SOME STUDIES ON THE ORTHOGONALITY RELATIONS FOR GROUP CHARACTERS

Kenzo IIZUKA

(Received April 24, 1961)

R. BRAUER, in his paper (1), gave an important refinement of some of the orthogonality relations for group characters.¹⁾ He and M. OSIMA gave independently another refinement, (9).²⁾ In (10), (5) ((4)) and (6), other refinements were discussed. In the present note, we shall extend the results to a more general case.

The author wishes to thank Professor M. OSIMA and Professor T. NAKAYAMA for their helpful suggestions.

1. Preliminaries.

1. 1. We shall consider the subsets of the set $\{p_1, p_2, \cdots, p_r\}$: $\Pi_0 = \text{empty set}$, $\Pi_1 = \{p_1, p_2, \cdots, p_r\}$, $\Pi_2, \cdots, \Pi_{2^{r-1}}$. If \bigcup and \bigcap respectively mean the set theoretical union and intersection, then the subsets Π_f form a lattice with respect to two operations \bigcup and \bigcap , which has the maximum element Π_1 and the minimum element Π_0 . We put $\pi_f = \prod_{p_i \in \Pi_f} p_i^{n_i}$ $(1 \leq f \leq 2^r - 1)$ and $\pi_0 = 1$.

For each Π_f , we can find the maximum one, say \mathfrak{N}_{Π_f} , among the normal subgroups of \mathfrak{G} whose orders are prime to π_f . The following facts are easily seen:

- 1) $\mathfrak{N}_{\pi_0} = \mathfrak{G}, \ \mathfrak{N}_{\pi_1} = \{1\}.$
- 2) $\Pi_f \supseteq \Pi_h$ implies $\mathfrak{N}_{\Pi_f} \subseteq \mathfrak{N}_{\Pi_h}$.
- 3) $\mathfrak{N}_{\pi_f \cup \pi_h} = \mathfrak{N}_{\pi_f} \cap \mathfrak{N}_{\pi_h}, \ \mathfrak{N}_{\pi_f \cap \pi_h} \supseteq \mathfrak{N}_{\pi_f} \cdot \mathfrak{N}_{\pi_h}.$

We shall call an element P of \mathfrak{G} a Π_f -element if and only if its order is not divisible by any rational prime not belonging to Π_f , while we shall call an element R of \mathfrak{G} a Π_f -regular element if and only if its order is prime to π_f . As is well known, an element G of \mathfrak{G} can be uniquely expressed as a product of two commutative elements P and R where P is a Π_f -element, while R is a Π_f -regular element; we shall call P the Π_f -factor of G and R the Π_f -regular factor of G. If Π_f consists of one rational prime p, then " Π_f —" will become "p—".

The Π_{f} -section of a Π_{f} -element P in $\mathbb S$ is the set of all elements of $\mathbb S$ whose Π_{f} -factors are conjugate to P in $\mathbb S$; we shall denote by $\mathbb S^{\Pi_{f}}(G)$ the Π_{f} -section of $\mathbb S$ represented by an element G. As is easily seen, each Π_{f} -section of $\mathbb S$ is a collection

¹⁾ Cf. also [2].

²⁾ Cf. also (3).

of classes K_{ν} of \mathfrak{G} . We choose a complete system of representatives, $P_{1}^{\Pi_{f}}=1, P_{2}^{\Pi_{f}}, \cdots$, $P_{sf}^{\Pi_{f}}$, for the classes K_{ν} of \mathfrak{G} which consist of Π_{f} -elements. It is easily seen that the elements of \mathfrak{G} are distributed into the s_{f} Π_{f} -sections $\mathfrak{S}_{\gamma}^{\Pi_{f}}=\mathfrak{S}^{\Pi_{f}}(P_{\gamma}^{\Pi_{f}})$ such that each element of \mathfrak{G} belongs to exactly one $\mathfrak{S}_{\gamma}^{\Pi_{f}}$. If Π_{f} consists of one rational prime p, then the Π_{f} -sections of \mathfrak{G} are the p-sections of \mathfrak{G} . On the other hand, if Π_{f} consists of r-1 rational primes, then the Π_{f} -sections of \mathfrak{G} are the p-regular sections of \mathfrak{G} , where p is the rational prime in Π_{1} not belonging to Π_{f} .

