ON LINEAR TOPOLOGICAL SPACES

Yukio KOMURA

(Received Nov. 29, 1961)

This is a collection of results on linear topological spaces, particularly on tonnelé
or bornologic spaces. The most part of the work was done during 1956-1959, at the
University of Tokyo. The author wishes to express his hearty thanks to Professors K.
Yosida and S. Irie for their kind advices.

1. Embedding in tonnelé or bornologic spaces.

N. Bourbaki introduced in (1] the notion of tonnelé spaces and remarked that an
arbitrary locally convex complete space can be considered as a closed subspace of some
tonnelé space. In this section we show more generally that an arbitrary locally convex
(not necessarily complete) space is a closed subspace of some tonnelé space, and show
an analogous property for bornologic spaces under some restrictions.

LEMMA 1.1 (Mackey-Dieudonné) Every subspace F' with co-dimension 1 ‘of a tonnele
space E is also tonnele. '

PrROOE. Let U be an arbitrary closed convex circular absorbing set of F. When
U (=the closure of U in E) contains some point %EEF, U is a neighbourhood of zero

in E, since U is a closed convex circular absorbing set of the tonnelé space E. In
this case U=UNF is a neighbourhood of zero in F. When UCF, we have U=UNF
=U. In this case, for an element x, of E such that %k F, the set U= {2z, +y;
|2]<1, y€U} is a closed convex circular absorbing set of E. Hence U is a neighbour-
hood of zero in E, and U=l7f\F is a neighbourhood of zero in F. ‘

Thus in every case U is a neighbourhood of zero in F.

LEMMA 1.2 An arbitrary complete locally convex space E is a closed subspace of some
product space TE. of Banach spaces E.,.

This is a well known fact and we show outline of the proof. Pick up a funda-
mental semi-norm system {P.}. For each semi-norm P,, we define a normed space
F,=E/N,, with the norm induced by P,, where N,={x€E; P.(x)=0}. Then the
space E is embedded in natural way into the product space of the completions of Fs.

THEOREM 1.1 An arbitrary locally convex space E is a closed subspace of some tonnelé
space.

PROOF. Let F be a tonnelé space containing the completion of E, and {e.} be a
Hamel base (=maximal linearly independent set) of a compliment space FC of F. )

For any index «, let F, be the subspace of F generated by E and {6_3}54:,,. Since
F, is of co-dimension 1, it is tonnelé.
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The space E is naturally embedded in IIF,, which is-a tonnelé space. Precisely,
xX€E is identified to (%,) EIIF, if and only if X,=% for any index a.

If some directed set (%,)*=(x%) in E converges to (¥,)€IIF,, then for any
a, X% converges to ¥,. Since %% is independent of «,3¥, is independent of «. Thus
Y=y E QF¢=E, which means the closedness of E in IIF,. g.e.d.

Since the dual F” of a tonnelé space F' is semi-reflexive with respect to the
Mackey topology =(F', F), we have the following corollary dual of the theorem.

COROLLARY. Awn arbitrary locally convex space E is a quotient space of some semi-
reflexive space.

PROOF. Without losing the generality we may suppose that the topology of E is
equal to ¢(E, E’). By virtue of the theorem 1.1 there exists a tonnelé space F' which
contains E’ with the topology o(E,E) as a closed subspace. Then the space Eo
(the dual of E' with respect to «(E', E))=2F'/E'*, g.e.d.

Concerning bornologic spaces, the same lemma as lemma 1.1 holds good. As to
lemma 1.2, the product space IIE, of Banach spaces E, is bornologic if the power of
the index set is less than some cardinal number d. (See Kéthe [6)). We denote by &
the dimension of £ (= the power of a maximal linearly independent set). Then, we
have the relation (the power of {a})<<2%, since a semi‘norm P, is uniquely determined
by a subset {X€E; P,(x)<1} of E. Suppose that §<d. By virtue of the theorem
of Mackey-Ulam (see Kothe (6)),. 8§ <d implies 2%d. Therefore, we have the
'following lemma.

LEMMA' 1.3. An arbitrary complete locally convex space E with the dimension 3 <d
s a closed subspace of some bormologic space F.

For the bornologic space F, dim F'< &%, hence dim F<(d. Therefore the space
E is naturally embedded as a closed subspace in some product space IIF, of bornologic
spaces I, in a same way as the proof of the theorem 1.1. The power of the index set

{a} is < dim F, hence the space ITF, is bornologic. Thus we have the following
theorem.

