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1. Introduction.

In this paper we shall be concerned with the estimation of the parameters in
the multivariate random effect model. The multivariate random effect model is under-
stood to be a model where the observations are given by the multi-dimensional vectors
and consequently the treatment effects, which are the normal variables, are also the
multi-dimensional vectors. We shall discuss this problem under certain restrictions for
the covariance matrices, while it seems to be more desirable to prove the problem under
more general assumptions free from these restrictions.

Concerning the theory of estimation in the similar model as ours, the author

_ should like to mention here in the first place the work of S. N. Roy and R. Gnanadesikan
(5)9, in which their detailed discussions are concerned with the restricted model having
the treatment effects whose covariance matrices are proportional to each other, and
secondly the work of F. Grybill and R. A. Hultquist (9] which is concerned with the
case of the univariate model.

The main results of this paper are Theorem 4.1 and Theorem 6.2. The former
theorem gives the necessary and sufficient condition for the covariance matrices to be
estimable, under our resticted model, while the latter gives the theorem concerning the
completeness of the family of the distributions of the sufficient statistics in our concern.
Section 3 is devoted to the derivation of the covariance matrix of all observations, and
Section 5 to the discussion of some properties concerning the characteristic roots of
covariance matrix, which seems to be crucial for the estimation theory under our model

2. Preliminaries.

Let Y(INX ) be a set of N observable stochastic p-dimensional vectors whose model
equation is given by the following.

@ D Y(Nxp) =X,B,(1x p) +i X, (Nxm)B,(m; X p)+ X (N X N)B...(Nxp),

where we assume
(1) By(axp)=I[p, s ', pp] is a p-dimensional vector with the fixed but
unknown constants w’s(2=1,2, -, P);

(ii) Bi(m;xp) is a random sample of size m; from the p-variate normal
population N[O X p), Z(pX p)] for i=1,2, -, k+1;

1) Numbers in brackets refer to the references of the end of the paper.
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(ii) B (INXp), which denotes the error term, is a random sample of size N
from the p-variate normal population N[O(1xp), Z.,(px p)];

(v) Brs(=1,2, k) and B,,,(NXp) are mutually independent;

(v) X, (WWx1)=1(Nx1) is a N-dimensional vector of 1’s, X/s (Z=1,2 -, k)
are the matrices of known constants, and X;.;,(NXN)=I(NxX N) is the identity matrix.

In what follows for the sake of simplicity we write sometimes B,, B; B,., and
X, etc. instead of By(1xp), Bi(m;Xp), B.,(NXp) and X,(Nxm,) etc..

Throughout this paper we shall write #X# identity matrix as I(nxn), E(nxn)
denotes the #X# matrix with the elements all equal to 1. _

Let H(nxXn) be the # X7 matrix with the elements all equal to zero except for
the (1, 1-element equal to 1. A;(INXN) denotes XX} for 1=1,2,--, k+1 and A,.,
is equal to I(INxXN). -

Further let P(INXN) be defined as any orthogonal matrix whose elements in the

1
first row are all equal to TN and also let Q(pXp) be any orthogonal matrix whose

elements in the first row are all equal to

s
Then we have easily
. 2 P(INxN)E(NxN)P'(Nx N)=NH(NxN)
and
@. 3 QX PE@xpQ (pxp)=pH(p x p).

In this paper, the Kronecker product of two matrices are defined in the way
reverse to the usual ones for the sake of convenience. Thus for C=(C,;) and D=(d,),
the Kronecker product denoted by C®D is defined as the matrix (Cd,;). The Kronecker
product of any number of matrices is defined as the natural generalization of two
matrices. And we shall make use of the well-known relations concerning the Kronecker
product of two matrices such as (C®D)(L®M)=CL®DM, (CR®D) '=C @D,
(COD)' =C'®D, and their generalization to the products of any number of matrices
without mentioning explicitly.