The following facts are easily seen:

- 4) Only Π_0 -section of $\mathfrak G$ is $\mathfrak G$ itself, while the Π_1 -sections of $\mathfrak G$ are the classes K_{ν} of $\mathfrak G$.
 - 5) If $\Pi_f \supseteq \Pi_h$, then each Π_h -section of \mathfrak{G} is a collection of Π_f -sections of \mathfrak{G} .
- 1. 2. The Π_f -block $B^{\Pi_f}(\chi_i)$ of irreducible characters of \mathbb{G} which is represented by an irreducible character χ_i is the set of all irreducible characters χ_j of \mathbb{G} such that each χ_j is connected to χ_i by a chain of irreducible characters of \mathbb{G} ,

$$\chi_i, \chi_{\lambda}, \cdots, \chi_{\rho}, \chi_{j},$$

in which any two consecutive \mathcal{X}_{α} and \mathcal{X}_{β} belong to a p-block of \mathfrak{G} , where $p = p_{\varphi(\alpha,\beta)}$ is a rational prime in Π_f . It is understood that each irreducible character \mathcal{X}_i of \mathfrak{G} itself forms a Π_0 -block of \mathfrak{G} . We denote by $B_1^{\Pi_f}$, $B_2^{\Pi_f}$, ..., $B_{if}^{\Pi_f}$ the Π_f -blocks of \mathfrak{G} . If Π_f consists of one rational prime p, then the Π_f -blocks of \mathfrak{G} are the p-blocks of \mathfrak{G} . On the other hand, if Π_f consists of r-1 rational primes and p is the rational prime in Π_1 not belonging to Π_f , then the Π_f -blocks of \mathfrak{G} are the p-complementary blocks of \mathfrak{G} .

The following facts are easily seen:

- 1) If $\Pi_f \supseteq \Pi_h$, then each Π_f -block of \mathfrak{G} is a collection of Π_h -blocks of \mathfrak{G} .
- 2) $B^{\Pi_f \cup \Pi_h}(\chi_i) \supseteq B^{\Pi_f}(\chi_i) \cup B^{\Pi_h}(\chi_i)$.
- 1. 3. Let $\mathfrak N$ be a normal subgroup of $\mathfrak S$ and let $\mathfrak D_1^{\mathfrak N}$, $\mathfrak D_2^{\mathfrak N}$, \cdots , $\mathfrak D_{n(\mathfrak N)}^{\mathfrak N}$ be the $\mathfrak N$ -blocks³⁾ of irreducible characters $\mathcal X_i$ of $\mathfrak S$. It is well known that the classes of associated irreducible characters θ_{λ} of $\mathfrak N$ in $\mathfrak S$ one-one correspond to the $\mathfrak N$ -blocks of $\mathfrak S$; we shall denote by $\mathfrak U_{\sigma}^{\mathfrak N}$ the class of associated irreducible characters of $\mathfrak N$ which corresponds to $\mathfrak D_{\sigma}^{\mathfrak N}$. If we denote by $\mathcal P_{\sigma}$ the sum of all irreducible characters θ_{λ} in $\mathfrak U_{\sigma}^{\mathfrak N}$, then for each irreducible character $\mathcal X_i$ in $\mathfrak D_{\sigma}^{\mathfrak N}$

$$\chi_i(N) = s_{i\sigma} \phi_{\sigma}(N) \qquad (N \in \mathfrak{N}),$$

where $S_{i\sigma}$ is a positive rational integer.

