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ON REPRESENTATIONS OF JORDAN ALGEBRAS

" Kiyosi! YAMAGUTI

(Received April 30, 1961)

It is known that the axioms of Lie algebras characterize the structure of subspaces
of associative algebras which are closed relative to the composition @b—ba, on the other
hand the axioms of abstract Jordan algebras do not characterize the structure of sub-
spaces of associative algebras which are closed relative to the composition ab+ba. With
this situation in view, N. Jacobson gave a remarkable definition for the representation
of Jordan algebras with an ordinary one (special representation) [9, also see 51 and
showed that for the study of a Jordan algebra ¥ it is important to consider the structure
of an associator Lie triple system of & [ef. 7,21. Then, it seems that it is necessary to
generalize the notion of representations of & on the foundation of the existence of inner
derivations which have meannings from the results of C. Chevalley and R. D. Schafer
[4] and N. Jacobson [81.

The purpose of this paper is to define the representations of Jordan algebras in two
manners and to construct the cohomology spaces which are associated with these represen-
tations. The one stands on the notion of derivations of Jordan algebras and the other
stands on the notion of Lie triple derivations of associator Lie triple systems. Recently,
B. Harris defined the cohomology space of special Jordan algebras and studied its
properties [6].

1. Preliminaries.? We begin this section with a recalling of the basic definitions
of Jordan algebras and their representations by N. Jacobson.

A Jordan algebra® over a field @ is a non-associative algebra defined by the
following identities:

. ab=ba,
1.2 (@b)a=a*(ba).

A subspace of an associative algebra A which is closed relative to the composition
ab=a-b+b-a is a Jordan algebra relative to the new composition @b, where @-b denotes
the associative composition in A. A Jordan algebra isomorphic to one obtained from a
subspace of an associative algebra in the above manner is called to be special. Contrary
to the theory of Lie algebras, it is known that there exist non-special (exceptional)
Jordan algebras.

If the characteristic of the base field @ is different from 2, then the axioms (1.1)
and (1.2) imply

1) Numbers in brackets refer to the references at the end of the paper.

2) The facts in this section will be found in the papers by A. A. Albert [1] and N. Jacobson [8, 9].

3) Except when the contrary is explicitly stated, throughout this paper we shall assume that
the characteristic of the base field @ is 0 and a Jordan algebra has a finite dimension.
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1.3 a((be)d) +b((ca)d) +c((ab)d) = (ab)(cd) + (bc) (ad) + (ca)(bd).

Conversely, if the characteristic of @ is not 3, then we have (1.2) from (1.1) and (1. 3).
Therefore, a Jordan algebra may be defined by (1.1) and (1.3) in the case that the
characteristic of @ is not 2 or 3. This leads us to the following two definitions of the
representations of Jordan algebras given by N. Jacobson [91.

(D A linear mapping p: a—o(@) of a Jordan algebra I into the associative
-algebra E(V') of linear transformations of a vector space V is called a special represen-
‘tation if

1.4 _ p(ab) =p(a)p(b) +p(b)p(a),
where (p(a)p(6))(%)=p(a)(p(B)x).

(I A linear mapping o: a—p(@) of J into E(V) is called a representation if

(1.5) [o(a), p(bc)1+ [p(®), p(ca)] +[p(c), p(ab)]=0,

.6 p(@)p(B)p(e) +p()p(B)p(a) +p(b(ca))
— o(ab)p(e) +p(bO)p(@) + p(ca)p(B),

where [p(a), p(D)] denotes 0(@)p(b)—p(b)o(a).

It is easy to see that the special representation is a representation in the sense
defined in (II). In a Jordan algebra &3, the left multiplication L(a): x—ax(=xa)
satisfies (1.5) and (1.6), hence L is a representation (II) in . This representation is
called a regular representation. '

Combining (1.5) and (1.6) we have

@ o(@)p(B)p(e) +p(c)p(B)p(a) +p(b(ca))
— 0(2)p(be) +p(B)p(ca) + p(c)p(ab).

