ON THE BLOCKS AND THE SECTIONS OF FINITE GROUPS

Kenzo IIZUKA

(Received September 30, 1960)

1. Let S be a group of finite order g and let p be a fixed rational prime; $g = p^n g', (p, g') = 1$. Let us assume that a > 0, for otherwise our results will not give any new information. We denote by $\chi_1, \chi_2, \dots, \chi_n$ the irreducible characters S of S and by K_1, K_2, \dots, K_n the classes of conjugate elements in S; we select a complete system of representatives G_1, G_2, \dots, G_n for the classes K_1, K_2, \dots, K_n . It is well known that

$$\sum_{i=1}^{n} \chi_i(G_{\lambda}) \chi_i(G_{\mu}^{-1}) = 0 \qquad (\lambda \neq \mu)$$

and

$$(1.1') \qquad \qquad \sum_{\nu=1}^{n} c_{\nu} \chi_{i}(G_{\nu}) \chi_{j}(G_{\nu}^{-1}) = 0 \qquad (i \neq j)$$

where c_{ν} denotes the number of elements in K_{ν} , $\nu=1,2,\cdots,n$.

Let B_1, B_2, \dots, B_t be the p-blocks²) of $\mathfrak G$ and let $P_1 = 1, P_2, \dots, P_l$ be a full system of p-elements³) of $\mathfrak G$ such that every p-element of $\mathfrak G$ is conjugate in $\mathfrak G$ to exactly one element P_δ of the system. It is well known that if we denote by $\mathfrak S(P)$ the p-section⁴) of a p-element P in $\mathfrak G$, then the elements of $\mathfrak G$ are distributed into l p-sections $\mathfrak S(P_1)$, $\mathfrak S(P_2), \dots, \mathfrak S(P_l)$. R. BRAUER, in his paper (1), gave the following refinement of some of the orthogonality relations (1.1):⁵)

[1. A] If L and M are two elements of ${}^{\textcircled{S}}$ which belong to different p-sections of ${}^{\textcircled{S}}$, then

$$\sum_{\chi_i \in B_\tau} \chi_i(L) \chi_i(M^{-1}) = 0$$

for each p-block B_{τ} of \mathfrak{G} .

Recently, R. BRAUER and M. OSIMA have given independently a refinement of some of the orthogonality relations (1.1'):

(1. B) If χ_i and χ_j are two irreducible characters of $^{\textcircled{S}}$ which belong to different

¹⁾ The term "irreducible character" will always mean absolutely irreducible ordinary character.

²⁾ Cf. §9 in [3].

³⁾ An element of \mathfrak{G} is called a *p*-element if its order is a power of p.

⁴⁾ An element G of G can be expressed uniquely as a product PR of two commutative elements where P is a p-element, while R is a p-regular element. We shall call P the p-factor of G and R the p-regular factor of G. The p-section G(P) of a p-element P in G is the set of all elements of G whose p-factors are conjugate to P in G.

⁵⁾ This result was announced in [1] and its proof has been printed in [2].

54 K. IIZUKA

p-blocks of S, then

$$\sum_{\mathbf{x}_{\nu} \subseteq \mathcal{O}_{\mathcal{P}_{\nu}}} c_{\nu} \chi_{i}(G_{\nu}) \chi_{j}(G_{\nu}^{-1}) = 0$$

for each p-section $\mathfrak{S}(P_{\delta})$ of \mathfrak{G} . ((9))

Let Ω be the field of g-th roots of unity and let $\mathfrak p$ be an arbitrarily fixed prime ideal divisor of p in Ω ; $\mathfrak p_{\mathfrak p}$ will denote the ring of all $\mathfrak p$ -integers in Ω . In [11], P. ROQUETTE considered arithmetically the blocks of the character ring of $\mathfrak S$ over the ring of all $\mathfrak p$ -addic integers; K. SHIRATANI has shown in [12] that, essentially, we have only to consider the character ring $K_{\mathfrak p}$ of $\mathfrak S$ over $\mathfrak p_{\mathfrak p}$. The object of this note is to consider the duals of some results on p-blocks and p-sections, especially the duals of [1. A] and (1. B), from a certain standpoint that (1.1) and (1.1') are dual. In the duality, the p-regular sections of $\mathfrak S$ will correspond to the p-blocks of $\mathfrak S$. In § 3, we shall define a new kind of blocks (p-complementary blocks) of group characters which will correspond to p-sections.

2. In this section, we shall sketch an outline of some well known results on $X_{\mathfrak{p}}$ which will correspond to some fundamental properties of the primitive idempotents of the center $Z_{\mathfrak{p}}$ of the group ring of \mathfrak{G} over $\mathfrak{o}_{\mathfrak{p}}$. In the first place, in order to see "dual", we shall refer to the definition of the primitive idempotents of $Z_{\mathfrak{p}}$.

