SOME STUDIES ON THE ORTHOGONALITY RELATIONS FOR GROUP CHARACTERS #### Kenzo IIZUKA (Received April 24, 1961) R. BRAUER, in his paper (1), gave an important refinement of some of the orthogonality relations for group characters.¹⁾ He and M. OSIMA gave independently another refinement, (9).²⁾ In (10), (5) ((4)) and (6), other refinements were discussed. In the present note, we shall extend the results to a more general case. The author wishes to thank Professor M. OSIMA and Professor T. NAKAYAMA for their helpful suggestions. ## 1. Preliminaries. 1. 1. We shall consider the subsets of the set $\{p_1, p_2, \cdots, p_r\}$: $\Pi_0 = \text{empty set}$, $\Pi_1 = \{p_1, p_2, \cdots, p_r\}$, $\Pi_2, \cdots, \Pi_{2^{r-1}}$. If \bigcup and \bigcap respectively mean the set theoretical union and intersection, then the subsets Π_f form a lattice with respect to two operations \bigcup and \bigcap , which has the maximum element Π_1 and the minimum element Π_0 . We put $\pi_f = \prod_{p_i \in \Pi_f} p_i^{n_i}$ $(1 \leq f \leq 2^r - 1)$ and $\pi_0 = 1$. For each Π_f , we can find the maximum one, say \mathfrak{N}_{Π_f} , among the normal subgroups of \mathfrak{G} whose orders are prime to π_f . The following facts are easily seen: - 1) $\mathfrak{N}_{\pi_0} = \mathfrak{G}, \ \mathfrak{N}_{\pi_1} = \{1\}.$ - 2) $\Pi_f \supseteq \Pi_h$ implies $\mathfrak{N}_{\Pi_f} \subseteq \mathfrak{N}_{\Pi_h}$. - 3) $\mathfrak{N}_{\pi_f \cup \pi_h} = \mathfrak{N}_{\pi_f} \cap \mathfrak{N}_{\pi_h}, \ \mathfrak{N}_{\pi_f \cap \pi_h} \supseteq \mathfrak{N}_{\pi_f} \cdot \mathfrak{N}_{\pi_h}.$ We shall call an element P of \mathfrak{G} a Π_f -element if and only if its order is not divisible by any rational prime not belonging to Π_f , while we shall call an element R of \mathfrak{G} a Π_f -regular element if and only if its order is prime to π_f . As is well known, an element G of \mathfrak{G} can be uniquely expressed as a product of two commutative elements P and R where P is a Π_f -element, while R is a Π_f -regular element; we shall call P the Π_f -factor of G and R the Π_f -regular factor of G. If Π_f consists of one rational prime p, then " Π_f —" will become "p—". The Π_{f} -section of a Π_{f} -element P in $\mathbb S$ is the set of all elements of $\mathbb S$ whose Π_{f} -factors are conjugate to P in $\mathbb S$; we shall denote by $\mathbb S^{\Pi_{f}}(G)$ the Π_{f} -section of $\mathbb S$ represented by an element G. As is easily seen, each Π_{f} -section of $\mathbb S$ is a collection ¹⁾ Cf. also [2]. ²⁾ Cf. also (3). of classes K_{ν} of \mathfrak{G} . We choose a complete system of representatives, $P_{1}^{\Pi_{f}}=1, P_{2}^{\Pi_{f}}, \cdots$, $P_{sf}^{\Pi_{f}}$, for the classes K_{ν} of \mathfrak{G} which consist of Π_{f} -elements. It is easily seen that the elements of \mathfrak{G} are distributed into the s_{f} Π_{f} -sections $\mathfrak{S}_{\gamma}^{\Pi_{f}}=\mathfrak{S}^{\Pi_{f}}(P_{\gamma}^{\Pi_{f}})$ such that each element of \mathfrak{G} belongs to exactly one $\mathfrak{S}_{\gamma}^{\Pi_{f}}$. If Π_{f} consists of one rational prime p, then the Π_{f} -sections of \mathfrak{G} are the p-sections of \mathfrak{G} . On the other hand, if Π_{f} consists of r-1 rational primes, then the Π_{f} -sections of \mathfrak{G} are the p-regular sections of \mathfrak{G} , where p is the rational prime in Π_{1} not belonging to Π_{f} . The following facts are easily seen: - 4) Only Π_0 -section of $\mathfrak G$ is $\mathfrak G$ itself, while the Π_1 -sections of $\mathfrak G$ are the classes K_{ν} of $\mathfrak G$. - 5) If $\Pi_f \supseteq \Pi_h$, then each Π_h -section of \mathfrak{G} is a collection of Π_f -sections of \mathfrak{G} . - 1. 2. The Π_f -block $B^{\Pi_f}(\chi_i)$ of irreducible characters of \mathbb{G} which is represented by an irreducible character χ_i is the set of all irreducible characters χ_j of \mathbb{G} such that each χ_j is connected to χ_i by a chain of irreducible characters of \mathbb{G} , $$\chi_i, \chi_{\lambda}, \cdots, \chi_{\rho}, \chi_{j},$$ in which any two consecutive \mathcal{X}_{α} and \mathcal{X}_{β} belong to a p-block of \mathfrak{G} , where $p = p_{\varphi(\alpha,\beta)}$ is a rational prime in Π_f . It is understood that each irreducible character \mathcal{X}_i of \mathfrak{G} itself forms a Π_0 -block of \mathfrak{G} . We denote by $B_1^{\Pi_f}$, $B_2^{\Pi_f}$, ..., $B_{if}^{\Pi_f}$ the Π_f -blocks of \mathfrak{G} . If Π_f consists of one rational prime p, then the Π_f -blocks of \mathfrak{G} are the p-blocks of \mathfrak{G} . On the other hand, if Π_f consists of r-1 rational primes and p is the rational prime in Π_1 not belonging to Π_f , then the Π_f -blocks of \mathfrak{G} are the p-complementary blocks of \mathfrak{G} . The following facts are easily seen: - 1) If $\Pi_f \supseteq \Pi_h$, then each Π_f -block of \mathfrak{G} is a collection of Π_h -blocks of \mathfrak{G} . - 2) $B^{\Pi_f \cup \Pi_h}(\chi_i) \supseteq B^{\Pi_f}(\chi_i) \cup B^{\Pi_h}(\chi_i)$. - 1. 3. Let $\mathfrak N$ be a normal subgroup of $\mathfrak S$ and let $\mathfrak D_1^{\mathfrak N}$, $\mathfrak D_2^{\mathfrak N}$, \cdots , $\mathfrak D_{n(\mathfrak N)}^{\mathfrak N}$ be the $\mathfrak N$ -blocks³⁾ of irreducible characters $\mathcal X_i$ of $\mathfrak S$. It is well known that the classes of associated irreducible characters θ_{λ} of $\mathfrak N$ in $\mathfrak S$ one-one correspond to the $\mathfrak N$ -blocks of $\mathfrak S$; we shall denote by $\mathfrak U_{\sigma}^{\mathfrak N}$ the class of associated irreducible characters of $\mathfrak N$ which corresponds to $\mathfrak D_{\sigma}^{\mathfrak N}$. If we denote by $\mathcal P_{\sigma}$ the sum of all irreducible characters θ_{λ} in $\mathfrak U_{\sigma}^{\mathfrak N}$, then for each irreducible character $\mathcal X_i$ in $\mathfrak D_{\sigma}^{\mathfrak N}$ $$\chi_i(N) = s_{i\sigma} \phi_{\sigma}(N) \qquad (N \in \mathfrak{N}),$$ where $S_{i\sigma}$ is a positive rational integer. The following facts are well known: - 1) Two irreducible characters \mathcal{X}_i and \mathcal{X}_j of \mathfrak{G} belong to a same \mathfrak{N} -block of \mathfrak{G} if and only if $\mathcal{X}_i(N)/\mathcal{X}_i(1) = \mathcal{X}_j(N)/\mathcal{X}_j(1)$ holds for all elements N of \mathfrak{N} . - 2) If we denote by ϕ^{G} the character of $\overline{\mathbb{G}}$ which is induced by a character ϕ of \mathfrak{N} , then $$\theta_{\lambda}^{\mathfrak{G}}(G) = \sum_{\chi_{i} \in \mathfrak{A}_{\sigma}^{\mathfrak{R}}} s_{i\sigma} \chi_{i}(G) \tag{GES},$$ ³⁾ Cf. [7]. Cf. also [5] or [4]. where θ_{λ} is an irreducible character in $\mathfrak{U}_{\sigma}^{\mathfrak{N}}$. - 3) If $\mathfrak{M} \supseteq \mathfrak{N}$, then every \mathfrak{N} -block of \mathfrak{G} is a collection of \mathfrak{M} -blocks of \mathfrak{G} . - 4) If the order of $\mathfrak N$ is prime to π_f , then every $\mathfrak N$ -block of $\mathfrak S$ is a collection of $\mathfrak N_{\pi_f}$ -blocks of $\mathfrak S$. - 5) If $\Pi_f \supseteq \Pi_h$, then every \mathfrak{N}_{Π_f} -block of \mathfrak{G} is a collection of \mathfrak{N}_{Π_h} -blocks of \mathfrak{G} . ## 2. Π_f -blocks. 2.1. Let Ω be the field of g-th roots of unity and let Z be the center of the group ring Γ of $\mathbb G$ over Ω . We denote by e_i the primitive idempotent of Z which is associated with an irreducible character $\mathcal X_i$ of $\mathbb G$: $$e_i = \frac{1}{g} \sum_{\nu=1}^n \chi_i(1) \chi_i(G_{\nu}^{-1}) K_{\nu},$$ where G_{ν} is a representative element of K_{ν} and each class K_{ν} also denotes the sum of all its elements. Let p be a rational prime in Π_1 and let \mathfrak{o}_p be the ring of all \mathfrak{p} -integers in \mathcal{Q} , where \mathfrak{p} is a prime ideal divisor of p in \mathcal{Q} . It is well known that if, for each p-block B_{τ} of \mathfrak{G} , we denote by E_{τ} the idempotent of Z which is associated with B_{τ} , then the idempotents E_{τ} are the primitive idempotents of the center Z_0 of the group ring Γ_0 of \mathfrak{G} over \mathfrak{o}_p and that each E_{τ} is a linear combination of p-regular classes K_{ν} of \mathfrak{G} . We denote by $E^{\pi_f}_{\delta}$ the idempotent of Z which is associated with a Π_f -block $B^{\pi_f}_{\delta}$ of \mathfrak{G} : $$E^{\Pi_f}_{\delta} = \sum_{\mathbf{x}_i \in B^{\Pi_f}_{\delta}} e_i.$$ We set $$E_{\delta}^{\Pi_f} = \sum \beta_{\delta,\nu}^{\Pi_f} K_{\nu}$$. - (2.1.A) The Π_f -blocks $B_\delta^{\Pi_f}$ of $\mathbb G$ are characterized as the minimal sets B of irreducible characters $\mathcal X_i$ of $\mathbb G$ such that (a) each B is a collection of q-blocks of $\mathbb G$ for any rational prime q in Π_f , (b) each B is not vacuous. - (2.1.B) $\beta_{\delta,\nu}^{\Pi_f}$ can be different from zero only for Π_f -regular classes K_{ν} of \mathfrak{G} (i. e. classes K_{ν} of \mathfrak{G} which consist of Π_f -regular elements). The $\beta_{\delta,\nu}^{\Pi_f}$ multiplied by g/π_f are algebraic integers. PROOF. Since $\mathcal{B}^{\Pi_f}_{\delta}$ is a collection of q-blocks of \mathfrak{G} for each rational prime