Therefore, by using the regular representation for &, we see that it holds the following

identity in a Jordan algebra J:

a.® a(b(cd)) +c(blad)) +d(b(ca))=a(d(bc)) +b(d(ca)) +c(d(ab)).
Hence, if we put

1.9 [abc] =a(bc) —b(ac),

it follows that the linear mapping >Disp: ¥—>>,[ab:X] is an inner derivation of a

Jordan algebra, that is
(1' 10) Z_D(ai,bi)(xy> = (gD(ai.bi)x)'V + x(ZD(n«i,bi)y> J
' Thus, we défine a more general representation than (II) as follows:

DEFINITION 1.1. If a linear mapping o of a Jordan algebra & into the associative
algebra of linear transformations of a vector space V satisfies the condition (1.7), then

o is called a representation {II).
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For the representation (III), from (1.7) it follows

.11 p(Labe])=[[p(@), p(5)]p(c)],

therefore, o(@)’s are a Lie triple system and ,O(a)-i-Z[p(b) e(€)]’s and Z[P(d )
p(b:)1’s are Lie algebras, because

[Le(@), p(B)], [p(e), p(@)11=[p([abc]), p(d)] +[p(c), p([abd])].

By using the relation (1.10), we obtain a simple direct proof of the result of N.
Jacobson concerning a Lie triple structure of a Jordan algebra.

LEMMA 1.1. (Jacobson) In a Jordan algebra ¥ (over a field of characteristic 7 2)
it holds the following relations:

(1.12) [aab] =0,
(1.13) [abe} + [beal + [cab] =0,
(1.14) [[abclde] + [ [bad]cel + [ba[cde]] + [cd[abe]] =0,

that is, I is a Lie triple system with respect to the composition [abc]=a(bc) —b(ac).
PROOF. (of (1.14))

[ablcde]]=[abc](de)—[abd](ce)
+c([abd]e+d[abe]) —d([abc]e+c[abe])
=[[abclde] + [c[abd]e] + [cd[abe]].

2. Cohomology space of Jordan algebras (1).? In this section we define a coho-
mology space of Jordan algebras for the representation (III). Hence we base our argu-
ment on the identities (1.1) and (1.8).

Let p be a representation (III) of a Jordan algebra & into a vector space V, and
let f be a 27-linear mapping of X - X into V satisfying

O T

2n times

f(xly ny Yy x2n—2y xyy>~f(xly er Ty x2’n—2y y: x>:0'

We denote by C*(J, V) (#=0,1,2,---) the vector space spanned by such 2#-linear
mappings, where C'(J, V)=V by definition. Also, we consider the vector space
C'(3,V) spanned by linear mappings of & into V. :

Next, we define a linear mapping 6 of C"(J, V) into C**'($, V) (n=0,1) and of
C(J, V) into C*2(§, V) (n=1,2,3,---) as follows:

@D (@) =p(x)f for fEC'(J, V),
(2.2) (6) (2, %) = p(2) f (%) + 0(2,) f(%) — f(x:%,) for fEC'(J, V),

4) cf. [3, 101.
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(6f)<x1; Koy "y x2n+2>

= (= D)0 Fanes )0 Fane )T G, Fonety Tom Fam ) — P (Fonn) e ) () Fonoss Fars)
0 )0 anes) T By Fammsy Kamy Kenrr) — 0 (Homs )0 (Han) (B, Fonesy Hams)
— 0(Hom-1) S (0 Kancsy Komy Xems1¥onsa) + 0(Han) F( Xy Tamery KomsrKams2)
+ 0(%one ) (X, Zomesy Lonomr) — 0 Xene1) (X0, , Kooy Ko, Kom-1Xamt2)
2.3) + 0(Lons2) F( Xy ) Kames, TonZoms1) — P(Kons2) F(X1, 75 Honz) Xomy Kam-1%ens1)
— F (%, Xgmer, Zon(LemsrXoms2) ) F (X0, 5 Xonsy Ko, s (Ham1%ns2)) |