We denote by Z the center of the group ring of S over Ω . The primitive idempotent e_i of Z belonging to \mathcal{X}_i is given by

(2.1)
$$e_i = \frac{1}{g} \sum_{\nu=1}^n x_i \chi_i(G_{\nu}^{-1}) K_{\nu}^{9},$$

where $x_i = \chi_i(1)$. After M. OSIMA (8), we set

(2.2)
$$E_{\tau} = \sum_{\chi_{i} \in B_{\tau}} e_{i} = \sum_{\nu=1}^{n} b_{\nu}^{\tau} K_{\nu} \qquad (\tau = 1, 2, \dots, t).$$

It is well known that all E_{τ} belong to \mathbb{Z}_{p} and that if, for a set B of irreducible characters \mathcal{X}_{i} of \mathfrak{G} , $\sum_{\chi_{i} \in B} e_{i}$ belongs to \mathbb{Z}_{p} , then B is a collection of p-blocks B_{τ} of \mathfrak{G} . Thus we have the following:

(2. A) In the center $Z_{\mathfrak{p}}$ of the group ring of ${}^{\textcircled{S}}$ over $\mathfrak{o}_{\mathfrak{p}},$

$$1 = E_1 + E_2 + \cdots + E_t$$

is the decomposition of the identity 1 into the sum of mutually orthogonal primitive idempotents. ([8])

⁶⁾ The term "p-regular section" has the same meaning as "p-Oberklasse" in [11]: The p-regular section S(R) of a p-regular element R in $\mathfrak G$ is the set of all elements of $\mathfrak G$ whose p-regular factors (See footnote 4) are conjugate to R in $\mathfrak G$.

⁷⁾ Cf. [11], [12].

⁸⁾ Cf. [8].

⁹⁾ Each class K_{ν} is interpreted very often as the sum of all its elements.

We now consider the character ring X of $\mathfrak G$ over Ω . Let d_1, d_2, \cdots, d_n be the primitive idempotents of X: $d_{\mu}(G_{\nu})=1$ or 0 according as $\mu=\nu$ or not. If we denote by ξ_{μ} the linear character of X belonging to d_{μ} , then $\xi_{\mu}(\chi_i)=\chi_i(G_{\mu})$ for all χ_i . As is easily seen, each d_{μ} is expressed as

(2.1')
$$d_{\mu} = \frac{1}{g} \sum_{i=1}^{n} c_{\mu} \chi_{i}(G_{\mu}^{-1}) \chi_{i}.$$

Evidently the elements d_1, d_2, \dots, d_n form a Ω -basis of $X: X = \Omega d_1 + \Omega d_2 + \dots + \Omega d_n$. Further we shall consider four subrings of X:

$$\begin{split} & X_{\mathbf{p}} = \mathbf{P} \chi_1 + \mathbf{P} \chi_2 + \dots + \mathbf{P} \chi_n, \\ & X_{p} = X_{\mathbf{p}} \bigcap X_{\mathfrak{p}} = \mathbf{I}_{p} \chi_1 + \mathbf{I}_{p} \chi_2 + \dots + \mathbf{I}_{p} \chi_n, \\ & X_{\mathbf{I}} = \mathbf{I} \chi_1 + \mathbf{I} \chi_2 + \dots + \mathbf{I} \chi_n, \\ & \Xi_{\mathbf{I}} = \mathbf{I} d_1 + \mathbf{I} d_2 + \dots + \mathbf{I} d_n, \end{split}$$

where P is the field of all rational numbers, I is the ring of all rational integers and I_p is the ring of all rational p-integers.

Let $R_1 = 1$, R_2 , \cdots , R_k be a full system of p-regular elements of \mathfrak{G} such that every p-regular element of \mathfrak{G} is conjugate in \mathfrak{G} to exactly one element R_γ of the system. If we denote by S(R) the p-regular section of a p-regular element R in \mathfrak{G} , then the elements of \mathfrak{G} are distributed into k p-regular sections $S(R_1)$, $S(R_2)$, \cdots , $S(R_k)$. We set

(2.2')
$$\delta_{\gamma} = \sum_{K_{\nu} \in \mathcal{N}(R_{\nu})} d_{\nu} = \sum_{i=1}^{n} \alpha_{i}^{\gamma} \chi_{i},$$

where

(2.3)
$$\alpha_i^{\gamma} = \frac{1}{g} \sum_{K_{\nu} \equiv S(R_{\gamma})} c_{\nu} \chi_i(G_{\nu}^{-1}).$$

As is easily seen, all α_i^1 are rational numbers: $\delta_1 \in X_{\mathbf{P}}$. Moreover δ_1 belongs to X_p , as is shown in the following.