3. Covariance matrix.
At first we observe

THEOREM 3. 1. Let

(3. 1) Y<pr>: [Yh YZ; T YP]}N;
and
3. 2 YWNpxD=[Y, Y, -, Y],

then, under the model (2. 1), Y(NPX1) is distributed in normal distribution N [e(px1),
V(NP X NP)1, where
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3.3 g(px1)=[ml’(AXN), wl’AXN), -, 1 AXN)Y,
and
@ O V(Np x Np) =33 AN x N)@E:(p X ).

PROOF. It is easily seen that the expectation of Y(NpX1) is given by (3. .
Now, in virtue of (2. 1), the model equation of Y, (Nx1) is given by

G5 YUNKD=ml(NXD + 3 KN %) Bulmex D)+ X N XN Braaa N X 1),
1=1,2,-p,

where Pi is the lth column vector of B, for i=1,2,-, k+1,
and we have

G BT XN =EGal+ 3 X (al+ X
— BV X N+ ECE X uftiX

= BV X ND +2 X, (@I x N))X

=1

— BN N + 31 oA N X N,

where o is the (/,s)-element of Zi
On the other hand, considering that

Sttt s

Pt #g foftas topin
3.7 E[y(prl)]E[y’(prl)]=E(N><N)® : :

\/119.#1 Uplle Hpfts™ """ Hp
=E(NxN)®(BB,),

we obtain (3. 2).

Now we shall set up some combinations of the following assumptions in certain
sections of this pape‘r.

ASSUMPTION (1) Ays (1=0,1,2 o, B+1) commute in pairs.

ASSUMPTION (II) The elements of A are equal to 0 or 1 and it holds that 1'(A X N)
A,=71T(AxN).

ASSUMPTION (IID) Ays (=0,1,-k+1) are linearly independent.

ASSUMPTION (IV) The diagonal elements of Z; are equal to “each other, while other
elements of L are also equal among themselves for 1=1,2, -, k41, hence X; has the form

o Tz

3.8 ' r= (i=1,2,-,k+1).

N T O‘?; /|
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The Assumptions (I), (I) and (III) are concerned with the layout of experiments.
‘The models of the experimental designs with equal numbers in the subclasses, which
include the 7-way layout models with or without interaction, the #-fold nested classfication
models, the split-plot models, etc., satisfy these assumptions. For in these experimental
designs all A; are expressed in the form of the Kronecker product of several numbers
of E and I such that the dimensions of the corresponding component matrices E or I
are equal among themselves, and all A; are different from each other.

The models of the experimental designs with unequal numbers in the subclass do
not satisfy these assumptions. For example, in the 2-way layout without interaction
such that the treatment combinations are given by (12), (21), (22), (33), (34), (43) and
44), A, A, and A, can be written as

1000000~ 1010000
0110000 0100000
_| 0110000 _| 1010000 _
(3. 9 A=l 0001100 |’ A=| 5001010 |0 A=LTXD,
: 0001100 0000101
0000011 0001010
0000011 0000101

which implies that this is the case. The models of B.I.B. designs satisfy the Assumption
D), but not the Assumption ().

THEOREM 3. 2. Under the Assumptions (1), (I1), and (IV), there exists an orthogonal
transformation which transforms V given by (3. 4) into a diagonal matrix.

PROOF. In virtue of the Assumptoin (I) and the symmetricity of A;, there exists
an orthogonal matrix which diagonalizes A,, A, -+---+ ,Azi. And under the Assumption
(II) this can be realized by an orthogonal matrix P, which is defined in Section 24
Therefore let us consider such a particular matrix P. Let Q be any orthogonal matrix
defined in Section 2.

Then, since Z; is expressed as follows

(3. 10) Zi=nE(P><P)+(03—n) I(po),

we have

G 11 (P XNRQD X p)IVPN NCQ(p X))’
=31 (e (PAPORH(DX ) + (i) (PAPIRI(px 1))

/'/PriAi(NX N) 0 /<O'§—Ti>Ai<NXN)
! 0 (o‘f—n)‘Ai(NX N) 0
| 0 E

k+1 |

i=1

\ 0/ \ (oi— ) As(NXN)




162 N. FURUKAWA

S DR AW XD

S () AN XN 0

o i=1

i=1

5 (2= c) AN X N

’