n
+ :/_—_1 (—1>k+1[|o<x2k—1>y |0<x2k>]f<xly xZ;' Y xik—ly xA2ky' ) x2n+2>
2n+2

+ g j_§+1 (= 1) (%, Xy oy Ropmsy Bon ey [HenrXar®sl, o5 Foms)
for JEC™(Z,V),n=1,23, -,
where the sign ~ over a letter indicates that this letter is to be omitted.
For instance, if fEC*(J,V), then
— (81 (2, %oy %, %)
=p(x3),o(x1)f(x2, %) —.O(xs).o(x2>f<xn %) +P<x4>|0(x1>f<x2: %) —P(@)P(xz)f(xn %)
— o() [y %) + p () (5, %) +p (2 F (%, %) — p (%) (%, %)
+ o(x) (0, 1,%5) — () (%, %) — Lo(x), (%) 11 (s, %)
— £, % (2:5)) + (o 2 (2:2)) + F([02%:], %) + I, [ ] )

If fEC(S,V), then for every %, %EJ
(861) (2, 22) = (p(x)p(x) + p(%) (%) —o(x%:))f,

hence 85f=0 for all f € C°(J, V) if and only if the representation p reduces to the special
representation.

But, we shall prove that 65f=0 for any fEC™(S, V)(n=1,2,3,-) in the sequel.

If fECX(S, V), then this fact follows by a direct computation. In order to prove
the general case, we consider the following two operations.

For a, b€, we define a linear mapping «(a,b) of C**(I, V) into C**(J, V) and
a linear mapping ¢«(@,b) of C™(J,V) into C™*(¥,V) by the following formulas
respectively

(2' 4> (IC(CZ, b)f) (xly' Ty xz‘”) = [|0<a>’ P<b>]f<x1’ Ty x2n> - ‘g f(xl;' ) [abxj] 'y x2‘n>,
(2 5) (f(d, b)f) (xh' Ty xZﬂ—Z) =f<a; b; X1y x2'n-2>r Nn=2;3, .
By a direct calculation we have the following two formulas:

(2.6) «(a, b)sf+5:(a, b)f=x(a,b)f for fEC™(Z, V), n=2'3,-,
@7 [k(ab),(c,d)lf=«[abc],d)f+(c, [abd 1) f for fEC™(Z, V), n=2,3,---.
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Next, it holds the following relation:
2.8) [«(a, b), e(c, )] f=x([abel, &) f +x(c, [abd])f,
for fEC2"<S“, V), n=23, .

Since for fEC'(S, V) we can prove (2.8) directly, we assume that (2.8) holds for all
FEC™(J, V) and let fEC™ (S, V), n>>2, then for arbitrary %, [€EJ we have

«(k, 1)([k(a,b), k(c,d)]—r([abc], d)—«(c, [abd])) f
= ([«(a, b), k(c, d)] —w([abc], d) —x(c, [abd]))e(k, 1) f
+ (e([cd[abk]], 1) —e([ablcdk]], 1) +«([[abc]dk], 1) +([c[abd k], D) f
+ (&, [[abc]dl]) +(k, [c[abd]l]) +(k, [cd[abl]]) — (&, [ab[cdl]]))f
=0,

by (1.14) and (2.7). Therefore, (2.8) holds for all fEC™"**(, V).
Moreover, it holds that

(2.9 x(@, b)of=ér(a, b)f, for fEC*(J, V), n=23, .

