$ and \mathbb{Z} as vector spaces by $(m,x) \rightarrow m+l(x)$. In \mathbb{Z} the following relation holds:

$$[m_1 + l(x_1) m_2 + l(x_2) m_3 + l(x_3)]$$

$$= [m_1 l(x_2) l(x_3)] - [m_2 l(x_1) l(x_3)] + [l(x_1) l(x_2) m_3] + f(x_1, x_2, x_3) + l([x_1 x_2 x_3]).$$

Hence we can define a Lie triple product on $m \times \mathfrak{U}$ by

(16)
$$[(m_1, x_1)(m_2, x_2)(m_3, x_3)]$$

$$= (\theta(x_2, x_3)m_1 - \theta(x_1, x_3)m_2 + D(x_1, x_2)m_3 + f(x_1, x_2, x_3), [x_1x_2x_3]).$$

From this we obtain

$$[(m_1, x_1)(m_1, x_1)(m_2, x_2)] = (f(x_1, x_1, x_2), 0),$$

$$[(m_1, x_1)(m_2, x_2)(m_3, x_3)] + [(m_2, x_2)(m_3, x_3)(m_1, x_1)] + [(m_3, x_3)(m_1, x_1)(m_2, x_2)]$$

$$= (f(x_1, x_2, x_3) + f(x_2, x_3, x_1) + f(x_3, x_1, x_2), 0),$$

$$[[(m_1, x_1)(m_2, x_2)(m_3, x_3)](m_4, x_4)(m_5, x_5)]$$

$$+ [[(m_2, x_2)(m_1, x_1)(m_4, x_4)](m_3, x_3)(m_5, x_5)]$$

$$+ [(m_2, x_2)(m_1, x_1)[(m_3, x_3)(m_4, x_4)(m_5, x_5)]]$$

$$+ [(m_3, x_3)(m_4, x_4)[(m_1, x_1)(m_2, x_2)(m_5, x_5)]]$$

$$= \begin{pmatrix} (\theta(x_4, x_5)\theta(x_2, x_3) - \theta(x_3, x_5)\theta(x_2, x_4) - \theta(x_2, [x_3x_4x_5]) + D(x_3, x_4)\theta(x_2, x_5))m_1 \\ -(\theta(x_4, x_5)\theta(x_1, x_3) - \theta(x_3, x_5)\theta(x_1, x_4) - \theta(x_1, [x_3x_4x_5]) + D(x_3, x_4)\theta(x_1, x_5))m_2 \\ +(\theta(x_4, x_5)D(x_1, x_2) + D(x_2, x_1)\theta(x_4, x_5) - \theta([x_2x_1x_4], x_5) + \theta(x_4, [x_1x_2x_5]))m_3 \\ +(\theta(x_3, x_5)D(x_2, x_1) - D(x_2, x_1)\theta(x_3, x_5) - \theta([x_1x_2x_3], x_5) - \theta(x_3, [x_1x_2x_5])m_4 \\ +(D(x_2, x_1)D(x_3, x_4) + D(x_3, x_4)D(x_1, x_2) + D([x_1x_2x_3], x_4) + D([x_2x_1x_4], x_3))m_5, \\ +\theta(x_4, x_5)f(x_1, x_2, x_3) - \theta(x_3, x_5)f(x_1, x_2, x_4) - D(x_1, x_2)f(x_3, x_4, x_5) \\ +D(x_3, x_4)f(x_1, x_2, x_5) + f([x_1x_2x_3], x_4, x_5) + f(x_3, [x_1x_2x_4], x_5) \\ +f(x_3, x_4, [x_1x_2x_5]) - f(x_1, x_2, [x_3x_4x_5]) \end{pmatrix}$$

$$=(\delta f(x_1, x_2, x_3, x_4, x_5), 0),$$

in which we used (3), (6), (7), (9). Therefore f is a cocycle of order 3.

Conversely, let \mathfrak{m} be a (\mathfrak{U},θ) -module and abelian L.t.s. and let f be a cocycle of order 3. We define a ternary product on a vector space $\mathfrak{m} \times \mathfrak{U}$ by (16), then the vector space $\mathfrak{T} = \mathfrak{m} \times \mathfrak{U}$ becomes a L.t.s. with respect to this composition. Next we define the exact sequence:

$$0 \longrightarrow m \xrightarrow{\iota} \mathfrak{T} \xrightarrow{\pi} \mathfrak{U} \longrightarrow 0$$

by $\iota(m) = (m,0)$ and $\pi(m,x) = x$. Since ι and π are homomorphism, $\mathfrak T$ is an extension of $\mathfrak U$ by $\mathfrak m$, and it is easy to see that $\iota(\mathfrak m)$ is an abelian in $\mathfrak T$. For a special section l: l(x) = (0,x) $(x \in \mathfrak U)$

$$[l(x_1)l(x_2)l(x_3)]-l([x_1x_2x_3])=(f(x_1,x_2,x_3),0),$$

hence f is a cocycle defined by this extension.

