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The purpose of this paper is to abstract the notion of a Jordan triple system
which has been introduced by Jacobson in [71® and to study its representation. Duffin
4] and Kemmer [11] first considered such system, B-matrices, for describing the meson
and these matrices were studied by many authors. On the other hand, a Jordan
triple system is an example of the _so called affine structure which appeared in the
study of O-connection on the group space by E. Cartan [2], therefore it seems that it
is appropriate to study this system from the Lie triple system-like stand point. Garnir
[6] and Jacobson [7] have already used this fact and the latter obtained also many
general properties of Jordan triple systems. But it seems that contrary to the cases of
Jordan algebras and Lie triple systems, the abstract studies of Jordan triple systems
are relatively few.

We give the definition of Jordan triple system of type I and of type II on the
notion of triple derivations. Following Eilenberg [5], we define the generalized repre-
sentations for these systems. Next, for the Jordan triple system J; of type I we consider
a cohomology group H"(J, V) which is associated with the representation by an
analogous way to the method of Chevalley and Eilenberg [3]. Let ]; be an associated
Lie triple system of J;, then H"(]I, V) is mapped homomorphically into the cohomology
group H"(Ji, V) of J{. Also, for the Jordan triple system Ji of type II we define a
cohomology group H"(Jy;, V) which is associated with the representation. Let Ji be
an associated Jordan triple system of type II of J;, then H"(Jy, V) is isomorphic to
H"(J, V). Throughout this paper, we assume that the base field is of characteristic 0
and the dimension of Jordan triple system is finite.

1. Basic definitions. We begin with the abstraction of the notion of subspaces of
associative algebras which are closed relative to the Jordan triple product {a{bc}},
where {ab}=ab+ba, in two ways.

DEFINITION 1.1. A Jordan triple system (J.t.s.) J: of type 1 is a vector space over
a field @ with a trilinear multiplication {abc} and satisfying

1.1 {abc} = {acb},

{ab{cde}} + {{bac}de} + {ce{bad}} + {cd{bae})}
= {ba{cde}} + {{abc}de} + {ce{abd}} + {cd{abe}}.

.2

DEFINITION 1.2. A J.t.s. Ju of type Il is a vector space over a field @ with a

1) Numbers in brackets refer to the references at the end of the paper.

/7/



172 K. YAMAGUTI

trilinear multiplication < abc>>® and satisfying
1.3 <Labe>=<cba>,

<ab<cde> + <Lbac>de> + <c<lbad>e> + <cd<bae>
= <ba<lcde>+ <Labc>de> + <c<Labd>e> +<cd<abe>.

EXAMPLES. A vector space over @ spanned by the Dirac matrices 7, 1=1,2,3,4,5,
is a J.t.s. of type I relative to a ternary composition {r:{rs:}}, since they satisfy the
relation {775} =281, I being a unit matrix.

" Consider a wave equation 3BV + k¥ =0 for the meson, then the operators B:,
i=1,2,3,4, satisfy, by definition, the following relation

BiBifx BrBiBi= 0wl t SiBi®-

Therefore,.a vector space spanned by these B-matrices is a J.t.s. of type II relative to

a ternary composition < BuBsfr>=PiBsbrt BiBsBs A J.t.s. of this type is called a meson
triple system [71.

Let J be a subspace of an associative algebra A, which is closed with respect to
a ternary composition {a{bc}}, then Jis a J.t.s. of type I relative to {abc} = {a{bc}}
and it is a J.t.s. of type II relative to <abc>=abc +cba.

DEFINITION 1.3. A linear transformation D of J.t.s. J1 of type I is called a
derivation of Jy if

1.4)

D{xyz} = {((D®)yz} + {x(Dy)z} + {xy(D2)}

for all %,%,2 in Ji. A derivation of a J.t.s. of type II is defined similarly.
In a J.t.s. Ji of type I, if we put

[abc] = {abc} — {bac},
then (1.2) can be rewritten as
(1.5) | [ab{cde}]={[abc]de} + {c[abd]e} + {cd[abe]},

hence a linear mapping >\ D" x—S[ab;x] is a derivation of J., which is called an
T kA

inner derivation of Ji.
Similarly, for a J.t.s. Ju of type II if we put

[abc] = <abc>— <bac>,

then (1.4) shows that a linear mapping > Dasv: x—>[abx] is an (inner) derivation

of Ju, in each case the inner derivations form an ideal of a Lie algebra D generated
by derivations of Ji (or Ju), since [D, Deoy] =D ety + Do,y for every Ded.