Let \mathfrak{P} be a p-Sylow subgroup of \mathfrak{G} and let θ_1 be the 1-character of \mathfrak{P} . Denoting by θ_1^* the character of \mathfrak{G} induced by θ_1 , we have $\theta_1^* \in X_{\mathbf{I}} \cap \Xi_{\mathbf{I}}$ and

$$\theta_1^*(G) \begin{cases} \equiv \theta_1^*(1) = g' \not\equiv 0 \pmod{p} & (G \in S(1)), \\ = 0 & (G \notin S(1)). \end{cases}$$

Therefore

$$(\theta_1^*)^{\varphi(p^a)} \equiv \delta_1 \pmod{p^a \Xi_I}$$
 $(\alpha = 1, 2, \cdots),$

where φ denotes the Euler's function. Hence, by Lemma 2 in (12), we have

$$(\theta_1^*)^{\widehat{\varphi}(p^{lpha})} - \delta_1 \in X_{\mathbf{p}} \cap X_{\mathfrak{p}} = X_p$$

for sufficient large α . Since $\theta_1^* \in X_1 \subseteq X_p$, we see that $\delta_1 \in X_p$.

In consideration of (2.2') and (2.3), $\delta_1 \in X_p$ yields the congruences

(2.4)
$$\sum_{P \in S(1)} \chi_i(P) \equiv 0 \pmod{p^n} \qquad (i=1,2,\cdots,n)$$

in I.

For an arbitrarily fixed p-regular element $R = R_{\gamma}$ $(1 \leq \gamma \leq k)$, we consider the normalizer $\widetilde{\mathbb{G}} = \mathfrak{M}(R)$ of R in \mathbb{G} . We denote by \widetilde{g} the order of $\widetilde{\mathbb{G}}$ and by $\widetilde{\chi}_1, \widetilde{\chi}_2, \cdots, \widetilde{\chi}_{\widetilde{n}}$ the irreducible characters of $\widetilde{\mathbb{G}}$; $\widetilde{\omega}_j$ will denote the linear character of the center \widetilde{Z} of the group ring of $\widetilde{\mathbb{G}}$ over Ω belonging to $\widetilde{\chi}_j, j = 1, 2, \cdots, \widetilde{n}$. The idempotent $\widetilde{\delta}_R$ of the character ring \widetilde{X} of $\widetilde{\mathbb{G}}$ over Ω associated with the p-regular section of R in $\widetilde{\mathbb{G}}$ is given by

$$\widetilde{\delta}_{R} = \frac{1}{\widetilde{g}} \sum_{j=1}^{\widetilde{n}} \sum_{P \in \widetilde{S}(1)} \widetilde{\lambda}_{j} (R^{-1}P^{-1}) \widetilde{\lambda}_{j},$$

where $\widetilde{S}(1)$ is the p-regular section of 1 in $\widetilde{\mathbb{G}}$. If ψ is an element of \widetilde{X} , we denote by ψ^* the element of X induced by $\psi \colon \psi^*(G) = \frac{1}{\widetilde{g}} \sum_{X \in \mathbb{G}} \psi_0(X^{-1}GX)$ for $G \in \mathbb{G}$, where ψ_0 is the extension of ψ to \mathbb{G} obtained by putting $\psi_0(G) = 0$ for $G \notin \widetilde{\mathbb{G}}$. By Frobenius' theorem on induced characters, we have

(2.5)
$$\tilde{\delta}_{\gamma} = \left\{ \sum_{j=1}^{\widetilde{n}} \widetilde{\omega}_{j}(R^{-1}) \widetilde{\alpha}_{j}^{1} \chi_{j} \right\}^{*},$$

where

(2.6)
$$\widetilde{\alpha}_{J}^{1} = \frac{1}{\widetilde{g}} \sum_{P \in \widetilde{S}(1)} \widetilde{\chi}_{J}(P^{-1}).$$

Since all $\widetilde{\alpha}_{j}^{1}$ are rational p-integers, δ_{γ} belongs to $X_{\mathfrak{p}}$. Conversely if, for a collection S of classes K_{ν} of \mathfrak{G} , $\delta = \sum_{K_{\nu} \subseteq S} d_{\nu}$ belongs to $X_{\mathfrak{p}}$, then S is a collection of p-regular sections $S(R_{\gamma})$ of \mathfrak{G} . This can be seen as follows:

Suppose that $S \cap S(R_{\gamma})$ is not vacuous and that $S \not\equiv S(R_{\gamma})$. Then we can select two classes K_{α} and K_{β} in $S(R_{\gamma})$ such that $K_{\alpha} \subseteq S$ but $K_{\beta} \not\equiv S$. It is easily seen that $\xi_{\alpha}(\delta) = 1$, while $\xi_{\beta}(\delta) = 0$. On the other hand, in general, if K_{λ} and K_{μ} are contained in the same p-regular section of \mathfrak{G} , then $\xi_{\lambda}(\chi_{i}) \equiv \xi_{\mu}(\chi_{i}) \pmod{\mathfrak{p}}$ for all χ_{i} . Hence we have $\xi_{\alpha}(\delta) \equiv \xi_{\beta}(\delta) \pmod{\mathfrak{p}}$, which yields a contradiction. Therefore S is a collection of p-regular sections of \mathfrak{G} .