The following facts are well known:

- 1) Two irreducible characters \mathcal{X}_i and \mathcal{X}_j of \mathfrak{G} belong to a same \mathfrak{N} -block of \mathfrak{G} if and only if $\mathcal{X}_i(N)/\mathcal{X}_i(1) = \mathcal{X}_j(N)/\mathcal{X}_j(1)$ holds for all elements N of \mathfrak{N} .
- 2) If we denote by ϕ^{G} the character of $\overline{\mathbb{G}}$ which is induced by a character ϕ of \mathfrak{N} , then

$$\theta_{\lambda}^{\mathfrak{G}}(G) = \sum_{\chi_{i} \in \mathfrak{A}_{\sigma}^{\mathfrak{R}}} s_{i\sigma} \chi_{i}(G) \tag{GES},$$

³⁾ Cf. [7]. Cf. also [5] or [4].

where θ_{λ} is an irreducible character in $\mathfrak{U}_{\sigma}^{\mathfrak{N}}$.

- 3) If $\mathfrak{M} \supseteq \mathfrak{N}$, then every \mathfrak{N} -block of \mathfrak{G} is a collection of \mathfrak{M} -blocks of \mathfrak{G} .
- 4) If the order of $\mathfrak N$ is prime to π_f , then every $\mathfrak N$ -block of $\mathfrak S$ is a collection of $\mathfrak N_{\pi_f}$ -blocks of $\mathfrak S$.
 - 5) If $\Pi_f \supseteq \Pi_h$, then every \mathfrak{N}_{Π_f} -block of \mathfrak{G} is a collection of \mathfrak{N}_{Π_h} -blocks of \mathfrak{G} .

2. Π_f -blocks.

2.1. Let Ω be the field of g-th roots of unity and let Z be the center of the group ring Γ of $\mathbb G$ over Ω . We denote by e_i the primitive idempotent of Z which is associated with an irreducible character $\mathcal X_i$ of $\mathbb G$:

$$e_i = \frac{1}{g} \sum_{\nu=1}^n \chi_i(1) \chi_i(G_{\nu}^{-1}) K_{\nu},$$

where G_{ν} is a representative element of K_{ν} and each class K_{ν} also denotes the sum of all its elements.

Let p be a rational prime in Π_1 and let \mathfrak{o}_p be the ring of all \mathfrak{p} -integers in \mathcal{Q} , where \mathfrak{p} is a prime ideal divisor of p in \mathcal{Q} . It is well known that if, for each p-block B_{τ} of \mathfrak{G} , we denote by E_{τ} the idempotent of Z which is associated with B_{τ} , then the idempotents E_{τ} are the primitive idempotents of the center Z_0 of the group ring Γ_0 of \mathfrak{G} over \mathfrak{o}_p and that each E_{τ} is a linear combination of p-regular classes K_{ν} of \mathfrak{G} .

We denote by $E^{\pi_f}_{\delta}$ the idempotent of Z which is associated with a Π_f -block $B^{\pi_f}_{\delta}$ of \mathfrak{G} :

$$E^{\Pi_f}_{\delta} = \sum_{\mathbf{x}_i \in B^{\Pi_f}_{\delta}} e_i.$$

We set

$$E_{\delta}^{\Pi_f} = \sum \beta_{\delta,\nu}^{\Pi_f} K_{\nu}$$
.

- (2.1.A) The Π_f -blocks $B_\delta^{\Pi_f}$ of $\mathbb G$ are characterized as the minimal sets B of irreducible characters $\mathcal X_i$ of $\mathbb G$ such that (a) each B is a collection of q-blocks of $\mathbb G$ for any rational prime q in Π_f , (b) each B is not vacuous.
- (2.1.B) $\beta_{\delta,\nu}^{\Pi_f}$ can be different from zero only for Π_f -regular classes K_{ν} of \mathfrak{G} (i. e. classes K_{ν} of \mathfrak{G} which consist of Π_f -regular elements). The $\beta_{\delta,\nu}^{\Pi_f}$ multiplied by g/π_f are algebraic integers.

PROOF. Since $\mathcal{B}^{\Pi_f}_{\delta}$ is a collection of q-blocks of \mathfrak{G} for each rational prime q in Π_f , $\beta^{\Pi_f}_{\delta,\nu}$ can differ from zero only for Π_f -regular classes K_{ν} of \mathfrak{G} . Since, further, the $\beta^{\Pi_f}_{\delta,\nu}$ multiplied by g are algebraic integers, the $g/\pi_f \cdot \beta^{\Pi_f}_{\delta,\nu}$ are algebraic integers.