S (= e AN XN
i1 P
where each A;(NxN)=PAJP’ is a diagonal matrix for 1=1,2, -, B+1, which completes
the proof. g.e.d.
The direct consequence of Theorem 3. 2. is given by

COROLLARY 3. 1. Let P and Q be be the orthogonal matrices defined in Section 2.
Then we have '

ZD(INXN) 0 N
D,(NxN)
3. 12) (PRQVPRQ) = DZU-YXM
0 D,(NxN)_
where
-1 ~ -1 ™
0 —_— 0
£ ) &2
X X
D,= x and D,= .
0 \ 0
~ X/ X

and where 8. and &. are the distinct elements of the first row in the first column on the

k+1 k+1
matrices > {3+ (P—Dw} Ay and 2 (o2—71:)Nsy, respectively.
=1 =1

4. Estimability Theorem.

We shall define the notion of estimability for %, in our concern and then refer to
the necessary and the sufficient conditions for X; to be estimable.

Definition. Under the Assumption (II), the parameter matrix 2; is said to be
estimable if and only if the quadratic forms V'G,Y and Y'M,Y exist such that
E[V'GYl=d} and E[YMY]=1.

Now we observe
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THEOREM 4. 1. Under the Assumption (IV) a necessary condition for X's (1=1,2, -,
k+1) to be estimable is that A, e , Aviy are linearly independent.

PROOF. Let

B.= [,Bm ﬁiz, """" ’ [81‘1)]’

and
Ei:[ﬁ21, [/3:2 ..... s ﬁgp]’, (i=1,2, -, k+1).
Then it holds that
k+1 ~

@ n . y(Np><1)=1(N><N)®BO+Z XRI(pxp))B..

Let Z’s (1=1,2,-,k+1) be estimable. Then there exist G,s and M.’s such
that
(4' 2) E[y, Guy] :0.120 (u:l) 2; Tt k+1)1
and
(4- 3) E[yl Mny] = Ty (-u=1:2: Ty k+1).

The left hand side of (3. 11) is expressed as follows.

“ 0 E[{1®Bo+§ (X@I)E}fc,,u@BoJrg XRDB}]
- F[{"z B/(X.Q1) }G,,{’g (XEBDB}]+ (1'®B)G.(18B,)
- Ez tr[(X®IY GUXSDBB + tr[G.(11 @B.B)]

, =§tr[<&®l>’ G.(XBD) {-I®E + (si— IR} ]

+tr[G,(EQB,B))]
_ =31 etr [{(XXDBE}G] + 3} (- e tr [ ((XXD@T)G.]
+tr[G.(EQBB))].
Therefore it follows that, in virtue of 4. 1),
“. 5) S ottr [(ABDG,] + 5% vt [{A®E-D}G,] + tr[G.(ERBB)]
; =, o (#=1,2, -, k+1).

Similarly, it holds that

TR R TV

“ 6 ST [(A®DM,] + 3 ctr [{A®E-D}M,] + tr[M.(E®B,B)]
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=Tu (2=1,2,, k+1).
Since the equation (4. 5) holds true for all non-negative values of all o%, we obtain that

h ) :
wlA®DGI={ ) el 1, B ),

when 1=u,

In order to show the linear independency of Ays (¢=1 k+1), let ¢y, -*+, Cz+1 be any
set of constants such that

k+1
e (ARD =0.
=1
Then, since it holds that
k+1
S e tr[(ARDG.] =c., (u=1,2,-, k+1),

=1

we have that
tr [Gu (S c(ABD) 1 =2 e tr [(ABDG] =c.,

which implies that ¢;=0 for t=12, k+1.

Therefore ARL, -, Az+,®I are linearly independent, which implies that A, -,
A, ., are linearly independent.

The same result can be obtained from (4. 6) in the similar way.

THEOREM 4.2. Under the Assumption (IV) a sufficient condition for Zis (1=1,2,,
E+1) to be estimable is that Ay Ay, -, A... are linearly independent.