q in Π_f , $\beta^{\Pi_f}_{\delta,\nu}$ can differ from zero only for Π_f -regular classes K_{ν} of \mathfrak{G} . Since, further, the $\beta^{\Pi_f}_{\delta,\nu}$ multiplied by g are algebraic integers, the $g/\pi_f \cdot \beta^{\Pi_f}_{\delta,\nu}$ are algebraic integers. (2.1.C) If B is a set of irreducible characters \mathcal{X}_i of \mathbb{S} such that the coefficients β_v of $$\alpha \cdot \sum_{\mathbf{x}_i \in B} e_i = \sum_{\mathbf{y}} \beta_{\mathbf{y}} K_{\mathbf{y}}$$ ⁴⁾ Cf. [8]. are algebraic integers, then **B** is a collection of Π_f -blocks $\mathbf{B}_{\delta}^{\Pi_f}$ of \mathfrak{G} , where α is a product of powers of the rational primes in Π_1 not belonging to Π_f . PROOF. If the β_{ν} are algebraic integers for an α , then B is a collection of q-blocks of \mathfrak{G} for each rational prime q in Π_f . Hence, it is easily seen from (2.1.A) that B is a collection of Π_f -blocks of \mathfrak{G} . As a special case, we have - [2.1.D] Only Π_1 -block of ${}^{\textcircled{S}}$ is the set of all irreducible characters ${}^{\textcircled{L}}$ of ${}^{\textcircled{S}}$. Only primitive idempotent of the center of the group ring of ${}^{\textcircled{S}}$ over the ring of all rational integers is the identity 1. - 2. 2. Let $\Pi_f = \{q_1, q_2, \cdots, q_u\}$ be an arbitrarily given subset of Π_1 and let P be a Π_f -element of \mathfrak{G} . We consider the normalizer, $\widetilde{\mathfrak{G}}$, of P in \mathfrak{G} . If K_1 , K_2 , \cdots , $K_{\widetilde{k}}$ are the Π_f -regular classes of $\widetilde{\mathfrak{G}}$ (strictly speaking, the $\widetilde{\Pi}_f$ -regular classes of $\widetilde{\mathfrak{G}}$ where $\widetilde{\Pi}_f$ is the set of all rational primes in Π_f which divide the order \widetilde{g} of $\widetilde{\mathfrak{G}}$) then, for any different α , β ($1 \leq \alpha$, $\beta \leq \widetilde{k}$), $P\widetilde{K}_{\alpha}$ and $P\widetilde{K}_{\beta}$ cannot be contained in a same class K_{ν} of \mathfrak{G} . Hence, arranging the classes K_{ν} of \mathfrak{G} in a suitable order, we may assume that each $P\widetilde{K}_{\alpha}$ is contained in a class K_{α} of \mathfrak{G} ($\alpha=1,2,\cdots,\widetilde{k}$); $K_1,K_2,\cdots,K_{\widetilde{k}}$ are the classes of \mathfrak{G} which are contained in the Π_f -section $\mathfrak{S}^{\Pi_f}(P)$ of P in \mathfrak{G} . It is well known that P is uniquely expressed as a product $$P=Q_1, Q_2, \cdots, Q_n$$ where Q_i is the q_i -factor of P ($1 \leq i \leq u$). First, for a Π_f -block $B^{\Pi_f}_{\delta}$ of \mathfrak{G} , we consider the collection $B^{\Pi_f}_{(\delta)}(Q_1)$ of q_i -blocks $B^{q_1}_{\rho}$ of the normalizer \mathfrak{G}_i of Q_i in \mathfrak{G} such that each $B^{q_1}_{\rho}$ is associated (in Brauer's sense), with a q_i -block of \mathfrak{G} which is contained in $B^{\Pi_f}_{\delta}$. It is easy to see that $B^{\Pi_f}_{(\delta)}(Q_1)$ is a collection of Π_f -blocks of \mathfrak{G}_i^{5} . Secondly, if we consider the collection $B^{\Pi_f}_{(\delta)}(Q_1Q_2)$ of