If there exists another section l', then $g(x) \equiv l'(x) - l(x)$ in m, and $f'(x_1, x_2, x_3) = [l'(x_1)l'(x_2)l'(x_3)] - l'([x_1x_2x_3]) = f(x_1, x_2, x_3) + \theta(x_2, x_3)g(x_1) - \theta(x_1, x_3)g(x_2) + D(x_1, x_2)g(x_3) - g([x_1x_2x_3]) = f(x_1, x_2, x_3) + \delta g(x_1, x_2, x_3)$, therefore f and f' belong to the same cohomology class.

Summarizing above results we have the following

THEOREM 2. An extension \mathbb{Z} of \mathbb{U} by an abelian ideal \mathbb{m} in \mathbb{Z} defines an element of $H^3(\mathbb{U}, \mathbb{m})$. Conversely, if \mathbb{m} is abelian, an extension \mathbb{Z} of \mathbb{U} by \mathbb{m} corresponds to any element of $H^3(\mathbb{U}, \mathbb{m})$ and \mathbb{m} becomes abelian in \mathbb{Z} .

The extension: $0 \longrightarrow \mathfrak{m} \stackrel{\iota}{\longrightarrow} \mathfrak{T} \stackrel{\pi}{\longrightarrow} \mathfrak{U} \longrightarrow 0$ is said to be inessential if there exists a subsystem \mathfrak{T}' such that \mathfrak{T} is a vector direct sum of $\iota(\mathfrak{m})$ and \mathfrak{T}' . Then

COROLLARY. An extension \mathfrak{T} of \mathfrak{U} by an abelian ideal \mathfrak{m} in \mathfrak{T} is inessential if and only if $H^3(\mathfrak{U},\mathfrak{m})=(0)$.

3.5) Let $\Theta(a,b)$ be a linear mapping $x \rightarrow [xba]$ of L. t. s. \mathfrak{T} , $a,b \in \mathfrak{T}$. Put $\phi(a,b) = Tr\Theta(a,b)$, and call this form ϕ a Killing form of \mathfrak{T} .

An 1-to-1 mapping A of $\mathfrak T$ is called an automorphism of $\mathfrak T$ if A[xyz] = [AxAyAz] for all $x,y,z\in \mathfrak T$. A derivation D of $\mathfrak T$ is a linear mapping of $\mathfrak T$ such that D[xyz] = [(Dx)yz] + [x(Dy)z] + [xy(Dz)] for all $x,y,z\in \mathfrak T$.

LEMMA 2. Let $\phi(a,b)$ be a Killing form of L.t.s. \mathfrak{T} , then

- (i) $\phi(Ax, Ay) = \phi(x, y)$ for automorphism A of \mathfrak{T} ,
- (ii) $\phi(Dx, y) + \phi(x, Dy) = 0$ for derivation D of \mathfrak{T} ,

i. e. ϕ is an invariant of D.

PROOF. From the definition of an automorphism, we have $A\theta(x,y) = \theta(Ax,Ay)A$, hence $\phi(Ax,Ay) = Tr\theta(Ax,Ay) = Tr(A\theta(x,y)A^{-1}) = Tr\theta(x,y) = \phi(x,y)$. The proof is similar for the derivation, therefore we shall omit it.

Since the mapping: $x \to \sum_i [a_i b_i x]$ is an (inner) derivation of \mathfrak{T} , we have the following

COROLLARY. A Killing form is an invariant of an inner derivation.

Let (V, θ) be a \mathbb{Z} -module for L. t. s. \mathbb{Z} and let X_1, X_2, \dots, X_n be a base of \mathbb{Z} . We call \mathbb{Z} non-degenerate if

$$\det \begin{vmatrix} \phi(X_1, X_1), \cdots, \phi(X_1, X_n) \\ \vdots \\ \phi(X_n, X_1), \cdots, \phi(X_n, X_n) \end{vmatrix} \neq 0.$$

⁵⁾ In this section, we follow the method in [8].