2) In [7], Jacobson denoted a ternary product abc+cba in associative algebras by (abc). Later
he generalized this product to the case of abstract Jordan algebras and denoted by {abc} [10]. Here
we use the notation <abc> instead of {abc}. See Lemma 1.1.

3) Duffin [4].and Kemmer [11].
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Now, we consider the relations of J.t.s. with the other algebras. A (nonassociative)
commutative algebra J over a field @ is called a Jordan algebra if (ab)a=a*(ba) for
all a, bE].

LEMMA 1.1. Awny Jordan algebra J is a J.i.s. of type I relative to {abc} =a(bc)
and a J.t.s. of type II relative to <abc>= —é—a(bc)—%b(ca) + %c(ab).

Proof. In-a Jordan algebra J, it holds that a(b(cd)) +c(blad)) +d(b(ca)) =
a(d(bc)) +b(d(ca)) +c(d(ab)) for all ab,c,d€] [1,(7)]. Hence a linear mapping X—
[abx] is a derivation of a Jordan algebra J, where [abc]=a(bc)—b(ac). From this
fact we can easily prove this lemma.

LEMMA 1.2. A J.t.s. of type I is a J.i.s. of type IT relative to <abc>:%{abc}'—

Zl{bca} +%{cab}. Conversely a J.t.s. of type IT is a J.i.s. of type I relative to {abc} =
<abc>+<lach>. 1In this case Jy (or Jo) is called an associated Jotus. of JyCor Ju).
A vector space 7" over @ with a trilinear composition [abc] is called a Lie triple
system if
[aab] =0,
[abc] + [bea] + [cab] =o,
[ablcde]] = [[abclde] + [c[abd]e] + [cd[abe]].

The following lemma will be usefull in the sequel.

LEMMA 1.3. A J.t.s. Ji of type I is a Lie triple system relative to [abc] = {abc} —
{bac} and a J.t.s. Ju of type Il is a Lie triple system relative to [abc]=<abc>—<bac>>.

To prove this lemma we use that a linear mapping ¥— [abx] is a derivation of
Ji(or Ju). A corollary of this lemma is that any Jordan algebra is a Lie triple system
relative to [abc]=a(bc) —b(ac) [8]. We call a Lie triple system derived from J; (or
Ju) by above lemma the associated Lie triple system of J; (or Jip).

We prove now an identity in Jordan algebras:

o) [<aba>, b, ab]l =5 al(ab)(b(ab))) — Lb((ab) (atba))) — L (a2, b7, ab).
Proof. In a Jordan algebra the following identity holds [1, (6)1:

a.n a((be)d) +b((ca)d) +c((ab)d) = (ab) (ed) + (be) (ad) + (ca) (bd).

From this, we have () Z(a(ab))(b(ab)):a((ab)(b(ab))) +b((ab)(a(ba))). If we
apply (1.7) with a=b, b=a’, ¢=b, d=ab, we obtain 2((@’b) (b(ab)) —b((a®b) (ab))) =
@*(b*(ab)) —b*(a*(ab)), i.e. (B) [a’h, b, ab]:%[az, b, ab]. Using () and (B) we
obtain (1.6). If we use (1.6) and [10, (19)], we see that the expression [a, b, <aba>b]
—[<aba>>, b, ab] is skew-symmetric in @ and b.
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REMARK 1.1. We consider the geometrical meanning of the axiom (1.2) or (1.5)
for a J.t.s. Ji of type I Let L, be a space with a symmetric affine connection and
suppose that the curvature tensor R;;' in L, decomposes as R;;'=2Ki;', where the
tensor Ki;' satisfies Kiig=0 and p..Ki;i'=0, F denoting a covariant derivation. If
we apply the operator Ffs to K;;i' we have

Llp...m e R e b LS 7 2 - T g R e
Refm idk _Ro/i mak '—Refj imk Reflc idm =0.