q_i -blocks $B^{q_2}_{\mu}$ of the normalizer \mathfrak{G}_2 of Q_1Q_2 in \mathfrak{G} such that each $B^{q_2}_{\mu}$ is associated with a q_2 -block of \mathfrak{G}_i contained in $B^{\Pi_f}_{(\delta)}(Q_1)$, then $B^{\Pi_f}_{(\delta)}(Q_1Q_2)$ is a collection of Π_f -blocks of \mathfrak{G}_2 . Continuing this process, we have finally a collection $B^{\Pi_f}_{(\delta)}(P)$ of Π_f -blocks $B^{\Pi_f}_{\gamma}$ of \mathfrak{G} . If we denote by $\tilde{E}^{\pi_f}_{(\tilde{S})}$ the idempotent of the center \tilde{Z} of the group ring of $\tilde{\mathbb{S}}$ over Q which is associated with $\tilde{E}^{\pi_f}_{(\tilde{S})}$, then we have (2.2. A) For $\alpha=1,2,\dots,\widetilde{k}$, we may write $$\widetilde{K}_{\alpha} \, \widetilde{E}^{\mathrm{II}f}_{(\delta)} = \sum_{\beta=1}^{\widetilde{k}} \beta^{\mathrm{II}f}_{\delta,\,\alpha\beta} \widetilde{K}_{\beta}$$ and $$K_{\alpha}E_{\delta}^{\Pi_f} = \sum_{\beta=1}^{\widetilde{k}} \beta_{\delta,\,\alpha\beta}^{\Pi_f} K_{\beta}$$ with the same coefficients $\beta_{\delta,\alpha\beta}^{\Pi_f}$. ⁵⁾ Cf. [6]. 2. 3.6 According to (2.2.A), we obtain the following refinements of some of the orthogonality relations for group characters. [2.3. A] If L and M are two elements of $\mathfrak G$ which belong to different Π_f -sections of $\mathfrak G$, then $$\sum_{\chi_i \in B} \chi_i(L) \chi_i(M^{-1}) = 0$$ for each Π_f -block $B = B_{\delta}^{\Pi_f}$ of \mathfrak{G} . (2.3.B) If χ_i and χ_j are two irreducible characters of \mathfrak{G} which belong to different Π_f -blocks of \mathfrak{G} , then $$\sum_{G\in\mathfrak{S}}\chi_i(G)\chi_j(G^{\scriptscriptstyle -1})=0$$ for each Π_f -section $\mathfrak{S} = \mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{G} . Combining 5) in 1.1 with Theorem 3 in (8), we obtain (2.3.C) If B is a set of irreducible characters χ_i of \otimes such that $$\sum_{\mathbf{x}_i \in B} \mathbf{X}_i(L) \mathbf{X}_j(M^{-1}) = 0$$ for any two elements L and M of \mathfrak{G} which belong to different Π_f -sections of \mathfrak{G} , then B is a collection of Π_f -blocks of \mathfrak{G} . REMARK. Let $\mathfrak S$ be a collection of classes K_{ν} of $\mathfrak S$. $\mathfrak S$ is not always a collection of $II_{\mathcal F}$ -sections of $\mathfrak S$, if $$\sum_{G \in \mathfrak{S}} \chi_i(G) \chi_j(G^{-1}) = 0$$ holds for any two irreducible characters \mathcal{X}_i and \mathcal{X}_j of \mathbb{S} which belong to different $\Pi_{\mathcal{F}}$ -blocks of \mathbb{S} . **2.4.** Let X be the character ring of \mathbb{S} over Ω : $$X = \Omega \chi_1 + \Omega \chi_2 + \dots + \Omega \chi_n.$$ The identity of X is the sum of n mutually orthogonal primitive idempotents d_1, d_2, \cdots, d_n of X: $$d_{\mu}(G_{\nu}) = \begin{cases} 1 & (\mu = \nu) \\ 0 & (\mu \neq \nu) \end{cases}$$ where G_{ν} is a representative element of K_{ν} ($\nu=1,2,\cdots,n$). As is well known, d_{μ} is given by (2) $$d_{\mu} = \frac{1}{g} \sum_{i=1}^{n} c_{\mu} \chi_{i}(G_{\mu}^{-1}) \chi_{i},$$ where c_{μ} is the number of elements in K_{μ} . 