THEOREM 1.2. An arbitrary locally convex space with the dimension <d is a closed

" subspace of some bornologic space.

In particular, an arbitrary locally convex separable space is a closed subspace of some
bornologic space, since the dimension of such a space is not larger than 2:™
Dually we have a corollary.

COROLLARY. A separable tonnelé space is a quotient space of some complete space.

More precisely, a locally convex space E, with the topology B(E,F) for some
subspace F' of E’, is a quotient space of some complete space. The author cannot tell
whether any locally convex space with Mackey topology is a quotient space of some
complete space or not.




150 On Linear Topological Spaces

2. Tonnelé topology defined by locally convex topology.

Let E be a fixed linear space and v be a locally convex topology on E. We
consider the set {z‘(,} of all tonnelé topology which are stronger than z. The limit
inductive topology 7=/ \7s Of {zs}, that is, the strongest locally convex topology on E
weaker than every 7o, is uniquely defined. The topology 7 is the weakest among the
tonnelé topologies stronger than . . :

DEFINITION 2.1. For a locally convex topology 7 (on E), the weakest tonnelé
topology T stronger than t is called the tonnelé topology defined by t.

“We denote by E(¢) (or E,) the linear space E with the topology 7. Then the
strong topology B(E,E(c)) is the topology generated by a fundamental neighbourhood
system of zero which are all -closed convex absorbing sets. We denote by 7' the strong
topology B(E, E(z)").

For any ordinal number a we define r*=*'(=p(E, E(z®)")if a=B+1, and = the
limit projective topology B\Z}ars. if « is a limit number.

For any t there exists an ordinal number & such that *=<*"*. Evidently such

a topology 7” is identical with the tonnelé topology 7 defined by 7.

THEOREM 2.1. Let E be a linear space with a locally convex topology t. Then the
-completion of E contains the T-completion of it, where T is the tonnelé topology defined by <.

PROOF. We shall prove using transfinite induction. We assume that the 7'-comp-
letion of E contains the zP-completion of it for any 7 and any B such that r<p<ea.
When a=p8+1 for some B, the z®completion of E is contained in the z*-completion of
it, by virtue of Grothendieck’s theorem. When « is a limit number, then E(«*)’

=$UE(TB)' and any equi-continuous set in E(+®)' is contained and equi-continuous in
<a

some E(®)'.

On the other hand, the ¢’-completion of E (= the set of all linear functionals
weakly continuous on each ¥-equi-continuous set) contains the zP-completion of E (= the
set-of all linear functionals weakly continuous on each P-equi-continuous set), by the
assumptions of induction. Hence a linear functional which is weakly continuous on
each equi-continuous set in some E(")" is, if extensible, uniquely extended to a linear
functional which is weakly continuous on each equi-continuous set of E(*) for r<B
<a. : :
Let [ be an arbitrary element of the z®completion of E. Then [ is weakly
continuous on each t®equi-continuous set in E(z®), hence it is weakly continuous on
each 7'-equi-continuous set in E(¢")" for any 7<a. Since the restriction I7 of [ to
E(7")’ is uniquely extended to the restriction % of [ to E(®) for r<p<a, we may
identify ["=I[?. The relation E(z-"‘)'=a\<ij(z-s)' implies that the inverse of the mapping:

I—I® is unique, hence the canonical mapping from the r-completion of E to the
B-comletion of E is one-to-one. q.e.d.

Slightly modifying, we can verify the following corollary, a generalization of
Grothendieck’s theorem. :
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COROLLARY. Let o and © ‘be two locally convex topologies on some linear space E.

The o-completion of E contains the -completion of E if the following conditions are satisfied:

D o<s,
2) a linear space 'F, such that E,CFCE; and the intersection of F with each weakly
closed equi-continuous set in E. is weakly closed, is necessarily identical with E..

8. Closed graph theorem and minimal topology.

In this note we discuss the closed graph theorem in abstract form. The result is
essentially contained in (2), (4), (5) and (8).

LEMMA 3.1. Let E-and F be locally convex spaces, and U be a linear operator from
E 1o F. (The domain of % is a whole space E.) # is a closed operator if and only if © is
continuous from E to F,=F with some weaker separated topology t.