If feC'(J, V), then we obtain (2.9) directly, hence we assume that (2.9) holds
for all fEC*(J, V). Then for fEC™**(, V), n>>2, and every k, [ESY

«(k, 1)(x(a, b)6—6x(a, b)) f
=/c<a, b)/c(c, d)f—x(C, d)/c(a, b)f—m((l, b>5t<(}, d)f—i— 5/6((2, b):(c, d)f
—«([abel, d)of—oe([abel, d) f—(c, [abd])6f—se(c, [abd])f
=0, .

by (2.6). Therefore, (2.9) holds for all fEC™**(&, V).
Next we see that_

2.10) ' 86f=0
for all fEC™(JX, V), n=1,2,3,--.
We assume that (2. 10) has been proved for all fEC*(J, V), then for every a,bES
and fEC"*(J, V), n>1. by using (2.6) and (2.9) we have
«(a,b)(60f)=r(a, b)of—b:(a, b)sf
=66e(a,b)f
=0.
Thus we obtain the following
THEOREM 2.1. For the operator & defined above, it holds that &5 =0 for all fE

C:"(S, V), n=1,2,3, .. This relation holds for all f €C(3, V) if and only if the represen-
tation p is a special representation.
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Let Z*(S, V) be a subspace spanned by elements f of C(S,V) such that
§f=0, and let B*(S, V) be a subspace spanned by elements of C**(J, V) of the form

6f, then by Theorem 2.1 B*($,V) is a subspace of Z**(J, V). Therefore, we can
define a cohomology space H**(S, V) of order 2% of a Jordan algebra <3 as the factor

space Z($, V)/B*(, V), where #=1,2,3, -
REMARK 2.1. For fEC'(S,V) we have 66f=0, because
(66f) (%4, %, %, X)
= (p(x)p (%) p(%) + p (%) p (%) 0 (%) + p (% (%))
— 0(x,) 0(x,50) — 0 (%) p(2426,) — (26, p (22,0 ) f (%)
—(p(x) p(x)p(x) +o(x) (%) p(%:) + p(2%:,(%:%,))
— o(x) 0(2x) — p( %) p(2 %) — (2 0 (%:%:) ) f (%)
+ ([Lo(x), p(x)Tp(x) ] — o ([ 22,2100 f (%)
+ ([Lo(x), p(x)10(x) ] — p([ 22,2100 f (%)
— f (2 ((2:20)) + F(2(x0(%:2))) + F([ %1% + F (K[ 2021
=0. '
REMARK 2. 2. For fEC'(,V) we can define the coboundary operator ¢ of
CC(, V) into C(S, V) as follows:
(6 (0, %) = (o2 p (%) + (%) p(x) — p(%:%:)) S

Then, 66f=0, hence in this case we can define the cohomology space H*"(%, V) for
all non-negative integer #, and the gap in Theorem 2.1 will be filled.

3. Cohomology space of Jordan algebras (2). In this section we define a coho-
mology space of Jordan algebras as associater Lie triple systems. For this purpose we
generalize the representation (II) of Jordan algebras.

DEFINITION 3.1. Let p: a—p(a) be a linear mapping of a Jordan algebra 3 into
the associative algebra of linear transformations of a vector space V. This mapping is
called a representation (IV) of & if p(@) satisfies the following relations:

B (pled)—p(e)o(d))(p(ab) —p(@p(B)) — (p(bd) —p(8)p(d)) (plac) —p(a)p(c))
=p(albed]) —p(@)p([bed]) — [p(B), p(c)](p(ad) —p(a)o(d)),

(3.2) [[o(@), p(B)] olcd)—p(c)p(d)]
=o([a,b,cd])—p([abc])p(d)—p(c)p([abd]). 4
Then we have the following ’

THEOREM 3.1. Let p: a—p(a) be a representation (I1) of a Jordan algebra I intova
vector space, then p(@) satisfies the conditions (3.1) and (3.2).