We thus obtain the following:

(2. A') In the character ring $X_{\mathfrak{p}}$ of ${}^{\mathfrak{G}}$ over ${}^{\mathfrak{op}}$,

$$1 = \delta_1 + \delta_2 + \dots + \delta_k$$

is the decomposition of the identity 1 into the sum of mutually orthogonal primitive idempotents. ((11), (12))

Since every δ_{γ} belongs to $X_{\mathfrak{p}}$, there exist k but not more than k irreducible

characters \mathcal{X}_i of \mathfrak{G} which are linearly independent $(\text{mod }\mathfrak{p})$ ((5)). We see also that two classes K_α and K_β are contained in the same p-regular section $S(R_\gamma)$ of \mathfrak{G} if and only if $\xi_\alpha(\mathcal{X}_i) \equiv \xi_\beta(\mathcal{X}_i)$ $(\text{mod }\mathfrak{p})$ for all irreducible characters χ_i of \mathfrak{G} .

- 3. Let $q_0 = p, q_1, q_2, \dots, q_f$ be the rational primes included in the group order g. In the first place, in order to introduce the concept of p-complementary blocks mentioned in §1, we shall give some characterizations of the p-sections $\mathfrak{S}(P_{\delta})$ of \mathfrak{S} .
- (3. A) Two classes K_{α} and K_{β} of \mathfrak{G} are contained in the same p-section $\mathfrak{S}(P_{\delta})$ of \mathfrak{G} if and only if there exists a chain of classes

$$(3.1) K_{\alpha}, K_{\kappa}, \cdots, K_{\rho}, K_{\beta}$$

of & such that any two consecutive classes K_{μ} and K_{ν} of the chain are contained in a $q_{r(\mu,\nu)}$ -regular section of &, $1 \leq r(\mu,\nu) \leq f$.

PROOF. As is well known, an element G of \mathfrak{G} is expressed as a product $Q_0Q_1Q_2\cdots Q_f$, where Q_r is the q_r -factor of $G, r=0,1,2,\cdots,f$. It is evident that $Q_0Q_1Q_2\cdots Q_{r-1}$ and $Q_0Q_1Q_2\cdots Q_r$ belong to the q_r -regular section of $Q_0Q_1Q_2\cdots Q_{r-1}$ in $\mathfrak{G}, r=1,2,\cdots,f$. Hence if we denote by K(Y) the class K_λ of \mathfrak{G} represented by an element Y, then the classes K(G) and $K(Q_0)$ are connected by a chain as (3.1). Therefore if K_α and K_β are contained in the same p-section of \mathfrak{G} , then they are connected by a chain as (3.1).

Conversely, if K_{μ} and K_{ν} are contained in a q_r -regular section of $\mathfrak{G}(1 \leq r \leq f)$, then the p-factors of them are conjugate in \mathfrak{G} . Therefore if K_{α} and K_{β} are connected by a chain as (3.1), then they are contained in the same p-section of \mathfrak{G} . This completes the proof.

We also have the following characterization of p-sections:

[3.B] The p-sections $\mathfrak{S}(P_{\delta})$ of \mathfrak{S} are characterized as the minimal sets \mathfrak{S} of elements of \mathfrak{S} such that (a) every \mathfrak{S} is not vacuous, (b) every \mathfrak{S} is a collection of q-regular sections of \mathfrak{S} for each rational prime q, different from p.

Now we define the p-complementary blocks of \mathfrak{G} . We shall say that two irreducible characters χ_i and χ_j of \mathfrak{G} belong to the same p-complementary block of \mathfrak{G} if and only if there exists a chain of irreducible characters

$$(3.1') \chi_i, \chi_h, \cdots, \chi_m, \chi_j$$

of $\mathbb S$ such that any two consecutive characters $\mathcal X_u$ and $\mathcal X_v$ of the chain belong to a $q_{r(u,v)}$ -block of $\mathbb S$, $1 \leq r(u,v) \leq f$. Then we can distribute the irreducible characters $\mathcal X_1$, $\mathcal X_2, \cdots, \mathcal X_n$ of $\mathbb S$ into a certain number of p-complementary blocks $\mathfrak B_1, \mathfrak B_2, \cdots, \mathfrak B_s$ of $\mathbb S$.

[3.B] The p-complementary blocks \mathfrak{B}_{σ} of \mathfrak{G} are characterized as the minimal sets \mathfrak{B} of irreducible characters \mathcal{I}_i of \mathfrak{G} such that (a) every \mathfrak{B} is not vacuous, (b) every \mathfrak{B} is a collection of q-blocks of \mathfrak{G} for each rational prime q, different from p.