PROOF. Suppose that such a topology = exists. If a directed set {x,} ZE conver-
ges to X in E, then #(x,) converges to ¥ in F,. If moreover u(%x,) converges to V'
in F,y coinsides with ¥’ since the canonical mapping F—F, is continuous. This means
that # is a closed operator. gq.e.d.

Conversely, we suppose that # is not continuous with respect to any weaker
separated topology. Then the topology generated by a system of neighbourhoods {U
+u(V): U=neighbourhood of F, V =neighbourhood of E} is not separated. Hence
there exists some %EF, %20, such that %EU+#(V) for any neighbourhood U of
zero in £ and any neighbourhood V' of zero in F. Therefore there exists a directed
set {%py} such that %y, y€V and u(xyy) €U+ x,, that is, Xy y—0, #(%Xyy) — %,==0. This
means that # is not a closed operator. q.e.d.

We consider some property (a) of locally convex spaces. Property (a) is called

invariant under finite (limit) inductive operations if the following condition is satisfied:
(A) Let {E;} be a set of finite (infinite) (a)-spaces, and U; be a linear operator Sfrom E,;
to same linear space E for any i, and some U; be an operaior onio E. Then the space E,
given the stromgest locally convex topology such that each U; is continuous, is also an (a)-space.

For example, the property of “fonnelz” is invariant under limit inductive operations.

PROPOSITION 3.1. Let (@) be invariant under finite inductive operations. Any closed
linear operator from any ()-space to a fixed ()-space E is continuwous if any only if there
is no separated ()-topology on E weaker than the original topology.

The proof follows immediately from the lemma 3.1.

COROLLARY. Let E be a o(E, E)-complete space, that is, E is isomorphic to a direct
broduct space of finite dimensional spaces. Then any closed linear operator from a locally
convex space to E is continuous.

PROOF. On such a space E, there exists no weaker separated topology. Hence
if we consider the property («) as the property of locally convex topologies, our
corollary is obtained immediately. q.e. d.

We call.an (a)-topology on E' the (a)-minimal topology if there is no separated
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weaker (a)-topology. Then we may say that E has the property of the closed graph
theorem with respect to () if and only if E is endowed with an (a)-minimal topology.

A space E which is a limit inductive of (a)-spaces {Ex} is called an (&)-space.
Thus we have an extension (&) of the class of (a)-spaces. Evidently property (a) is
invariant under limit inductive operations.

For any locally convex topology 7 on E, there exists the unique (&)-topology T
which is the weakest among the (&)-topologies stronger than z. In fact, 7 is the limit
inductive topology of all (&)-topologies stronger than .

We call = the (a&)-topology defined by T.

THEOREM 3.1. Let E be a locally convex space with the topology . Any linear closed
operator u from any (a&)-space F to E is necessarily continuous if and only if the (&)-
topology T defined by t is identical with the (X)-topology & defined by any separaled locally
convex topology ¢ on E weaker than <.

PROOF. Let # be a closed operator from an (&)-space F to E. Then by virtue

of lemma 3.1 there exists some separated locally convex topology ¢ weaker than 7, and %
is continuous from F to E(s). Since (&) is invariant under finite inductive operations,
% is continuous from F to E(g). Therefore % is continuous from F to E(z) if o>
Since o<z, the condition o >t means —=7. Conversely, if there exists some separated
locally convex topology ¢ weaker than such that =7, then the identity mapping %:
E(3)—E(z) is not continuous. Since % is a closed operator from E(s) to E(z), it is
also a closed operator from E(a) to E(o). g.e.d.
) We explain the case of tonnelé spaces. The property of tonnelé is invariant under
limit inductive operations, that is, a limit inductive space of tonnelé spaces 'is also
tonnelé. Therefore the extension of the class of tonnelé spaces by limit inductive
operations is also the class of tonnelé spaces.

By virtue of the proposition 3.1, a tonnelé space E has a tonnelé-minimal topology
¢ if and only if any closed operator from any tonnelé space to E is continuous. Evidently
a locally convex topology 7 is tonnele-minimal if and only if the tonnelé topology o,
defined by any locally convex topology ¢ weaker than 7, is identical with 7. In other
words, E is a tonnelé-minimal space if and only if the following condition is satisfied:
“for a o(E', E)-dense subspace F of E', if the intersection of [ with each s(E', E)-
closed equi-continuous set in E' is necessarily o(E', E)-closed, then we have F=E".
Since a subspace with co-dimension 1 is dense or closed, for a tonnelé-minimal space E
a subspace F' of E' with co-dimension 1 is o(E', E)-closed when the intersection of F
with each o(E', E)-closed equi-continuous set is closed. Therefore such a space E is
complete.