PROOF. Let us assume that A, Ay, .-+, A4y, are linearly independent. Then we

- have
A BV Y] =it >3 ey, for 175,
and
) E[Y Y71 =iAvt 31 oA,

Now let wes=YPy where ¥ is the element in the a-th row of Y, and let the
vector W (22 2x1) be defined by

W("_("—;‘QXI) = [wm Wiz, """y W1Ny Wazy """y WanNy 77 ‘1)pp] “.
And let the (a, B)-th element of A; be a® and let the vector A, be defined by
S‘)Ii (ﬁ"z_+1_))<1> = [ag)y ag)y Tty ag’j\)'y ag;:); Yy ag}e” ) ag;a\'] ’-

Then it holds that
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@9 ECW) =4 Uk 31t 2L,

Since Ay, Ay, -+, Ay, are linearly independent, %y, %, -+, Uy,y are also linearly independ-
ent.

Putting A Pxasn)=[2A,, A, -, ALypy] and C((R+2) X 1) =[12, % -, 0%..]", (4.9)
can be written as E(W)=UC. Since A has rank £+2, € is given in the form C=LE
(W*), where W¥* is a subvector of W, in virtue of (4.8). Thus all ¢¥s are estimable.

Further, from (4. 7) it is showed that all z’s are estimable in the similar way.

q.e.d.

5. Characteristic roots of the variance matrix.

In this section we shall discuss some of the properties of the characteristic roots,
which play an important role in the following sections.

THEOREM 5. 1. Under the Assumptions (1), (A1), AID) and (IV), the number of the
distinct characteristic roots of the matrix V is not less than 2B-+2.

PROOF. In the proof of Theorem 3. 2, we showed that V was transformed to the
diagonal matrix. And all {o}+(p—1)z;} and all (o?—1;) are functionally independent.
Therefore it can be shown that the number of the distinct elements of

k1 N
2ot + (P~} A, 0 |
hn . E+1 |

0 >3 (di—e)A; )

is not less than 2k+2, along the same line as that of Theorem 3 in (9], which estab-
lishes the proof. q.e.d.

Secondly, we shall show

THEOREM 5. 2. Under the Assumptions (1), (A1), (AII) and (IV), the 2(k+1) of the
distinct characteristic roots of 'V are functionally independent.

PROOF. Consider the last form in (3.8). Let A* and A be defined as the vectors
of the diagonal elements of the diagonal matrices (P®Q)V(P®Q)’ and A, respectively.
Then it holds that '

ST ot (0 1m) AFVXD) )

ST (A=) AF(N X 1)

. 1 A*(Npx1)= 2 (=) AF(Nx1)

23 (=AY (Nx1)

Now we have
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S (ot (D) ATNXD=[AF, M, o A (ot (P=De ),
o+ (Pp—Dr

~ 02+1+ (p'—1>7k+1/

Since A, A, -, Ay, are linearly independent, A¥, AF, -, Ai are linearly
independent, which implies that the rank of the matrix [AF, AF, -, Afu] is equal to
k+1. But {0+ (p—1)z:} ’s are functionally independent. Therefore % (34 (p—Du} AF
has k+1 functionally independent elements. -

Similarly, it holds that }i}l(ﬁ%—ri)A?‘ has also k+1 functionally independent ele-
ments. .

Since all {o?+(p—1)z} and all (o2—7;) are functionally independent, the vector

A* has 2(B+1) functionally independent elements, which establishes the theorem. g.e.d.

6. Complete sufficient set.

In this section we shall derive the sufficient statistics in the model defined in
Section 2 under the assumptions (D), (1D, (I and AV) and then we shall discuss their
distributions.