We shall consider the idempotents of X associated with the p-sections of $\mathbb S$ and the idempotents of Z associated with the p-complementary blocks of $\mathbb S$. We set

(3.2)
$$\varepsilon_{\delta} = \sum_{K_{\nu} \in \mathbb{Q}(P_{\delta})} d_{\nu} = \sum_{i=1}^{n} \beta_{i}^{\delta} \chi_{i},$$

where

(3.3)
$$\beta_i^{\delta} = \frac{1}{g} \sum_{\kappa_{\nu} \in S(P_i)} c_{\nu} \chi_i(G_{\nu}^{-1}).$$

By (2. A) and (3. B), we have the following:

(3. C) All $p^{\alpha}\beta_i^{\beta}$ are algebraic integers. (a) Conversely, if \mathfrak{S} is a collection of classes K_{ν} of \mathfrak{S} such that all coefficients β_i of

$$p^{a'} \sum_{K_i \subseteq S} d_{\nu} = \sum_{i=1}^{n} \beta_i \chi_i$$

are algebraic integers, then \mathfrak{S} is a collection of p-sections $\mathfrak{S}(P_{\delta})$ of \mathfrak{G} , where a' is a rational integer.

Similarly we set

$$(3.2') \mathcal{\Delta}_{\sigma} = \sum_{i \in S_{\sigma}} e_i = \sum_{\nu=1}^n a_{\nu}^{\sigma} K_{\nu},$$

where

$$(3.3') a_{\nu}^{\sigma} = \frac{1}{g} \sum_{x_i \in \mathcal{C}_{\nu}} x_i \chi_i(G_{\nu}^{-1}).$$

We then have the following:

[3. C'] All $p^{\alpha}a_{\nu}^{\sigma}$ are algebraic integers. Conversely, if \mathfrak{B} is a set of irreducible characters χ_{i} of \mathfrak{G} such that all coefficients a_{ν} of

$$p^{n'} \sum_{\mathbf{x}_i \in \mathbb{B}} e_i = \sum_{\nu=1}^n a_{\nu} K_{\nu}$$

are algebraic integers, then \mathfrak{B} is a collection of p-complementary blocks \mathfrak{B}_{σ} of \mathfrak{G} , where a' is a rational integer.

Corresponding to (2.4), by (3.C) we have the congruences

$$(3.4) \qquad \qquad \sum_{i \in \mathbb{N}} \chi_i(R) \equiv 0 \pmod{g'} \qquad \qquad (i=1,2,\cdots,n)$$

in I.

Let $\hat{\mathbb{G}}$ be the normalizer $\mathfrak{N}(P)$ of a p-element $P = P_{\delta}$ in \mathbb{G} , $1 \leq \delta \leq l$. If \hat{g} , $\hat{\chi}_h$, $\hat{\omega}_h$, \hat{n} , $\hat{\varepsilon}_P$, $\hat{\varepsilon}_P^*$, $\hat{\mathbb{G}}(1)$ for $\hat{\mathbb{G}}$ correspond to \tilde{g} , $\tilde{\chi}_j$, $\tilde{\omega}_j$, \tilde{n} , $\tilde{\delta}_R$, $\tilde{\delta}_R^*$, $\tilde{S}(1)$ for $\tilde{\mathbb{G}} = \mathfrak{N}(R)$ in § 2, then corresponding to (2.5) we have

(3.5)
$$\varepsilon_{\delta} = \hat{\varepsilon}_{P}^{*} = \left\{ \sum_{h=1}^{\hat{n}} \hat{\omega}_{i}(P^{-1}) \hat{\beta}_{h}^{1} \hat{\chi}_{h} \right\}^{*},$$

¹⁰⁾ Cf. [8].

where

$$\hat{\beta}_h^1 = \frac{1}{\hat{g}} \sum_{R \in \mathcal{S}(1)} \hat{\chi}_h(R^{-1}).$$

REMARK. Every Osima's block¹¹⁾ of S for p is a collection of p-complementary blocks of S. If S has a normal p-Sylow subgroup, then the Osima's blocks of S for p and the p-complementary blocks of S are identical as a whole. But, in general, both concepts of blocks are not identical.

4. In the first place, we shall refer a result on the primitive idempotents E_{τ} of $Z_{\rm D}$, in order to see "dual" and to use it.