In addition, we give the following proposition.

PROPOSITION 3.2. Let E be a locally convex space and E, be its dense subspace. If
a closed linear operator from E to a locally convex complete space F is continuous on E,
then it is continuous on E.

The proof is almost obvious. It is to be noted that for a non-complete space F the
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above proposition is not true in gemeral. In fact, let H be a dense subspace of E with
-co-dimension 1. (Such a subspace exists if and only if there exists some discontinuous
linear functional on E. For instance, an infinite dimensional normed space has always
such a subspace.) If F is the direct sum H®R' of H and 1-dimensional space R,
then the one-to-one linear foperator #: F—E, which is the identity map on H, is
continuous. Therefore the inverse operator #™': E—F is a closed operator which is
-continuous on a dense subspace H, but it is not continuous.

4. A class of boundedly closed system.

A. Grothendieck showed in (3), lemma 9, that the fpllowing three conditions for a
locally convex space E are equivalent to each other.

a) All continuous linear operator from E to any Banach space is weakly compact.

b) For any convex circular neighbourhood V' of the origin in E, there exists a convex
circular neighbourhood U V' such that the canonical mapping from the Banach space E\U
(=the completion of the normed space E/Ny, Ny={2€E; x€U, for any scalar 1}, with

the unit ball U) to the Banach space E\y, is weakly compact.

©) For any convex circular equi-continuous weakly closed subset A of E', there exists
a convex circular equi-continuous weakly closed subset B of E' such that A is a weakly compact
set in the Banach space Ex(=the normed space generated by B with unit ball B).

Spaces E satisfying the above property are a generalization ‘'0of Schwartz spaces.
In fact, if we replace the term “weakly compact” by “compact”, then we have the
definition of Schwartz spaces.

We shall prove that the above conditions are equivalent to the following condition.

& E is naturally embedded in a direct product 11E, of Banach spaces E, (see § 1)
such that each E, is the dual space F' of some Banach space Fo and E'=3F,/E*.

PROOF. Let {V,} be a fundamental system of neighbourhoods of the origin such
that each V, is convex circular and closed. Assume the condition b). Then there
exists another fundamental system {U,} of neighbourhoods such that for any o, U,V,
:Exd the canonical image of U},\in é\m is relatively Weak}y compact. Then the closure
U, of the image of U, is o(Ey,, Ey.)-compact. Hence (Ey,)5,= the dual of the normed
space (Ey,)y,o(= the space generated by U. with the unit ball US, where U.={x'€
(Ev,)'; sup | <z, 2> |<a)).

We put E,= (E‘:‘,)EN and F,= the completion of (Ey,)p,e. For any two indices
« and B such that U,CUg and V.V, there exists the canonical mapping %g,:
Fe—F,.

For any F,, by virtue of the condition ¢) there exists an Fg such that the mapping
U3y is weakly compact. Then the bi-transposed operator “#g,: Ey=F¢{—F,;=FE, maps
Ey=Fg to F.. For any pair %,y such that “Uso(X)=Y, the element x—yEZE. is
contained in £, and therefore, we conclude that >F./EL=3F/EL,
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The converse part of our assertion is almost obvious. g.e.d.
. From the condition d), if such a space E is complete, we have E=(ZF./E*Y)'.
In this case, its dual space E’ with the Mackey topology ©(E',E) is a (B)-space (= a
limit inductive of Banach spaces), and E is the set of all linear functionals bounded
on each equi-continuous set in E'. In particulaf, we have the following corollary.

COROLLARY. A Schwartz space E is complete if and only if it is the set of all linear
Sunctionals bounded on each equi-continuous set in E'.

5. Closedness and quasi-closedness.

Let E be a locally convex space and B be a system of bounded sets. A subset
A of E is said to be quasi-closed (or quasi-complete) with respect to B if, for any BED,
ANB is closed (or complete) in B. When B is the set of all closed bounded sets,
we shall omit the term “with respect to B” for the sake of brevity. For instance, when
B is the set of all metrizable precompact sets, a subset A is quasi-closed with respect
to B if and only if A is sequentially closed.