This relation is an expression of (1.5) in the form of structure constants of J: and the
curvature tensor Kjji' satisfies three conditions in coefficient forms for the associated
Lie triple system of Jr. For the geometrical meanning of the axiom (1.4) for a J.t.s.
of type II we can consider a space L, whose curvature tensor satisfies a special identity
Ri;it=2Kuzi', where Kuji =0 and FnKi;'=0.

REMARK 1.2. Let J be a J.t.s. of type I Since a Lie triple system T can be
1-to-1 imbedded in a Lie algebra L in such a way that the given composition [@bc] in T
is a product [[ablc] in L 8 §5, 14 Theorem 2.1], we can consider J as a subspace of
a Lie algebra such that {abc}— {bac}= [[ablc] by Lemma 1.3.

We shall now state some concepts for J.t.s. of type I? which will be necessary
for the later use. Let J and J' be J.t.s. of type I over &, a homomorphism of J into
J' is a linear mapping f of J into J' satisfying f({abc})= (Ff@fb)fe)} for all ab,c
€J. A subspace K of J is called a subsystem of J if a,b,c €K implies {abc}EK. A
subspace K of J is a subsystem if and only if [abb]€K and {aaa}E€K for all a,b€EK.
In fact, suppose that a subspace K satisfies these conditions, then [abc] + [acb]EK and
[bac] + [bcal €K, hence 3[abc]€K and K is a subsystem of the associated Lie triple
system of J. Also, using the identity 2({abc} + {bca} + {cab}) ={a+b+c, a+b+c,a+b
+c}—{a+b, a+b, a+b}—{b+c, b+, b+c}—{c+a, c+a, ct+a}t+ {aaa} + {bbb} + {ccc}
we have {abc} + {bca} + {cab} €K hence 3{abc} = [abc] + [acb] + {abc} + (bea} + {cab} EK.
An ideal of J is a subspace K satisfying {J/K}SK and (KJJ}ZK. Let K Dbe an
ideal of J, then the factor space J/K becomes a J.t.s. with a trilinear product {@¢+K
b+K c+K}={abc} +K and a natural mapping a—a+K is a homomorphism of J onto
J/K. Conversely, let f be a homomorphism of a J.t.s. J onto a J.t.s. J' with a kernel
K, then K is an ideal of J and the factor system J/K is isomorphic to J'. An ideal
K of a J.t.s. J is a Lie triple system ideal® of an associated Lie triple system of J,
because [kab]= {kab}— {abk},a,b €], EEK and this relation shows that an ideal K of
an associated Lie triple system of a J. t.s. J is an ideal of J if and only if either {JJK}
CK or {K]JIEK.

2. Representations of Jordan triple systems. In .this section we define a general
representation of J.t.s. and consider the relations among the representations of Jordan
algebras, of J.t.s. and of Lie triple systems. We begin with the natural definition of

4) In [13] Ono stated these concepts in the form {a{bc}}.
5) [12, Definition 1.31.
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representations for J.t.s.

DEFINITION 2.1. A linear mapping p of a J.t.s. J; of type I into the algebra of
linear transformations on a vector space V over @ is called a special representation of
Jr if p({abc}) = {p(a) {o(B)p(c)}}.

But, for our purpose it is necessary to define a more generalized representation
than the special representation.

DEFINITION 2.2. Let J; be a J.t.s. of type I. A pair (L, R) of bilinear mappings
of J; into the algebra of linear transformations on a vector space V over @ is called a
(bi-)representation of J; if -

@D R(a,b)=R(, a),

2.2 R(a, {bcd}) —L(a, {bcd})
=R(c,d)(R(a,b)—L(a, b)) +L(b,d)(R(a,c)—L(a,c))
+L(b,¢)(R(a,d)—L(a,d)),

2.3 [L(a,b)—L(b ), R(c,d)]=R([abc], d) +R(c, [abd]),
Q.4 [(L(a, b)—L(b,a), L(c,d)]=L( [abcl, d) + L(c, [abd]),
where [L(q,b), R(c,d)] denotes, as usual, L(a, b) R(c,d)—R(c,d) L(a,b).