(2.1.C) If B is a set of irreducible characters \mathcal{X}_i of \mathbb{S} such that the coefficients β_v of

$$\alpha \cdot \sum_{\mathbf{x}_i \in B} e_i = \sum_{\mathbf{y}} \beta_{\mathbf{y}} K_{\mathbf{y}}$$

⁴⁾ Cf. [8].

are algebraic integers, then **B** is a collection of Π_f -blocks $\mathbf{B}_{\delta}^{\Pi_f}$ of \mathfrak{G} , where α is a product of powers of the rational primes in Π_1 not belonging to Π_f .

PROOF. If the β_{ν} are algebraic integers for an α , then B is a collection of q-blocks of \mathfrak{G} for each rational prime q in Π_f . Hence, it is easily seen from (2.1.A) that B is a collection of Π_f -blocks of \mathfrak{G} .

As a special case, we have

- [2.1.D] Only Π_1 -block of ${}^{\textcircled{S}}$ is the set of all irreducible characters ${}^{\textcircled{L}}$ of ${}^{\textcircled{S}}$. Only primitive idempotent of the center of the group ring of ${}^{\textcircled{S}}$ over the ring of all rational integers is the identity 1.
- 2. 2. Let $\Pi_f = \{q_1, q_2, \cdots, q_u\}$ be an arbitrarily given subset of Π_1 and let P be a Π_f -element of \mathfrak{G} . We consider the normalizer, $\widetilde{\mathfrak{G}}$, of P in \mathfrak{G} . If K_1 , K_2 , \cdots , $K_{\widetilde{k}}$ are the Π_f -regular classes of $\widetilde{\mathfrak{G}}$ (strictly speaking, the $\widetilde{\Pi}_f$ -regular classes of $\widetilde{\mathfrak{G}}$ where $\widetilde{\Pi}_f$ is the set of all rational primes in Π_f which divide the order \widetilde{g} of $\widetilde{\mathfrak{G}}$) then, for any different α , β ($1 \leq \alpha$, $\beta \leq \widetilde{k}$), $P\widetilde{K}_{\alpha}$ and $P\widetilde{K}_{\beta}$ cannot be contained in a same class K_{ν} of \mathfrak{G} . Hence, arranging the classes K_{ν} of \mathfrak{G} in a suitable order, we may assume that each $P\widetilde{K}_{\alpha}$ is contained in a class K_{α} of \mathfrak{G} ($\alpha=1,2,\cdots,\widetilde{k}$); $K_1,K_2,\cdots,K_{\widetilde{k}}$ are the classes of \mathfrak{G} which are contained in the Π_f -section $\mathfrak{S}^{\Pi_f}(P)$ of P in \mathfrak{G} .

It is well known that P is uniquely expressed as a product

$$P=Q_1, Q_2, \cdots, Q_n$$

where Q_i is the q_i -factor of P ($1 \leq i \leq u$). First, for a Π_f -block $B^{\Pi_f}_{\delta}$ of \mathfrak{G} , we consider the collection $B^{\Pi_f}_{(\delta)}(Q_1)$ of q_i -blocks $B^{q_1}_{\rho}$ of the normalizer \mathfrak{G}_i of Q_i in \mathfrak{G} such that each $B^{q_1}_{\rho}$ is associated (in Brauer's sense), with a q_i -block of \mathfrak{G} which is contained in $B^{\Pi_f}_{\delta}$. It is easy to see that $B^{\Pi_f}_{(\delta)}(Q_1)$ is a collection of Π_f -blocks of \mathfrak{G}_i^{5} . Secondly, if we consider the collection $B^{\Pi_f}_{(\delta)}(Q_1Q_2)$ of q_i -blocks $B^{q_2}_{\mu}$ of the normalizer \mathfrak{G}_2 of Q_1Q_2 in \mathfrak{G} such that each $B^{q_2}_{\mu}$ is associated with a q_2 -block of \mathfrak{G}_i contained in $B^{\Pi_f}_{(\delta)}(Q_1)$, then $B^{\Pi_f}_{(\delta)}(Q_1Q_2)$ is a collection of Π_f -blocks of \mathfrak{G}_2 . Continuing this process, we have finally a collection $B^{\Pi_f}_{(\delta)}(P)$ of Π_f -blocks $B^{\Pi_f}_{\gamma}$ of \mathfrak{G} .