6) Cf. Remark in [6]. It is well known that if S_1, S_2, \dots, S_l are the p-regular sections of \mathfrak{G} for a rational prime p, then the idempotents δ_{γ} of X associated with the p-regular sections S_{γ} are the mutually orthogonal primitive idempotents of the character ring $$X_0 = \mathfrak{o}_{\mathfrak{p}} \, \chi_1 + \mathfrak{o}_{\mathfrak{p}} \, \chi_2 + \dots + \mathfrak{o}_{\mathfrak{p}} \, \chi_n$$ of \mathfrak{G} over the ring \mathfrak{O}_p of all \mathfrak{p} -integers in \mathfrak{Q} , where \mathfrak{p} is a prime ideal divisor of p in $\mathfrak{Q}^{(7)}$ For each Π_f -section $\mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{G} , we consider the idempotent $\varepsilon_{\gamma}^{\Pi_f}$ of X which is associated with $\mathfrak{S}_{\gamma}^{\Pi_f}$: $$arepsilon_{\gamma}^{\Pi_f} = \sum_{K_ u \equiv \mathfrak{S}_{\gamma}^{\Pi_f}} d_ u.$$ [2.4.A] The Π_f -sections $\mathfrak{S}_{\gamma}^{\Pi_f}$ of \mathfrak{S} are characterized as the minimal collections \mathfrak{S} of classes K_{ν} of \mathfrak{S} such that (a) each \mathfrak{S} is a collection of q-regular sections of \mathfrak{S} for any rational prime q not belonging to Π_f , (b) each \mathfrak{S} is not vacuous. If we set (3) $$\varepsilon_{\gamma}^{\Pi_f} = \sum_{i} \alpha_{\gamma,i}^{\Pi_f} \chi_{i},$$ then we have [2.4.B] $\alpha_{\gamma,i}^{\Pi_f}$ can be different from zero only for characters \mathcal{X}_i which belong to the Π_f -block $B_1^{\Pi_f}$ containing the 1-character \mathcal{X}_1 . The $\alpha_{\gamma,i}^{\Pi_f}$ multiplied by π_f are algebraic integers. [2.4.C] If \mathfrak{S} is a collection of classes K_{ν} of \mathfrak{S} such that the coefficients α_{i} of $\beta \cdot \sum_{K_{\nu} \subseteq \mathfrak{S}} d_{\nu}$ = $\sum_{i} \alpha_{i} \lambda_{i}$ are algebraic integers, then \mathfrak{S} is a collection of Π_{f} -sections $\mathfrak{S}_{\gamma}^{\Pi_{f}}$ of \mathfrak{S} , where β is a product of powers of the rational primes in Π_{f} . # 3. Blocks with regard to normal subgroups. 3.1. Let \mathfrak{N} be a normal subgroup of \mathfrak{S} whose order is prime to π_f . We consider the idempotents $\mathcal{J}_{\sigma}^{\mathfrak{N}}$ of Z which are associated with the \mathfrak{N} -blocks $\mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{S} : $$\Delta_{\sigma}^{\mathfrak{R}} = \sum_{\chi_{i} \in \mathfrak{B}_{\sigma}^{\mathfrak{R}}} e_{i}.$$ We set $$\Delta_{\sigma}^{\mathfrak{R}} = \sum_{\nu} a_{\sigma,\nu}^{\mathfrak{R}} K_{\nu},$$ where $a_{\sigma,\nu}^{\Re} \in \Omega$. According to facts mentioned in 1.3, we have (3.1.A) $a_{\sigma,\nu}^{\Re}$ can be different from zero only for classes K_{ν} which are contained in \Re . The $(\Re:1)a_{\sigma,\nu}^{\Re}$ are algebraic integers. (3.1.B) If \mathfrak{B} is a set of irreducible characters \mathcal{X}_i of \mathfrak{G} such that $\sum_{\chi_i \in \mathfrak{B}} e_i$ is a linear combination of classes K_r contained in \mathfrak{R} , then \mathfrak{B} is a collection of \mathfrak{R} -blocks $\mathfrak{B}_{\sigma}^{\mathfrak{R}}$ of \mathfrak{G} . ⁷⁾ Cf. (11), (12). Cf. also (6). Combining (3.1.A) with (2.1.C), we have (3.1.C) If \mathfrak{N} is a normal subgroup of \mathfrak{S} whose order is prime to π_f , then each \mathfrak{N} -block $\mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{S} is a collection of π_f -blocks $B_{\delta}^{\mathfrak{n}_f}$ of \mathfrak{S} . We set $$(5) K_{\mu} \mathcal{J}_{\sigma}^{\mathfrak{N}} = \sum_{\nu} a_{\sigma, \, \mu\nu}^{\mathfrak{N}} K_{\nu},$$ where $a_{\sigma,\mu\nu}^{\mathfrak{N}} \in \Omega$. If \mathfrak{M} is a normal subgroup of \mathfrak{G} which contains \mathfrak{N} , then $a_{\sigma,\mu\nu}^{\mathfrak{N}}$ can differ from zero only when either both K_{μ} and K_{ν} are contained in \mathfrak{M} or when both are not contained in \mathfrak{M} . Thus we have (3.1.D) If $\mathfrak M$ is a normal subgroup of $\mathfrak G$ which contains $\mathfrak N$ and if exactly one of two elements L and M of $\mathfrak G$ belongs to $\mathfrak M$, then $$\sum_{\chi_i \in \mathfrak{B}} \chi_i(L) \chi_i(M^{-1}) = 0$$ for each \mathfrak{R} -block $\mathfrak{B} = \mathfrak{B}_{\sigma}^{\mathfrak{R}}$ of \mathfrak{G} . 3. 2. Let P be a Π_f -element of $\mathbb S$ and $\mathbb N$ a normal subgroup of $\mathbb S$ whose order is prime to π_f . We shall use the same notation, for this P, as in 2.2: $\widetilde{\mathbb S}$; \widetilde{K}_1 , \widetilde{K}_2 , ..., $\widetilde{K}_{\widetilde{k}}$; K_1 , K_2 , ..., $K_{\widetilde{k}}$; \widetilde{Z} ; $\widetilde{B}_{(\mathbb S)}^{\Pi_f}$ and etc. Since each $\mathbb N$ -block $\mathfrak B_{\sigma}^{\mathbb N}$ of $\mathbb S$ is a collection of Π_f -blocks $B_{\delta}^{\Pi_f}$ of $\mathbb S$, we may define the collection $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$ of Π_f -blocks $\widetilde{B}_{\rho}^{\Pi_f}$ of $\widetilde{\mathbb S}$ such that each $\widetilde{B}_{\rho}^{\Pi_f}$ is contained in a $\widetilde{B}_{(\mathbb S)}^{\Pi_f}$ with $B_{\delta}^{\Pi_f} \subseteq \mathfrak B_{\sigma}^{\mathbb N}$. It is easy to see that each $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$ is a collection of $\widetilde{\mathbb N}$ -blocks $\widetilde{\mathfrak B}_{\tau}^{\widetilde N}$ of $\widetilde{\mathbb S}$, where $\widetilde{\mathbb N} = \mathbb N \cap \widetilde{\mathbb S}$. We denote by $\widetilde{\mathcal A}_{(\sigma)}^{\mathbb N}$ the idempotent of \widetilde{Z} associated with $\widetilde{\mathfrak B}_{(\sigma)}^{\mathbb N}$: $$\widetilde{\mathcal{A}}_{(\sigma)}^{\mathfrak{N}} = \sum_{B_{\sigma}^{\Pi f} = \mathfrak{N}_{\delta}^{\mathfrak{N}}} \widetilde{E}_{(\delta)}^{\Pi f}.