From (2.4) we have [L(a, b)—L(b, @), L(c, d)—L(d, ¢)] =L([abc],d)—L(d,
[abc]) +L(c, [abd])—L([abd], ¢), hence > (L(a, b)) —L(b, a,)) generate a subalgebra
L of a Lie algebra gI(V). Let K be an idzeal of J; and let (L, K) be a restriction of
a representation (L, R) of /; to K, then a Lie algebra generated by >) (L(a, b)) —L(b,
a.)), a, b,EK, is an ideal of Q. ’

For @,b in J;, if we denote the mapping x—{abx} by L(a,b) and the mapping
x—{xab} by R(a, b), then L and R satisfy (2.1),--,(2.4). As usual we call this
representation (L, R) the regular representation. We note that if (L,R) is a regular
representation, then L(a,b)—L(b, a) is an inner derivation of Ji. If K is a subsystem
of /i and A is an ideal of J;, then the regular representation (L, K) induces a repre-
sentation of K in A. If & is in a kernel of the regular representation, then [kab]=0
for every @,b in J. The inner derivation > (L(a;, b)) —L(b, a;)) becomes a trivial
mapping on the set of all elements with this pzroperty.

Let o be a special representation of J;, then we have p([abc])= [[e(@)o(D)]p(c)].
Hence, if we put L(a, b)=p(a)p(d) and R(a, b)=p(a)o(d) +p(b)o(a), then it follows
that (L, R) is a representation of J,.

DEFINITION 2.3. Let Jy be a J.t.s. of type II. A pair (4, 7) of bilinear mappings
of Ju into the algebra of linear transformations on a vector space V over @ is called
a (bi-)representation of Jy if

2.5 (a,b)=(b, a),
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(2.6) r(<Labc>, d) —a(<abc>, d?
=r(a,c)(z(b, d)—1(b,d)) +1(a,b)(z(c,d)—A(c, a))
+2(c,b) ((a,d)—2(a,d)),

Q2.7 [(a, b) — (b, @), (¢, d)1==([abc], d) +=(c, [abd]),
2.8) [2(a, b) — (b, @), A(c, d)]1=2([abc], d) +2(c, [abd]).

_ For @,b in a J.t.s. Ju of type II, two linear mappings i(a,b): x—<abx> and
z(a,b): x—<axb> satisfy the conditions (2.5), -, (2.8), hence (1, ©) is a representation
of Ji which we call a regular representation. In this case i(a,b)—2(b,a) is an inner
derivation of Ju.

LEMMA 2.1. Let a—o(a) be a representation® of a Jordan algebra J. Then o induces
a representation (L, R) for an associated J.t.s. of type I of J.

In fact, if we put L(@, b)=p(@)o(b) and R(a, b)=p(ab), then we easily see that
L and R satisfy the conditions (2.1), -, (2. 4). Also, from Lemma 1.2 we have the
following lemma by a direct verification.

LEMMA 2.2. Let (L,R) be a representation for a J.t.s. Ji of type I. If we put

i@ t=1 L h—LLo,0+ L R@Y) ad «@b)=F Lab+ 5 Lo~

R(a, b), then (2, 7) is a representation for an associated J.1.s. of type II of Ji. Conversely, let
(A, v) be a represeniation for a J.i.s. Ju of type II. If we put L(a,b)=1(a, b) +z(a,b)
and R(a,b)=1(a,b)+1(b,a), then (L, R) is a representation for an associated J.t.s. of
type I of J 1 ‘

LEMMA 2.3. Let (L, R) be a representation for a J.i.s. of type I. If we put 0(a,b)
=R(a, b)—L(a,b), then we have '

6(c,d)b(a b)—0(b,d)i(a,c)—0(a, [bed]) +D(b, c)b(a, d) =0,
‘[D(a,b), 6(c,d)]=0([abc], d) +6(c, [abd]),

where D(a,b)=0(b,a)—0(a, b).