If we denote by $\tilde{E}^{\pi_f}_{(\tilde{S})}$ the idempotent of the center \tilde{Z} of the group ring of $\tilde{\mathbb{S}}$ over Q which is associated with $\tilde{E}^{\pi_f}_{(\tilde{S})}$, then we have

(2.2. A) For $\alpha=1,2,\dots,\widetilde{k}$, we may write

$$\widetilde{K}_{\alpha} \, \widetilde{E}^{\mathrm{II}f}_{(\delta)} = \sum_{\beta=1}^{\widetilde{k}} \beta^{\mathrm{II}f}_{\delta,\,\alpha\beta} \widetilde{K}_{\beta}$$

and

$$K_{\alpha}E_{\delta}^{\Pi_f} = \sum_{\beta=1}^{\widetilde{k}} \beta_{\delta,\,\alpha\beta}^{\Pi_f} K_{\beta}$$

with the same coefficients $\beta_{\delta,\alpha\beta}^{\Pi_f}$.

⁵⁾ Cf. [6].

2. 3.6 According to (2.2.A), we obtain the following refinements of some of the orthogonality relations for group characters.

[2.3. A] If L and M are two elements of $\mathfrak G$ which belong to different Π_f -sections of $\mathfrak G$, then

$$\sum_{\chi_i \in B} \chi_i(L) \chi_i(M^{-1}) = 0$$

for each Π_f -block $B = B_{\delta}^{\Pi_f}$ of \mathfrak{G} .

(2.3.B) If χ_i and χ_j are two irreducible characters of \mathfrak{G} which belong to different Π_f -blocks of \mathfrak{G} , then

$$\sum_{G\in\mathfrak{S}}\chi_i(G)\chi_j(G^{\scriptscriptstyle -1})=0$$

for each Π_f -section $\mathfrak{S} = \mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{G} .

Combining 5) in 1.1 with Theorem 3 in (8), we obtain

(2.3.C) If B is a set of irreducible characters χ_i of \otimes such that

$$\sum_{\mathbf{x}_i \in B} \mathbf{X}_i(L) \mathbf{X}_j(M^{-1}) = 0$$

for any two elements L and M of \mathfrak{G} which belong to different Π_f -sections of \mathfrak{G} , then B is a collection of Π_f -blocks of \mathfrak{G} .

REMARK. Let $\mathfrak S$ be a collection of classes K_{ν} of $\mathfrak S$. $\mathfrak S$ is not always a collection of $II_{\mathcal F}$ -sections of $\mathfrak S$, if

$$\sum_{G \in \mathfrak{S}} \chi_i(G) \chi_j(G^{-1}) = 0$$

holds for any two irreducible characters \mathcal{X}_i and \mathcal{X}_j of \mathbb{S} which belong to different $\Pi_{\mathcal{F}}$ -blocks of \mathbb{S} .

2.4. Let X be the character ring of \mathbb{S} over Ω :

$$X = \Omega \chi_1 + \Omega \chi_2 + \dots + \Omega \chi_n.$$

The identity of X is the sum of n mutually orthogonal primitive idempotents d_1, d_2, \cdots, d_n of X:

$$d_{\mu}(G_{\nu}) = \begin{cases} 1 & (\mu = \nu) \\ 0 & (\mu \neq \nu) \end{cases}$$

where G_{ν} is a representative element of K_{ν} ($\nu=1,2,\cdots,n$). As is well known, d_{μ} is given by

(2)
$$d_{\mu} = \frac{1}{g} \sum_{i=1}^{n} c_{\mu} \chi_{i}(G_{\mu}^{-1}) \chi_{i},$$

where c_{μ} is the number of elements in K_{μ} .