Then, we may define a linear operator C of V as

$$C = \sum_{i,j=1}^{n} \pi_{ji} \Theta(X_i, X_j),$$

where $(\pi_{i,j})$ is an inverse matrix of $(\phi(X_i, X_j))$ and $\theta(X_i, X_j) = \theta(X_j, X_i)$. We call this operator C a Casimir operator of θ . If we put $Y_i = \sum_{j=1}^n \pi_{ji} X_j$ $(i=1, 2, \dots, n)$, (Y_1, Y_2, \dots, Y_n) is a base of \mathfrak{T} and $\phi(X_i, Y_k) = \delta_{ik}$, and $C = \sum_{j=1}^n \theta(X_i, Y_j)$.

Let (X_1, \dots, X_n) and (X_1', \dots, X_n') be bases of \mathfrak{T} and let $\phi(X_i, X_j)$ and $\phi(X_i', X_j')$ be Killing forms with inverse matrix (π_{ij}) and (π_{ij}') respectively. Denote by C and C' Casimir operators corresponding to bases (X_i) and (X_i') respectively. Then, putting $X_i' = \sum_{j=1}^n a_{ij} X_j, Y_i' = \sum_{j=1}^n b_{ij} Y_j, C' = \sum_{i=1}^n \Theta(X_i', Y_i') = \sum_{i,s,t} a_{is} b_{it} \Theta(X_s, Y_t) = \sum_s \Theta(X_s, Y_s) = C$, since $\sum_s a_{is} b_{ks} = \sum_{s,t} a_{is} b_{kt} \delta_{st} = \sum_{s,t} a_{is} b_{kt} \phi(X_s, Y_t) = \phi(X_i', Y_k') = \delta_{ik}$. Hence, the Casimir operator is independent to the base of \mathfrak{T} .

THEOREM 3. Let (V, θ) be a \mathbb{Z} -module of a non-degenerate L. t. s. \mathbb{Z} . Then the Casimir operator C of θ commutes with D(x,y) for all x,y in \mathbb{Z} , where $D(x,y)=\theta(y,x)-\theta(x,y)$.

PROOF. From the fact that V is a \mathfrak{T} -module using (7) we have

$$D(x,y)C - CD(x,y) = \sum_{i} \{D(x,y)\Theta(X_{i},Y_{i}) - \Theta(X_{i},Y_{i})D(x,y)\}$$

= $\sum_{i} \{\Theta([xyX_{i}],Y_{i}) + \Theta(X_{i},[xyY_{i}])\},$

where $\theta(X_i, Y_i) = \theta(Y_i, X_i)$. Putting $[xyX_i] = \sum_j a_{ij}X_j$ and $[xyY_i] = \sum_j b_{ij}Y_j$, it follows that $a_{ij} + b_{ji} = 0$, because a Killing form is an invariant of an inner derivation. Hence

$$D(x,y)C - CD(x,y) = \sum_{i,k} \{a_{ik}\Theta(X_k,Y_i) + b_{ik}\Theta(X_i,Y_k)\} = 0.$$

This proves the theorem.

In conclusion, the author wishes to express his deep appreciation to Professor K. Morinaga for his kind guidance.

Department of Mathematics,
Faculty of Science,
Kumamoto University

References

- [1] E. Cartan, La géométrie des groupes de transformations, J. Math. pures et appliquées, 6 (1927) 1-119.
- [2] P. Cartier, Cohomologie des algèbres de Lie, Séminaire "Sophus LIE" le année (1954/1955) Exposé n° 5.
- [3] B. Harris, Cohomology of Lie triple systems, Notices, Amer. Math. Soc., 7 (1960) 348-349.
- [4] ———, Cohomology of Lie triple systems and Lie algebras with involution, to appear in Trans. Amer. Math. Soc.
- [5] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949) 149-170.
- [6] ———, General representation theory of Jordan algebras, Trans. Amer. Math. Soc., 70 (1951) 509-530.
- [7] W.G. Lister, A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72 (1952) 217-242.
- [8] Y. Matsushima, Theory of Lie algebras, Kyoritsu Shuppan, (1956) (in Japanese).
- [9] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954) 33-65.
- [10] K. Yamaguti, On algebras of totally geodesic spaces (Lie triple systems), J. Sci. Hiroshima Univ. Ser. A, 21 (1957-1958) 107-113.