From Lemma 1.3 and Lemma 2.3, it follows that a representation (L, R) of a
J.t.s. Ji of type I induces a representation 6" of an associated Lie triple system of J.
Similarly, a representation (4, 7) of a J.t.s. Ju of type II induces a representation %)
of an associated Lie triple system of Ju by putting 6(a, b)=2(b, @) —7(b, @). Therefore,
by [15] from a representation of a J.t.s. J we can define a cohomology group of an
associated Lie triple system of J.

For a Jordan algebra J, there is a concept of Jordan bimodule equivalent to that of
representation for J. In the case of J.t.s. of type I we define a Jordan triple bimodule

6) [8, Definition 2.1].
7) See [15, Definition 2], there we called a representation space V a T-module instead of a
representation €.
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as follows.

Let Ji be a J.t.s. of type L. A Jordan triple bimodule for Jy is a vector space M
with trilinear compositions {mab}, {amb} and {abm} for a,bEJ, mEM such that these
compositions are contained in M and satisfy

{mab} = {mba},
{amb} = {abm},
{ma{bcd}} + {{abm}cd} + {(bd{acm}} + {bc{adm)}}
= {am{bed}} + {{mab}cd} + {bd{mac}} + {bc{mad)}},
{ab{mcd}} + {{bam}cd} + {md {bac}} + {mc{bad}}
= {ba{mcd}} + {{abm}cd} + {md {abc}} + {mc{abd}},
{ab{cdm}} + {cd{bam}} + {{bac}dm} + {cm{bad}}
= {ba{cdm}} + {cd{abm}} + {{abc}dm} + {cm{abd}}.

Let (L,R) be a representation of J; acting in the vector space M. Putting
{abm} = {amb} =L(a, b)m and {mab}=R(a, b)m for mEM, M is a Jordan triple
bimodule for /. Conversely, let M be a Jordan triple bimodule for J;. If we define
the linear mappings L(@,0) and R(a,b) of M by L(a,b)m={abm} and R(a,bym=
{mab} respectively, then (L, R) is a representation of J: with representation space M.
Hence, the concept of Jordan triple bimodule for J; is equivalent to that of representation
of Ji. Asin [9, §2] from a given Jordan triple bimodule M we can construct a semi-
direct sum of J; and the b.imodule M or a split null extension of J; by M, and we can
discuss this problem in a more general situation. )

3. Cohomology group of Jordan triple systems of type I. Let (L, R) be a re-
presentation of a J.t.s. J; of type I acting in a vector space V over @, and let f be an
n-linear mapping of Ji1X X J; (n times) into V' satisfying

f(xly ) xﬂ-—Z; x: y) :folr\ Ty xﬂ—Z: yy x) fOr nzS‘

We call such a mapping f an #n-cochain and denote a vector space spanned by #-cochains
by C"(J, V), n=0,1,2, -, where we identify C°(J, V) with V.
We define a linear mapping 6 of C"(J, V) into C***(J, V) as follows:

G () (e, %) = (L(%,, %) —R(x, %)) f for fEC'(J, V),

3.2 (0f) (%1, %, %) =L (%, %) (%) + L%, 2,) f(%,)
+R<x2; xa)f(x1> ’—f( {x1x2x3}>
for fecl<]b V)y