6) Cf. Remark in [6].

It is well known that if S_1, S_2, \dots, S_l are the p-regular sections of \mathfrak{G} for a rational prime p, then the idempotents δ_{γ} of X associated with the p-regular sections S_{γ} are the mutually orthogonal primitive idempotents of the character ring

$$X_0 = \mathfrak{o}_{\mathfrak{p}} \, \chi_1 + \mathfrak{o}_{\mathfrak{p}} \, \chi_2 + \dots + \mathfrak{o}_{\mathfrak{p}} \, \chi_n$$

of \mathfrak{G} over the ring \mathfrak{O}_p of all \mathfrak{p} -integers in \mathfrak{Q} , where \mathfrak{p} is a prime ideal divisor of p in $\mathfrak{Q}^{(7)}$

For each Π_f -section $\mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{G} , we consider the idempotent $\varepsilon_{\gamma}^{\Pi_f}$ of X which is associated with $\mathfrak{S}_{\gamma}^{\Pi_f}$:

$$arepsilon_{\gamma}^{\Pi_f} = \sum_{K_
u \equiv \mathfrak{S}_{\gamma}^{\Pi_f}} d_
u.$$

[2.4.A] The Π_f -sections $\mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{S} are characterized as the minimal collections \mathfrak{S} of classes K_{ν} of \mathfrak{S} such that (a) each \mathfrak{S} is a collection of q-regular sections of \mathfrak{S} for any rational prime q not belonging to Π_f , (b) each \mathfrak{S} is not vacuous.

If we set

(3)
$$\varepsilon_{\gamma}^{\Pi_f} = \sum_{i} \alpha_{\gamma,i}^{\Pi_f} \chi_{i},$$

then we have

[2.4.B] $\alpha_{\gamma,i}^{\Pi_f}$ can be different from zero only for characters \mathcal{X}_i which belong to the Π_f -block $B_1^{\Pi_f}$ containing the 1-character \mathcal{X}_1 . The $\alpha_{\gamma,i}^{\Pi_f}$ multiplied by π_f are algebraic integers.

[2.4.C] If \mathfrak{S} is a collection of classes K_{ν} of \mathfrak{S} such that the coefficients α_{i} of $\beta \cdot \sum_{K_{\nu} \subseteq \mathfrak{S}} d_{\nu}$ = $\sum_{i} \alpha_{i} \lambda_{i}$ are algebraic integers, then \mathfrak{S} is a collection of Π_{f} -sections $\mathfrak{S}_{\gamma}^{\Pi_{f}}$ of \mathfrak{S} , where β is a product of powers of the rational primes in Π_{f} .

3. Blocks with regard to normal subgroups.

3.1. Let \mathfrak{N} be a normal subgroup of \mathfrak{S} whose order is prime to π_f . We consider the idempotents $\mathcal{J}_{\sigma}^{\mathfrak{N}}$ of Z which are associated with the \mathfrak{N} -blocks $\mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{S} :

$$\Delta_{\sigma}^{\mathfrak{R}} = \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}^{\mathfrak{R}}} e_{i}.$$

We set

$$\Delta_{\sigma}^{\mathfrak{R}} = \sum_{\nu} a_{\sigma,\nu}^{\mathfrak{R}} K_{\nu},$$

where $a_{\sigma,\nu}^{\Re} \in \Omega$. According to facts mentioned in 1.3, we have

(3.1.A) $a_{\sigma,\nu}^{\Re}$ can be different from zero only for classes K_{ν} which are contained in \Re . The $(\Re:1)a_{\sigma,\nu}^{\Re}$ are algebraic integers.