Now let us consider the ‘quadratic form

6. 1 Z=(y—1A®B))V(y—(18B.),

and let introduce an orthogonal transformation PRQ, where P and Q are defined in
Section 2. Then, in virtue of Corollary 3. 1, Z is given by

6.2 Z=[PRQYY—(PRQUIAIB)] [(PRQV(PRQ)Y]™
[(PRQ)Y—(PRQ)(1®B,)]

— L {(PAXNBQAX YN X D~V N 2 duts)
+ L3 (POX MO PIY Mo X D=7/ N 2]

+ Zs}s—gl,— V' (1 x Np)R:.(Np xm )R, (m, x Np)Y (NP x 1),
where P:(1xN) is the j-th row vector of P, Q; is the j-th row vector of Q,g.s (u
=1,2,-, S) are the distinct characteristic roots of V, each row vector of all R, is
equal to one of P(IN—1) row vectors P®Qys (i=2, -, N; j=1,--, ), all row vectors
of all R, are distinct from each other and 7., the row dimension of R., is equal to
the multiplicity of the characteristic root Z.. From the last form of (6. 2) it is easily
seen that a set of p+S—2 statistics (P®Q)Y’s (j=1,2,-,p) and VRR.Ys (u
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=3,4,, §) are the sufficient statistics for the family of distribution of all obser-
vations under our model. ,

Now we shall derive the distributions of these statistics. (P®Q,) Y is distributed
as a umvanate normal, whose mean is given by E[(P,®Q,)V]=(P,QQ,)(1®B,) =

VNZ @i;¢; and the variance is given by

6.9 EL{P@QY ~vN 3 0ns} {(POR) Y~V N 310}

=E[(P.BQYY (P@QYT—N (F aus)
:<P1®Q1>V<P1®Q1>,
=&

B Similarly, it is seen that (P\&®Q;) Y is distributed as a univariate normal with mean
E e, B , .

E (P1®QJ>(1®B0>=1/th gimun and variance (P,&Q,)V(P.R®Q;)’ =g, for j=2, -, p.

|- =1

On the other hand we obtain the following;

(A RiR.V/g, is idempotent since it holds that
R.R.VR)OR,V/g:=R.gI(n.xn)RV/g:=R/R./g..

® E[R.Y]=(P®Q,)(1®B,)=0 for [#1, and Var[R.y]=g..

(©) rank (R.R,V)=n,.

D) R. VR =0 for u#, since (P, ®Q;)V(PL®Q1>’

is not zero if and only if (7, 7) = (%, 1).

The above results show that all YR,R.Y are distributed independently to each
other in central chi-square distributions with 7, degrees of freedom and also 1ndepen
dently to all (P,®Q,) V.

This consideration will be summarized in the following

THEOREM 6. 1. In addition to the Assumptions (1), AD, AID and (IV), let us assume
that V has s distinct characteristic roots. Then the sufficient statistics for the Sfamily of the
distribution of all observations are given by (P®Q;) Y’'s (j=1,2, -, p) and V'R.R.V’s
(=34, -, ).

Lastly in this section, we shall add the following theorem which seems to be much
useful in seeklng for the minimum variance unbiased estimate of 2.

THEOREM 6. 2. In addition to the Assumptions @, AD, D) and (AV), let us add
that V has 2k+4 distinct characteristic roots. Then the 2(k+1)+p statistics (P®Q,) Vs
(J=1,2,-, p) and YRR, Y’s (u=3,4, -, 2+ 4) form a complete sufficient set for the
Samily of the distribution of all observations in our concern.

Seblaia
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PROOF. If V has 2k+4 distinct characteristic roots, then the quadratic form in

exponent (6. 2) is equal to .

6.8  Z=— ((PAXNBQUxPYWPXDY+ L3 {PaxNOQ X))
Ypx DY + 3 5 YRRY

B 2/ N(g guﬁ.i)

1

<P1<1 XN)®Q1<1 XP)) Y(Nj) X 1)

_ %N 3 (g ghj,,j) (P,(1x @1 X)) V(NP X1

=1
+ S’;(/lb 2y "”7/1}J>J

where (g, s, -, pp) is the function of tu, o s P

Now we shall consider the transformations of the original parameters and the
sufficient statistics such that

2N (i Cha’#a‘)

(6- 5) 01: - ;_ﬂl )
/P

2v'N (2 q/u'#j>
(6. 6) 011: = ;1 ’ (h=2,3,"',ﬁ),
6.7 b= ———, (k=p+1,p+2,,2k+2+D),