$$ Then, by (2.2. A) and (5), we obtain (3.2. A) For $\mu=1, 2, \dots, \tilde{k}$, we have $$K_{\mu} \Delta_{\sigma}^{\mathfrak{N}} = \sum_{\nu=1}^{\widetilde{k}} a_{\sigma, \, \mu \nu}^{\mathfrak{N}} K_{\nu}$$ and $$\widetilde{K}_{\mu}\widetilde{\widetilde{\mathcal{A}}}_{(\sigma)}^{\mathfrak{N}} = \sum_{\nu=1}^{\widetilde{k}} a_{\sigma,\,\mu\nu}^{\mathfrak{N}}\widetilde{K}_{ u}$$ with the same coefficients $a_{\sigma, \mu\nu}^{\Re}$. We shall say that two elements L and M of the Π_f -section $\mathfrak{S}_f^{\pi}(P)$ of P in \mathfrak{S} belong to a same Π_f -subsection of P in \mathfrak{S} with regard to \mathfrak{N} if and only if the following two conditions are satisfied: (a) For any normal subgroup $\mathfrak M$ of $\mathfrak G$ which contains $\mathfrak N$, " $L\in \mathfrak M$ " is equivalent to " $M\in \mathfrak M$ ". (b) For any normal subgroup $\widetilde{\mathbb{M}}$ of $\widetilde{\mathbb{G}}$ which contains $\mathfrak{N} \cap \widetilde{\mathbb{G}}$, " $Q \in \widetilde{\mathfrak{M}}$ " is equivalent to " $R \in \widetilde{\mathfrak{M}}$ ", where Q and R are two Π_f -regular elements of $\widetilde{\mathbb{G}}$ such that L and M are conjugate in \mathbb{G} to PQ and PR, respectively. Considering this construction for each $P=P_{\gamma}^{\pi_f}$, we can distribute the elements of \mathfrak{G} into a certain number of Π_f -subsections with regard to \mathfrak{N} . According to (3.2.A), we can refine (3.1.D) as follows: [3.2.B] If L and M are two elements of ${}^{\textcircled{S}}$ which belong to different Π_{f} -subsections of ${}^{\textcircled{S}}$ with regard to ${}^{\textcircled{N}}$, then $$\sum_{\chi_i \in \mathfrak{B}} \chi_i(L) \chi_i(M^{-1}) = 0$$ for each \mathfrak{N} -block $\mathfrak{B} = \mathfrak{B}_{\sigma}^{\mathfrak{N}}$ of \mathfrak{G} . (3.2.C) If χ_i and χ_j are two irreducible characters of \mathfrak{G} which belong to different \mathfrak{R} -blocks of \mathfrak{G} , then $$\sum_{G \in \mathfrak{S}} \chi_i(G) \chi_j(G^{-1}) = 0$$ for each Π_f -subsection \mathfrak{S} of \mathfrak{S} with regard to \mathfrak{N} . Department of Mathematics, Faculty of Science, Kumamoto University ## REFERENCES - [1] R. Brauer, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 215-219. - [2] ———, Zur Darstellungstheorie der Gruppen endlicher Ordnung II, Math. Zeitschr., 72 (1959), 25-46. - [3] K. IIZUKA, On Brauer's theorem on sections in the theory of blocks of group characters, Math. Zeitschr., 75 (1961), 299-304. - [4] —, On Osima's blocks of group characters, Proc. Japan Acad., 36 (1960), 392-396. - [5] —, On Osima's blocks of groups of finite order, Kumamoto Jour. Sci., 4 (1960), 275-283. - [6] —, On the blocks and the sections of finite groups, Kumamoto Jour. Sci., 5 (1960), 53-62. - [7] M. Osima, On the representations of groups of finite order, Math. Jour. Okayama Univ., 1 (1952), - [8] —, Notes on blocks of group characters, Math. Jour. Okayama Univ., 4 (1955), 175-188. - [9] —, On some properties of group characters, Proc. Japan Acad., 36 (1960), 18-21. - [10] ———, On some properties of group characters II, Math. Jour. Okayama Univ., 10 (1960), 61-66. - [11] P. ROQUETTE, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe, Crelles Jour., 190 (1952), 148-168. - [12] K. Shiratani, On the characters and the character rings of finite groups, Mem. Fac. Kyusyu Univ., 11 (1957), 99-115.