(3.1.B) If \mathfrak{B} is a set of irreducible characters \mathcal{X}_i of \mathfrak{G} such that $\sum_{\chi_i \in \mathfrak{B}} e_i$ is a linear combination of classes K_r contained in \mathfrak{R} , then \mathfrak{B} is a collection of \mathfrak{R} -blocks $\mathfrak{B}_{\sigma}^{\mathfrak{R}}$ of \mathfrak{G} .

⁷⁾ Cf. (11), (12). Cf. also (6).

Combining (3.1.A) with (2.1.C), we have

(3.1.C) If \mathfrak{N} is a normal subgroup of \mathfrak{S} whose order is prime to π_f , then each \mathfrak{N} -block $\mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{S} is a collection of π_f -blocks $B_{\delta}^{\mathfrak{n}_f}$ of \mathfrak{S} .

We set

$$(5) K_{\mu} \mathcal{J}_{\sigma}^{\mathfrak{N}} = \sum_{\nu} a_{\sigma, \, \mu\nu}^{\mathfrak{N}} K_{\nu},$$

where $a_{\sigma,\mu\nu}^{\mathfrak{N}} \in \Omega$. If \mathfrak{M} is a normal subgroup of \mathfrak{G} which contains \mathfrak{N} , then $a_{\sigma,\mu\nu}^{\mathfrak{N}}$ can differ from zero only when either both K_{μ} and K_{ν} are contained in \mathfrak{M} or when both are not contained in \mathfrak{M} . Thus we have

(3.1.D) If $\mathfrak M$ is a normal subgroup of $\mathfrak G$ which contains $\mathfrak N$ and if exactly one of two elements L and M of $\mathfrak G$ belongs to $\mathfrak M$, then

$$\sum_{\chi_i \in \mathfrak{B}} \chi_i(L) \chi_i(M^{-1}) = 0$$

for each \mathfrak{R} -block $\mathfrak{B} = \mathfrak{B}_{\sigma}^{\mathfrak{R}}$ of \mathfrak{G} .

3. 2. Let P be a Π_f -element of $\mathbb S$ and $\mathbb N$ a normal subgroup of $\mathbb S$ whose order is prime to π_f . We shall use the same notation, for this P, as in 2.2: $\widetilde{\mathbb S}$; \widetilde{K}_1 , \widetilde{K}_2 , ..., $\widetilde{K}_{\widetilde{k}}$; K_1 , K_2 , ..., $K_{\widetilde{k}}$; \widetilde{Z} ; $\widetilde{B}_{(\mathbb S)}^{\Pi_f}$ and etc. Since each $\mathbb N$ -block $\mathfrak B_{\sigma}^{\mathbb N}$ of $\mathbb S$ is a collection of Π_f -blocks $B_{\delta}^{\Pi_f}$ of $\mathbb S$, we may define the collection $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$ of Π_f -blocks $\widetilde{B}_{\rho}^{\Pi_f}$ of $\widetilde{\mathbb S}$ such that each $\widetilde{B}_{\rho}^{\Pi_f}$ is contained in a $\widetilde{B}_{(\mathbb S)}^{\Pi_f}$ with $B_{\delta}^{\Pi_f} \subseteq \mathfrak B_{\sigma}^{\mathbb N}$. It is easy to see that each $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$ is a collection of $\widetilde{\mathbb N}$ -blocks $\widetilde{\mathfrak B}_{\tau}^{\widetilde N}$ of $\widetilde{\mathbb S}$, where $\widetilde{\mathbb N} = \mathbb N \cap \widetilde{\mathbb S}$. We denote by $\widetilde{\mathcal A}_{(\sigma)}^{\mathbb N}$ the idempotent of \widetilde{Z} associated with $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$:

$$\widetilde{\mathcal{A}}_{(\sigma)}^{\mathfrak{N}} = \sum_{B_{\sigma}^{\Pi f} = \mathfrak{N}_{\delta}^{\mathfrak{N}}} \widetilde{E}_{(\delta)}^{\Pi f}.$$

Then, by (2.2. A) and (5), we obtain

(3.2. A) For $\mu=1, 2, \dots, \tilde{k}$, we have

$$K_{\mu} \Delta_{\sigma}^{\mathfrak{N}} = \sum_{\nu=1}^{\widetilde{k}} a_{\sigma, \, \mu \nu}^{\mathfrak{N}} K_{\nu}$$

and

$$\widetilde{K}_{\mu}\widetilde{\widetilde{\mathcal{A}}}_{(\sigma)}^{\mathfrak{N}} = \sum_{\nu=1}^{\widetilde{k}} a_{\sigma,\,\mu\nu}^{\mathfrak{N}}\widetilde{K}_{
u}$$

with the same coefficients $a_{\sigma, \mu\nu}^{\Re}$.