The problem, to ask in what case the closedness (or completeness) follows from
the quasi-closedness (or quasi-completeness), may be one of the most important but
difficult problems in the theory of linear topological spaces. (For instance, this is
closely connected with the closed graph theorems on tonnelé spaces. See §2). It is
well known that in case of (DF)-spaces, the completeness follows from the quasi-
completeness, and in case of (F')-spaces, the closedness of subspaces follows from the
quasi-closedness. We shall give generalizations of these cases.

PROPOSITION 5.1. A locally convex space E is closed in the bidual E'"" with respect to
the natural topology (= lopology of uniform convergence on each equi-continuous set in E)
if and only if E is quasi-complete.

PROOF. Let E be the closure of E in E”. For any xEE", there exists a convex
circular bounded set BCE such that xEB=o(E", E)-closure of B. If %€E, then
xEEﬂ E—’:G(E,E’)-closure of B. Since the dual of E with respect to the natural
topology is equal to E', BN E= the closure of B with respect to the natural topology,
in which % is contained. The quasi-completeness of E implies B [\ECE, and
therefore ECE.

Conversely, if E is closed in E” with respect to the natural topology, then E is
quasi-complete since E'’ is quasi-complete with respect to B={B=0o(E", E")-closure of
B; B is any bounded set in E}. q.e.d.

By virtue of the above proposition, for a space E such that E" is complete with
respect to the natural topology, the completeness follows from the quasi-completeness.
This is a usual method to prove the completeness of quasi-complete (DF)-spaces. (See
Kothe [6).)

We say that a sequence {%:} converges to X in the sense of Mackey if, for some
infinitely increasing sequence {4} of scalars, the set {M(%— %)} is bounded.
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PROPOSITION 5.2. (Mackey) Let E be a bornologic space and H be its subspace
with co-dimension 1. If H is sequentially closed in the sense of Mackey, then it is closed.

PROOF. Assume that H is not closed. We pick up an element %, of E,&EH.
Let B be an arbitrary bounded set of E. Then for some positive number 1, and
bounded set AC H, the set B is contained in the set {x=y+21x,; €A, |2]<A}. In
fact, if, for =¥+ A% E€DB, |X/| is infinitely increasing, then —3¥,/Ax=2%— %/ — %, in
the sense of Mackey, which contradicts to the sequential closedness of H. Hence there
exists a scalar 4, and a subset A of H such that BZ{x=y+2x,; y€A, |21|<i}. We
see easily that A can be chosen to be bounded.

From the above fact, the convex circular set V={x=y+ix,; y€H, |1]|<1}
absorbs each bounded set in E. In other words, there exists some bounded linear
functional # on E which is identically zero on H and #(%,)==0. Since we assume that

H is not closed, that is, H is dense in E, E is not bornologic. This is a contradiction.’

g.e.d.

Let E be a locally convex space and H be its subspace which is sequentially
closed in the sense of Mackey. If for an element %,E€FE, €EH, the space H4x,
generated by H and %, is a bornologic subspace of E, then H is closed in H+x, by
virtue of the above proposition, that is, the closure of H does not contain X,. Hence,
if H+x is bornologic for any X€E, €EH, then H is closed in E. Thus we have the
following corollary.

COROLLARY. Let E be o locally convex space whose any substace is bornologic. Then
an arbitrary sequentially closed subspace in the sense of Mackey is always closed.

This gives another (and more complicated) proof of the fact that an arbitrary
sequentially closed subspace of a locally convex metrizable space is closed.

It is well known that a locally convex space which possesses .a dense tonnelé
subspace is tonnelé too. This is not true for bornologic case. In fact, we know many
example of bornologic and sequentially complete, but non-complete spaces. Such spaces
are densely contained in (tonnelé and) non-bornologic spaces. In the following, we shall
show the existence of tonnele (DF) and non-bornologic spaces, which gives the negative
answer to the problem 3) in (3). - _

G. Kothe gave an example of a non-complete limit inductive space £ of countable
~ Banach spaces {E,} (See (6)). Let %, be an element of the lcompletion E of E, such
that %,& E. Since E”, which is the dual space of an (F")-space, possesses a fundamental
sequence {B,} of bounded seff (that is, an arbitrary bounded set B CE" is contained
in some (B,), the subspace E=E+x, of E generated by E and %, possesses a funda-
mental sequence {B.NE} of bounded sets.