BF) (%, %, %, %)
3.3 =L(%;, 2,) f(%,, %) + L(%,, 2) (%, %,)
+R(%;, ) f (2, 2) — f(2, {%202))
for fEC*(J, V),
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8 ) (% %, -, P
= (_1)"“[[4(’527»—1: xzn)fon Koy vy Kom—2y Xin i)
— L(omry Zan) (%1, %oy %y Kamesty Konsy Fon-sy Koms1)
t L(Zpmery Xoms ) S (Xy Xy = Kamzy Xom)
(3.4) = L%, Xons ) S (% Loy 07y Kam—sy Xon—sy Xon-s) Xom)
+ R(Xpm, Tomr) [ (Zry Xy =7y Homer) — R(Kom, Tome ) S (X, Hay +*, Xon—sty Fan—2y Fon—sy Fon—1)
— (%, %y -y Kamery { FrmeFanKonser}) S (X1 Xay o) Kamets Xams Fan-sy [ Hm=iMn it ) 1

n-1
=+ 221 ('—1>k+1(L<x2k—1; xzk) “chzk, x2k—1>)f(xly Koy vty Xor—1y xzk; ) x21¢+1)

n—1 2n+1

+ ?_J:J %}ﬂ("‘]-)kf(xn Koyt ﬁ.‘k—l; xzk, Ty [xzk—lxzkxj]y Tty x2n+1>
for fECTT'(J, V), n=2,3,

G, %y Xay*y Kamsr)
= (= 1" [L(Fon1, %) S (D) %, %y +*, Famez, Fansr)
— Lo, 5) (Y, 51, Bay =, Fanety Fane Tancsy T
A L(Zonm1y Xons D S, %y Xy o7y Kanay Kon)
— L(Sanes, Gane) (9, 2oy 2y +*, Tanmsy Famoty Fonety o)
3.5 + R (%o, Fams ) S, %o, Xy 75 Fam)
—R(Zomy Zoms ) (D, %1y %y **, Kammsy Kam—2y Fam—ty Kon-)
—f(y, 2, Xy 7, Xrmery {xZn—leann-{-l})
+ (Y, %y, %, 0y Xanesy Xon—2y Xan-3 {xZn—lenx2ﬂ+1})]

n—1 N
+k21<_1>k+1<L<xzk—1, Zor) — L (%, xzk—-l))f(y; Xy Koy o0y Xokm1y Kory 77 Zon+1)

n+1

n—1_ 2 . N
+k2-1 j-%‘:n(—l)kf(y’ Xy, Xyt Xog—1y Xory, "7y [xzk—lxzkxj], Ty x2n+1)
for fEC”(J,,V),n=2,3,-,

where the sign ~ over a letter indicates that this letter is to be omitted.
Then, we obtain the following

THEOREM 3.1. For the operator 6 defined above, we have 86f=0 for every cochain f.
Proof. If fEC'(J, V), then

<56f) (xly xZ; xSy x4)
= (R(x, {xzxax4}> — L%, {xzxsx4}> +R(x,, %) CL(x, x,) —R(x, %))
+ L%, %) (L%, %) —R(%, %)) + L(%, %) (L(x, £) —R(x, £)))f=0

by (2.2). -Similarly, a direct verification shows that 86f=0 for 1-and 3-cochain f.

To prove the general case, it is useful to consider two linear mappings. For a pair
a,b in J; we define a linear mapping «(&, b of C*7'(J, V) into C*7'(J, V) and a
linear mapping ¢(a,b) of C*"7'(J, V) into C™*(J,V) by the following formulas:
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(«(a,b)f) g+, Baien) = (L(a, b) _L(b, a1 % 5 B

(3. 6) _2§f<x1y N [abxj], e, x2n—1>, n=2, 3’ 4’ e,
J=1
(3- 7) <[<ay b)f) (xly Ty x2n—3) :f(ar b: xl; Ty x2n—3)y n=3: 4) 5) Tt

Then, we have by a direct calculation the following two formulas for fEC*™

(]I: V)y nz&

(3.8 e(a,b)sf+6a, b)fzx(q, b f,

3.9 [kCa, ), (¢, )] f=<([abe], d)f +¢(c, [abd1)S.
Next we have

(3.10) [x(a, b), x(c; d)]1f=«([abc], d)f+«(c, [abd])f

for fECZn-l(]I’ V); ngg'

For if feC'(J, V), then we obtain (3.10) directly. Using Lemma 1.3 and (3.9) we can
prove the general case by an inductive method. Moreover, we have

3.1D : k(a,b)sf=61(a,b) f for fEC"'(J, V), n>3.