We shall say that two elements L and M of the Π_f -section $\mathfrak{S}_f^{\pi}(P)$ of P in \mathfrak{S} belong to a same Π_f -subsection of P in \mathfrak{S} with regard to \mathfrak{N} if and only if the following two conditions are satisfied:

(a) For any normal subgroup $\mathfrak M$ of $\mathfrak G$ which contains $\mathfrak N$, " $L\in \mathfrak M$ " is equivalent to " $M\in \mathfrak M$ ".

(b) For any normal subgroup $\widetilde{\mathbb{M}}$ of $\widetilde{\mathbb{G}}$ which contains $\mathfrak{N} \cap \widetilde{\mathbb{G}}$, " $Q \in \widetilde{\mathfrak{M}}$ " is equivalent to " $R \in \widetilde{\mathfrak{M}}$ ", where Q and R are two Π_f -regular elements of $\widetilde{\mathbb{G}}$ such that L and M are conjugate in \mathbb{G} to PQ and PR, respectively.

Considering this construction for each $P=P_{\gamma}^{\pi_f}$, we can distribute the elements of \mathfrak{G} into a certain number of Π_f -subsections with regard to \mathfrak{N} . According to (3.2.A), we can refine (3.1.D) as follows:

[3.2.B] If L and M are two elements of ${}^{\textcircled{S}}$ which belong to different Π_{f} -subsections of ${}^{\textcircled{S}}$ with regard to ${}^{\textcircled{N}}$, then

$$\sum_{\chi_i \in \mathfrak{B}} \chi_i(L) \chi_i(M^{-1}) = 0$$

for each \mathfrak{N} -block $\mathfrak{B} = \mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{G} .

(3.2.C) If χ_i and χ_j are two irreducible characters of \mathfrak{G} which belong to different \mathfrak{R} -blocks of \mathfrak{G} , then

$$\sum_{G \in \mathfrak{S}} \chi_i(G) \chi_j(G^{-1}) = 0$$

for each Π_f -subsection \mathfrak{S} of \mathfrak{S} with regard to \mathfrak{N} .

Department of Mathematics,

Faculty of Science,

Kumamoto University

REFERENCES

- [1] R. Brauer, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 215-219.
- [2] ———, Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr., 72 (1959), 25-46.
- [3] K. IIZUKA, On Brauer's theorem on sections in the theory of blocks of group characters, Math. Zeitschr., 75 (1961), 299-304.
- [4] —, On Osima's blocks of group characters, Proc. Japan Acad., 36 (1960), 392-396.
- [5] —, On Osima's blocks of groups of finite order, Kumamoto Jour. Sci., 4 (1960), 275-283.
- [6] —, On the blocks and the sections of finite groups, Kumamoto Jour. Sci., 5 (1960), 53-62.
- [7] M. Osima, On the representations of groups of finite order, Math. Jour. Okayama Univ., 1 (1952),
- [8] —, Notes on blocks of group characters, Math. Jour. Okayama Univ., 4 (1955), 175-188.
- [9] —, On some properties of group characters, Proc. Japan Acad., 36 (1960), 18-21.
- [10] ———, On some properties of group characters II, Math. Jour. Okayama Univ., 10 (1960), 61-66.
- [11] P. ROQUETTE, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, Crelles Jour., 190 (1952), 148-168.
- [12] K. Shiratani, On the characters and the character rings of finite groups, Mem. Fac. Kyusyu Univ., 11 (1957), 99-115.