Since E contains a dense tonnelé subspace E,E itself is tonnelé. Therefore E is
a (DF)-space. If E is sequentially complete in the sense of Mackey, E is not bornologic
by virtue of the proposition 5.2. Hence it suffices to prove the following lemma.

LEMMA 5.1. The limit inductive space E of a sequence {E,} of Banach spaces is
sequentially complete in the sense of Mackey.
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PROOF.  From the assumption, we have E=(ZE,)/N, where N is a closed subspace
of 2E,. Hence E'=N*CIIE, and E"=(2E.)/N**, since the t/cipology of E' is the
topology induced by IIE,. Since E” is complete, the completion E of f/z\is contained
in E”. 1f E is complete, our assertion is obvious. We consider the case E=FE. Let %,
be an element of % such that %EEE. 1f a sequence {%:JCE converges to % in tl/xs
sense of Mackey, for some infinitely increasing sequence Jr and a bounded set BCE,
we have {(%—%)}CB. Since B and {x:} are bounded sets of E’, we may assume,
without losing the generality, that B and {xk} are contained in -the unit ball of some
EZ, that is, |%—%).<<1/A&, where | |. denotes the norm of E.. Therefore %
converges to X, in E,. Since E, is complete, we have x,€E,, which contradicts to the
assumption that %,& F. q.e.d.

We shall give an example of semi-veflexive spaces which are not compiete with respect
0 the Mackey topology. (See (6] p. 311.) A locally convex space is semi-reflexive if and
only if it is quasi-complete with respect to the weak topology (in other words, its any
convex closed bounded set is weakly compact.)

EXAMPLE. 8., & or &. denotes the first, second or third infinite cardinal
number respectively. Let A be a set of power $,. We denote by «w(A) the direct
product IgAR.,, of each one dimensional space [, and denote by w.(A) the set {(xa)

(-7

Ew(A); x,=0 except countable indices a}. Then wo(A) is a tonnelé subspace of w(A).

Let E=w,(A)+14 (that is, the space generated by w,(A) and constant function
1.= the elements of w(A) whose coordinates are identically 1). Then the space E,
with the topology induced by @(A), is tonnelé, and therefore the dual E’(=OERm) is

semi-reflexive with respect to the Mackey topology 7(Z',E). We shall prove that E

is not complete with respect to the Mackey topology 7(E',E) We need the following
lemma.

LEMMA 5.2. Lei B be a bounded set in wy(A). If the a(w(A), ZAij-closme B
2N

of B contains 1a, then it necessarily contains another element of w(A) which is not contained
in w(A).

By virtdue of the above lemma, for any convex circular o(E',E)-compact set B
of E, the intersection BNwy(A) is closed in E. Hence the linear functional % on E,
such that #(1,)=1 and #{x)=0 for any X%E€w,(A), is a(E', E)-continuous on each
convex circular o(E’, E) compact set in E, that is, # is contained in the =(E', E)
completion of E'. However, # is not contained in E’ since wi(A) is o(Z', E)-dense in
E. ,

PROOF OF THE LEMMA. Let A, be a subset of A with the power & Then for
any a€A,, there exists a countable subset By={(#%p).(=(x§)); n=1,2, -} of B such
that |2 —1]|<1/n. We put B,= lef and A,={BE€A; the B-th coordinate Xz of
some element (x§™) of B, is not zgrcoj;. Then A, is of power &, since the coordinates
of an element (x§™) of w,(A) are zero except countable indices.

In the similar way as above we can construct the sequence B, of subsets of B
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and the sequence A, of sets of indices with power &, satisfying
1 for any BEA, and any e >0, there exists some (%,) €B, such that |%—1]<le,
2) for any index B&A.., the f-th coordinate X5 of any element (%,) of B, is
zero.

Therefore for the sets A= U A, and B..= \J B, B, we have

n=1

D' for any BE€A. and any € >0, there exists some (%) € B, such that |%:—1]<e,

2)" for any index PEfA., the p-th coordinate Xz of any element (%,) of B. is
zero.

The conditions 1)’ and 2)’ imply that the o(w(A), ERa) closure of B.. contains the

element 14. of w(A), whose a-th coordinate is equal to 1 for a€A.., is equal to 0
for acfA.. Since the power of A. is &, the element 14, is a required element.
qg.e.d.
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