Let P be an arbitrarily given p-element of G and let G denote the normalizer $\Re(P)$ of P in G. We denote by $\hat{B}^{(r)}$ the collection of p-blocks \hat{B}_{ρ} of G such that each \hat{B}_{ρ} determines a given p-block B_{τ} of G in BRAUER's sence¹²; $\hat{E}^{(\tau)}$ will denote the idempotent of the center \hat{Z}_{p} of the group ring of G over D_{p} associated with $\hat{B}^{(\tau)}$, i.e. the sum of all primitive idempotents \hat{E}_{ρ} of \hat{Z}_{p} such that each \hat{E}_{ρ} is associated with a p-block \hat{B}_{ρ} of G contained in $\hat{B}^{(\tau)}$. Let \hat{R}_{1} , \hat{R}_{2} , \cdots , \hat{R}_{k} be a complete system of representatives for the p-regular classes of G. We denote by K(G) the class K_{μ} of G represented by an element G and by $\hat{K}(\hat{R}_{\gamma})$ the class of conjugate elements in G represented by G is well known, the G-section G of G in G is the collection of classes G of G in G is the collection of classes G.

[4. A] For
$$\alpha=1,2,\dots,\hat{k}$$
, we have

$$K(P\hat{R}_{\alpha})E_{\tau} = \sum_{\beta=1}^{\hat{k}} b_{\alpha\beta}^{\tau} K(P\hat{R}_{\beta})$$

and

$$\hat{K}(\hat{R}_{\alpha})\hat{E}^{(\tau)} = \sum_{\beta=1}^{\hat{k}} b_{\alpha\beta}^{\tau} \hat{K}(\hat{R}_{\beta})$$

with the same coefficients $b_{\alpha\beta}^{\tau}$. ((5))

Let q be an arbitrary rational prime different from p and let Q be an arbitrarily given q-element of \mathfrak{G} . We select a complete system of representatives T_1, T_2, \cdots, T_m for the q-regular classes of the normalizer $\mathfrak{N}(Q)$ of Q in \mathfrak{G} . We denote by $\mathfrak{B}^{(\sigma)}(Q)$ the collection of q-blocks of $\mathfrak{N}(Q)$ such that each q-block of the collection determines a q-block of \mathfrak{G} contained in a given p-complementary block \mathfrak{B}_{σ} of \mathfrak{G} ; $\mathcal{A}^{(\sigma)}(Q)$ will denote the idempotent of the center $\mathbf{Z}(Q)$ of the group ring of $\mathfrak{N}(Q)$ over Ω associated with $\mathfrak{B}^{(\sigma)}(Q)$. By (4.A) we may write

$$K(Q) \mathcal{L}_{\sigma} = \sum_{\beta=1}^{m} a_{\beta}^{\sigma}(Q) K(QT_{\beta})$$

¹¹⁾ Cf. [7], [6].

¹²⁾ Cf. [1], [2]. If a p-block B_{τ} of \mathfrak{G} is determined by a p-block \hat{B}_{ρ} of $\hat{\mathfrak{G}}$, then B_{τ} is denoted by $\hat{B}_{\rho}^{\mathfrak{G}}$ in the notations of [2].

and

$$\Delta^{(\sigma)}(Q) = \sum_{\beta=1}^{m} a_{\beta}^{\sigma}(Q) K(Q; T_{\beta})$$

with the same coefficients $a^{\sigma}_{\beta}(Q)$, where $K(Q; T_{\beta})$ denotes the class of conjugate elements in $\mathfrak{N}(Q)$ represented by T_{β} . Since all $p^{\alpha}a^{\sigma}_{\beta}(Q)$ are algebraic integers, from [3. C'] we see that every $\mathfrak{B}^{(\sigma)}(Q)$ is a collection of p-complementary blocks of $\mathfrak{N}(Q)$.

Let R be an arbitrarily given p-regular element of \mathfrak{S} and let Q_r be the q_r -regular factor of $R, r=1,2,\cdots,f$. Let further $\widetilde{P}_1,\widetilde{P}_2,\cdots,\widetilde{P}_{\widetilde{l}}$ be a complete system of representatives for the classes of conjugate elements in the normalizer $\widetilde{\mathfrak{S}}=\mathfrak{M}(R)$ of R in \mathfrak{S} which are contained in the p-regular section $\widetilde{S}(1)$ of 1 in $\widetilde{\mathfrak{S}}$; $\widetilde{K}(\widetilde{P}_{\delta})$ will denote the class of conjugate elements in $\widetilde{\mathfrak{S}}$ represented by \widetilde{P}_{δ} . For each p-complementary block \mathfrak{S}_{σ} of \mathfrak{S} , we can define the collection $\widetilde{\mathfrak{S}}^{(\sigma)}$ of p-complementary blocks $\widetilde{\mathfrak{S}}_{\rho}$ of $\widetilde{\mathfrak{S}}$ such that each $\widetilde{\mathfrak{D}}_{\rho}$ determines \mathfrak{D}_{σ} , in the same way as in § 3 of [7]. In consequence of this, we have the following theorems.