For if f€C°(J, V), then we obtain (3. 11) by a direct computation. The general case:
follows by using the induction and (3.8). We have next for all feCc*(J, V)

(3.12) 86f=0.

Since (3.12) holds in case of #=0,1,3, we assume that (3.12) has been proved for all

JEC™(J, V) and suppose fEC*(J,, V), n>>3. Then for every pair a,bCJ;, from
(3.8) and (3.11)

«(a,b)osf=r(a,b)sf—s(a, b)of
=66c(a,b) f
=0.

Hence (3.12) holds for all cochains f with odd dimension and from this by (3.3) and
(3.5), (3.12) holds for all cochains Jf with even dimension. Theorem 3.1 is therefore
proved.

An n-cochain f is called an n-cocycle if 6f=0. Denote Z"(J, V) a subspace of
C"(J, V) spanned by n-cocycles. An #-cochain S of the form 6g, where gEC™7*(J, V),
is called an n-coboundary. We denote B™(J, V) a subspace of C"(J, V) spanned by
n-coboundaries, where B'(J;, V)=B'(J,V)=0 by definition. Then, by Theorem 3.1
B*(J, V) is a subspace of Z"(J,, V), hence we can define the quotient space H"(J;, V)
=Z"(J,V)/B"(J, V) which is called the nth cohomology group of Ji.

From Lemma 2.3 a representation (L, R) of J; with representation space V
induces a representation ¢ of an associated Lie triple system of J;. Hence
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H(J, V) is the subspace of the invariant elements for the induced representation 0 of
V. :

" A linear mapping f of Ji into V is called a derivation of Ji into V if f({xx%.})
':R(xz, xa>f<x1> +L<x1y xa)f(x2> + L%, x2>f<x3> Then,

H'(J,, V) is the vector space spanned by derivations of Jiinto V.

We shall next consider the relation between a cohomology group H"(J,V) of a
J.t.s. Ji of type I and a cohomology group H"(Ji, V) of an associated Lie triple system
J¥ of Ji. For this purpose, we modify slightly the coboundary operator & introduced
for Lie triple system in [15, (10), (11), (12)] as follows. Thus, for a Lie triple system
J# 1et C"(J¥, V) be a vector space spanned by #-cochains. We define a linear mapping
f—5*%f of C*(J1,V) into C"**(Ji, V) by the following formulas:

1) (5, 1) = — (6 (3, 22) for fEC'UTE VD,
(5“F) (%, %oy -+, Kamar) = (=" (8f) (X, Xy -y Xomrr)
for fECTT(JT, V), n=1,
YD, %y 2y 7, Tamar) = (=1 B, %, %y o7, Fanar)
for fECT(JT, V), n=1.

Then 6%6*f=0 for all fEC"(Ji, V) by [15 Theorem 1], and we .define the nth
cohomology group H™(JF, V) of Ji as the quotient space zZ"(J57, V)/B"(];‘, V).
Let fEC"(J1, V). Define an #-linear mapping & of Jix X J{ (n times) into V as

g=f for f€C"(J, V), n=0,1,2,

g(xly ) xn) zf(xh Ty xﬂ) —f(xly Yy xn—s, xn—h xn—z; xn)
for fgcn(]b V): n_23’

then the mapping ¢: f—& is a linear mapping of C*"(J, V) into C"(Ji,V). Denote &
the coboundary operator for the elements of C"(J, V) and 6* the coboundary operator
for the elements of C"(Ji, V), then we have the following relations.

(6%2) (%, %) = (6/) (%, %) ' for fEC'(J, V),
*) (%, -, Knsz) = <5f> (%, -+, Fosra)— <5f) (%, "y Xnry Xpr1, %o,y Kcen)
for fEC"(J, V), n=1.

Hence, $(Z"(J4, V)OS Z*(JE, V) and ¢(B"(J4, V)OS B"(J5,V) and from this ¢ induces
a homomorphism ¢* of H"(J, V) into H"(Ji,V). Thus we obtain the following
theorem.