Sr--2

(6. 8 U,=(P,(1x N)RQ,(1x p)) Y(NPX1),
6. 9 U,= (P, xB)®Q,(1xp)) YUNP X 1), (h=2,3,",0)>
(6. 10) U=V Ri_-oRi-0-2Y, (k=p+1,p+2,, 2k +2+D)-

Then we should notice that the transformations (6. 5), ---, (6.10) from = "{(pu, 2 """
Upy 0% 0%~y Ohryy Ty Ty **7 tes) to 0=C(6, 05 -, Or2ep) is one-to-one, because of the
orthogonality of Q and the functional independency among &' (u=3,4," 2k+4),
which is proved in Theorem 5. 2. Consequently it can be seen also that &, and £ are
the functions of the new parameters 6ys (k=p+1, p+2, -, 2k+2+D).

Thus, under the new parameters, the quadratic form in exponent is given by

2k+2+D

(6- 11) ' 1_21 ﬁiUi+g1(0p+1; Tty 62k+2+p)Uf

P
+g2<0p+1, Ty 027c+2+p) E U;"“P((}n Ty ﬁp>,
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where £,(0ps1, **, Onvosp) and &,(0pss, -+, Onszsp) are the function of Oys (E=p+1, p
3~ 2t 2+ 5],

The theorem is completed by applying the result of Lemma 4. 8 in our previous
paper [4] to (6. 11). q.e.d.

7. Examples.

EXAMPLE 1. Concider the p-variate complete 2-way layout model without inter-
action in which the levels of all treatments are equal to three, and Assumption (IV) is
satisfied. Then the design matrix is given by

AN

7. D I(9%9)

[ e Ly g
OO OOOHMHM
COOHRHRHOOO
HHHOOOOOO
COHOOHOOR
OHOOROOHO
HOOHOOHOO

/

e

and AJs can be written as follows: A,=EGBX3)RI(3x3), A,=I(3x3)RE(Bx3), A,=
IBX3)RI(BX3). Obviously Asumptions (I), (II) and (IIT) are satisfied in this case.

Moreover, hence A,, A, and A, are transformed to A,=3H(3X3)RIL(3X3), A,=
BIGBX3NHR@HBX3) and A;=IBX3)RI(3X3) respectlvely, it is showed that for any ¢, c,
and cC,.

3¢, +3c,+c; ™
3c,+c, 0
3C, T C;
3c,+c¢Cs
(7.2) 21CA= ‘ Cs
Cs
3c,+c,

~ Cs

Therefore, in virtue of the last form of (3. 8), V has eight distinct characteristic
roots 3, +3a,ta, 3aitas 3t s, 3838+ 38+ P 3B:t s, Bs, where «;
=oi+(p—1)r; and Bi=o —1z,.

Thus, from Theorem 6. 2, it can be seen that there exist the unique minimum
variance unbiased estimates of Z/s ({=1,2,3).

EXAMPLE 2. Consider the incomplete 2-way layout model without interaction in
which the treatment combinations are given by (11), (12), 21, (22), (33), (34), (43)
and (44) and Assumption (IV) is satisfied.

Then A, A, A, can be written as follows: A,=E@X2)QI(2x2)RI(2x2), A,=1(2x2)
®ECX2)®I(2x2), A,=I(8%8). And these satisfy the Assumptions (I), (II) and (IID).
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Hence A, A, and A, are transformed to A1=2H<2><2)®I(2><2)®I(2X2>, A,=21(2X2)
RH(2Xx2)RI1(2x2) and A,=1(8%8), eight distinct characteristic roots of V are given
by 20+ 20+ s, 200 A, 20T Ay, gy 2B, + 2B, + Bs, 2B, + s, 28,+ Bs, B; where «; and B
are defined in Example 1.

Therefore there exist the unique munimun variance unbiased estimates of Z/s
(i=1,2,3).

8. Remark.

After treating the multivariate random effect model under the Assumptions (D),
(ID, (III) and (IV) in this paper, there naturally arises the corresponding problem for
more general situation without the Assumption (IV), which is important for general
application of random models. The similar problems for the case of mixed model are
worthwhile to be discussed in detail. The author should like to have another ocasion
to discuss some of these problems.
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