On Representations of Jordan Algebras 109

PROOF.
(oled) —p(edo(d)) (p(ab) — p(a)p(5)) — (p(bd) — p(B)o(d)) (p(ac) —p(a@)p(c))
—o(albed]) +p(@)o([bed]) + [o(B), p()1(o(ad) — p(a) o(d))
=p(ed) (p(ab) —p(a)p(b)) —o(bd) (o(ac) —p(a)p(c)) —p(albed]) +p(a)p([bed])
=0 (p(albd)) — p(@) p(bd)) + o(b) (o(alcd)) —o(a@) o(cd))
=p(ab)p(cd) +p(b(cd))p(a) + o(alcd))p(b) —plac)p(bd)
—o(c(bd)) (@) —p(a(bd))p(c) —o(cd)o(@) o(b) + p(bd)p(a) p(c)
—o(albed]) + o(c)o(@) p(bd) —p(b)p(a) o(cd)
=0,
hence, (3.1) was proved. Next, we shall prove (3.2). o
LoCed) —o(e)o(d), [o(a), o(B)1] +p([a, b,cd]) —p([abe])o(d) — o(c) (olabd])
= [eo(ed) [o(@), p(B)1] +0([a, b, cd])
+o(e)([Le(@), 0(B)Jo(d)] —o([abd]))
+([Le(@), o(0)1p(e)]—p([abe]))o(d)
=0.
Now, for the representation (IV) o: a—p(a) of a Jordan algebra & into a vector
space V, if we put
0(a,b)=p(ab)—p(a)o(b),
D(a,b)=6(b,a)—6(a,b),
then the conditions (8.1) and (3.2) can be rewritten as
@G 0(c,d)0(a,b)—6(b,d)6(a,c)—0(a, [bed]) +D(b, c)6(a, d)=n,
@3.2) [D(a, b), 6(c,d)]1=6([abc],d)+06(c, [abd]).

(3.1) and (8.2)' are the conditions for the representation of Lie triple systems in [10],

hence by Lemma 1.1 the representation space V becomes a S-module [10, Definition 21.

Especially, for a regular representation in a Jordan algebra &, D(a,b) is an inner
derivation in S¥.

Let C"(J, V) be a vector space spanned by #-linear mappings f of Jx - XS

, SONEALY

n times

into a ¥-module V such that

S, %y, X, %, %, %,) =0
and .
. f(xlyl xZ;'”; xn—3) x; y.- Z) +'f<x1; xZ;”'y xﬂ-—S; y.- Z, x) +f<xl; x2r'“y xn—s: Z: x: .y) :0:
where we define C(§, V)=V.

A linear mapping 6 of C"(J; V) into C***(S, V) is defined by the following
formulas:
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3.3 ) (0, %) =0(x%, 2D S for fEC'(J, V),
(Bf)<x1; Koy x2n+1) '

:0(x2n; x2n+1)f<x1, Koy oy x2n—1> —0<x2n—1: x2n+1>f<x1; Xoy 'y Xan—2, x2n>

@G.4) +k§ (=)™ D (%gp—s, Zi) (X, Xy -y Zoper, By " 1 Xomer)
n+1

£37 B (D o R By ] o)
for fEC* (S, V), n=1,2,3,,
G, %y %oy ey Xomsr)
=0 Xymy Xons1) S (Y, X1, Koy oy Zpmes) — O (X, Zons ) (Y, X4y %oy -y Kanez, Xm)

{3.5) +k21 (—D)"*D (X, 2 ) (Y, %1y X3y, Zr—1y Xony' s Woma)
n+1

n 2
+1§ j_§+1<_1>n+k“f<yy Xy, Koy oy Koty Koty [xzk—1xzkxj],"', Koms1)
for fECZ'n(S’ V); n=19 2; 3: STy

where the sign ~ over a letter indicates that this letter is to be omitted. Then, from
[10, Theorem 11 we have 66f=0 for any FECH(I,V)(n=0,1,2, ), hence we can define
a cohomology space H"(J, V) of order # for a Jordan algebra & as the factor space
Z*(,V)/B*(J,V), where Z"(J,V) is a subspace of C"(S, V) spanned by f such
that 6f=0 and B" (g, V)=6C""*(J3, V).
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