THEOREM 1. For $\alpha=1,2,\dots,\tilde{l}$, we have

$$K(R\tilde{P}_{\alpha})\Delta_{\sigma} = \sum_{\beta=1}^{\tilde{\iota}} a_{\alpha\beta}^{\sigma} K(R\tilde{P}_{\beta})$$

and

$$\tilde{K}(\tilde{P}_{\alpha})\tilde{\varDelta}^{(\sigma)} \! = \! \sum\limits_{\beta=1}^{\tilde{\imath}} a_{\alpha\beta}^{\sigma} \tilde{K}(\tilde{P}_{\beta})$$

with the same coefficients $a_{\alpha\beta}^{\sigma}$, where $\widetilde{A}^{(\sigma)}$ is the idempotent of the center \widetilde{Z} of the group ring of $\widetilde{\mathfrak{G}}$ over Ω associated with $\widetilde{\mathfrak{B}}^{(\sigma)}$.

Theorem 2. If L and M are two elements of $\mathfrak G$ which belong to different p-regular sections of $\mathfrak G$, then

$$\sum_{\mathbf{x}_i \in \mathfrak{V}_e} \chi_i(L) \chi_i(M^{-1}) = 0$$

for each p-complementary block \mathfrak{B}_{σ} of \mathfrak{G}^{13} .

(4. B) If

$$\sum_{\nu=1}^{n} a_{\nu} K_{\nu} \mathcal{L}_{\nu} = 0 \qquad (a_{\nu} \in \Omega),$$

then

$$\sum_{K_{\nu} \equiv S(R_{\gamma})} a_{\nu} K_{\nu} \mathcal{\Delta}_{\nu} = 0$$

for each p-regular section $S(R_{\gamma})$ of ${\mathfrak G}.$

¹³⁾ This is the refinement mentioned in footnote 6) of [6].

THEOREM 3. If \mathcal{X}_i and \mathcal{X}_j are two irreducible characters of $^{\textcircled{S}}$ which belong to different p-complementary blocks of $^{\textcircled{S}}$, then

$$\sum_{K_{\nu}\subseteq S(R_{\gamma})} c_{\nu} \chi_{i}(G_{\nu}) \chi_{j}(G_{\nu}^{-1}) = 0$$

for each p-regular section $S(R_{\gamma})$ of \mathfrak{G} .

It was shown in (8) that each E_{τ} is a linear combination of the p-regular classes K_{ν} of \mathfrak{G} , i. e. the classes K_{ν} of \mathfrak{G} contained in $\mathfrak{S}(1)$. Moreover, (4. A) shows that if K_{α} is contained in a p-section $\mathfrak{S}(P_{\delta})$, then $K_{\alpha}E_{\tau}$ is a linear combination of the classes K_{β} contained in $\mathfrak{S}(P_{\delta})$. (1.3) shows that if \mathcal{X}_{i} belongs to a p-block B_{τ} of \mathfrak{G} , then $\mathcal{X}_{i}\varepsilon_{\delta}$ is a linear combination of the characters \mathcal{X}_{j} belonging to B_{τ} ; especially ε_{δ} is a linear combination of the characters \mathcal{X}_{j} which belong to the p-block B_{1} of \mathfrak{G} containing the 1-character \mathcal{X}_{1} . Theorems 1 and 3 imply the corresponding results for the p-complementary blocks and the p-regular sections of \mathfrak{G} .

REMARK. Let Π be a set of rational primes included in g and let B_1, B_2, \cdots, B_n be the minimal sets of irreducible characters \mathcal{X}_i of \mathfrak{S} such that (a) every \mathbf{B}_{λ} is not vacuous, (b) every \mathbf{B}_{λ} is a collection of q-blocks of \mathfrak{S} for each $q \in \Pi$ and let $\mathbf{S}_1, \mathbf{S}_2, \cdots, \mathbf{S}_v$ be the minimal collections of classes K_v of \mathfrak{S} such that (a) every \mathbf{S}_{μ} is not vacuous, (b) every \mathbf{S}_{μ} is a collection of q-regular sections of \mathfrak{S} for each rational prime q outside of Π (which is included in g); we shall call the sets \mathbf{B}_{λ} of \mathcal{X}_i the Π -blocks of \mathfrak{S} and the collections \mathbf{S}_{μ} of K_v the Π -sections of \mathfrak{S} . By making use of the Π -blocks and Π -sections of \mathfrak{S} , we can generalize Theorems 2 and 3.

5. As an application of (2.2') and (2.3), we shall determine the primitive idempotents of the character ring X_p of \mathfrak{G} over I_p .¹⁴⁾

(5.1)
$$\alpha_i^{\lambda} = \sum_{j=1}^{\widetilde{n}} r_{ij} \widetilde{\alpha}_j^1 \widetilde{\omega}_j(R_{\lambda}^{-1})$$

where the r_{ij} are defined by

(5.2)
$$\chi_{i}(\tilde{G}) = \sum_{j=1}^{\tilde{n}} r_{ij} \tilde{\chi}_{j}(\tilde{G})$$

$$(\tilde{G} \in \tilde{\mathfrak{G}}).$$

Hence if we set

(5.3)
$$\delta_{(R)} = \sum_{S(R,\lambda) \subseteq C_{(R)}} \delta_{\lambda} = \sum_{i=1}^{n} \alpha_i^{(R)} \lambda_i,$$

then

¹⁴⁾ K. SHIRATANI has determined the primitive idempotents of X_p in his paper [12].

(5.4)
$$\alpha_i^{(R)} = \sum_{j=1}^{\widetilde{n}} r_{ij} \widetilde{\alpha}_j^1 \left\{ \sum_{S(R_\lambda) \subseteq C(R)} \widetilde{\omega}_j(R_\lambda^{-1}) \right\}.$$

We denote by G the galois group of the field of g'-th roots of unity over P. If $\sigma \in G$, then for each R_{λ} with $S(R_{\lambda}) \subseteq C_{(R)}$ there exists a rational integer \mathcal{Y}_{σ} prime to r such that $\sigma(\widetilde{\omega}_{j}(R_{\lambda})) = \widetilde{\omega}_{j}(R^{y_{\sigma}})$ for $j=1,2,\cdots,\widetilde{n}$. By the above assumption, $R^{y_{\sigma}}$ is written as $R_{\lambda(\sigma)}$; $\lambda(\sigma)$ will be determined uniquely. From (5.1) we see that $\sigma(\alpha_{i}^{\lambda}) = \alpha_{i}^{\lambda(\sigma)}$ for all λ_{i} .

We consider similarly for each p-elementary class of \mathfrak{G} . Then the substitutions $\lambda \to \lambda(\sigma)$ define a permutations group on k linearly independent n-dimensional vectors

$$\mathfrak{a}_1 = (\alpha_1^1, \alpha_2^1, \cdots, \alpha_n^1), \, \mathfrak{a}_2 = (\alpha_1^2, \alpha_2^2, \cdots, \alpha_n^2), \, \cdots, \, \mathfrak{a}_k = (\alpha_1^k, \alpha_2^k, \cdots, \alpha_n^k)$$

by putting $\sigma(\mathfrak{a}_{\lambda}) = \mathfrak{a}_{\lambda(\sigma)}$, σ running over all galois substitutions of G. For each p-elementary class $C_{(R)}$ of \mathfrak{G} , the vectors \mathfrak{a}_{λ} associated with the p-regular sections $S(R_{\lambda})$ with $S(R_{\lambda}) \subseteq C_{(R)}$ form a set of transitivity. Combining this fact with (2.4), we see that for a collection C of classes K_{ν} of \mathfrak{G} , $\sum_{K_{\nu} \subseteq C} d_{\nu}$ belongs to X_{p} if and only if C is a collection of p-elementary classes of \mathfrak{G} . Therefore if we assume that $C_{(R_{1})}, C_{(R_{2})}, \cdots, C_{(R_{e})}$ are the p-elementary classes of \mathfrak{G} , then we have the following:

(5. A) In the character ring X_p of \mathfrak{G} over the ring I_p of rational p-integers,

$$1 = \delta_{(R_1)} + \delta_{(R_2)} + \dots + \delta_{(R_e)}$$

is the decomposition of the identity 1 into the sum of mutually orthogonal primitive idempotents. ((12))

Department of Mathematics,

Faculty of Science,

Kumamoto University

References

- [1] R. BRAUER, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U. S. A., 32 (1946) 215-219
- [2] _____, Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr., 72 (1959), 25-46.
- [3] R. Brauer and C. Nesbitt. On the modular characters of groups, Ann. Math., 42 (1941), 556-590.
- [4] R. BRAUER AND W. FEIT, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 361-365.
- [5] K. IIZUKA, On Brauer's theorem on sections in the theory of blocks of group characters, Math. Zeitschr., forthcoming.
- [6] , On Osima's blocks of group characters, Proc. Japan Acad., 36 (1960), 392-396.
- [7] _____, On Osima's blocks of groups of finite order, Kumamoto Jour. Sci., 4 (1960), 275-283.
- [8] M. OSIMA, Notes on blocks of group characters, Math. Jour. Okayama Univ., 4 (1955), 175-188.
- (9) _____, On some properties of group characters, Proc. Japan Acad., 36 (1960), 18-21.
- [10] _____, On some properties of group characters II, Math. Jour. Okayama Univ., 10(1960), 61-66.
- [11] P. ROQUETTE, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, Crelles Jour., 190 (1952), 148-168.
- [12] K. SHRATANI, On the characters and the character rings of finite grops, u Mem. Fac. Sci. Kyusyu Univ., 11 (1957), 99-115.