THEOREM 3.2. Let H*(J, V) be the nth cohomology group of a J.i.s. J: of type I
and let H*(JF, V) be the nth cohomology group of an associated Lie triple system I of T
Then, there exists a homomorphism of H"(J,, V) into H (5.

4. Cohomology group of Jordan triple systems of type II. Let Ju be a J.t.s. of
type II and let (4, 7) be a representation of Ju acting in a vector space V over &. An
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n-cochain is an z-linear mapping f of JuX X Jy (n times) into V such that

FCt, oy Hons, 2,3, 2) =F (%, -+, Xneg, 2, ¥, x) for n=>3.

Denote C"(Ju;, V') a vector space spanned by #-cochains, where we define C'(Jun, V)=V.
The coboundary operator is a linear mapping & of C"(Jy, V) into C***(Jy, V) defined
by the formulas: -

“.1)

4.2)

4.3)

“. 4

(4.5)

0 (2 %) = (2 (%, %) —2(%, ) f for fEC'(Jy, V),

6f)(x, %oy %) =2A(%s, %) f (%) (&, %) f(%)
+ A0, %) f (%) — F(<ax20.>)
for fEC1<]n, VD,

) (2, Loy %, %)
=2A0xy, %) (2, %) + (%, ) f(%, %)
+ 2020, %) f (0, %) — f (4, <xp2,%>)
for fEC*(Ju, V),
CTPICTE SRR )
= — 1) A ey %) B, %, **%, Bty Bt
— A Kariecry Xon) J U, %, + %, By Koty By Birein)
s Bt I, By By, i)
=t Mty B ) S By By * 5 Bty Tty Bt Do)
F2(Xom 1, Xon) (1, Xy ) Homey)
—A(Xansr, Xen) (s, Koy ) Hanty Xanmz, Xonesy Konoy)
—F(, %y Konmsy <o TonTom ) _
+ (%, Xy ) Famsty Bty Kamegy < Him1Don T 1) ]
+:Zj Gt Vb CIE N AN B (€ FE SR )Y (€N ETHE SN W,

n—=1 2n+1

Ig j§+1<_1>kf<x1, KXoy o0y Kooy, Koy -0, [xg;—lxzkxj], vy Xomer)
for fECZ"_1<]117 V); n=2, 31 Ty

GG, %, %oy -+, Xomrr) .
= (D" 2 n1, 2) S, Xy %oy ) Fonos, Kinsr)
=M s B SV Zos oy 5 Do Tty i, B 1)
+(Hon-1, Tons 1) (Y, 21, 2oy -+, Kimms, Xom)
—T(Kan1, Zons1) (Y, %1, %y -+, Zansy Kpmmsy Xom_s, o)
T2 Xonir, 2 ) F (D, %, %o, -+, Xomr)
—A(Xenr1, Zen) (Y, Xy Koy -+, Komesty Xomes, Komesy Xomos)
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"'f(}’, Xy, Xy 7y Xon—2, <x2n-1x2nx2n+1>>
+f(y, Xy, Xz 7 Xon—1y Xon—2, Xon—3y <x2n—1x2nx2n+1>>]
n—1
+k2 (=1 (AKX, Xor) — 2 Xty X)) (Y, X0, Xy oy Kotz Xty s Zon+1)
=1

n+1

n-—1 2
+k21 _%ﬂ(——l)"f(y, Xy, Xyt 3\Czk—-u J?"21:, Ty [xzk—1xzkxj], Tty x2n+1>
=1 J= :
for fEC2n<]H) V)) nzzy 31 e

where the sign ~ over a letter indicates that ‘this letter is to be omitted.
Then, using the same method as in §3 we obtain

THEOREM 4.1. For the operator 6 defined above, we have 86f =0 for every cochain j

An n-cochain f with 8f=0 is called an #-cocycle and a subspace of C"(Ju, V)
spanned by #n-cocycles is denoted by Z"(Ju, V). A cochain of the form 5f, where
fEC"*(J, V) is called an n-coboundary and a subspace of C"(Ju, V) spanned by #-
coboundaries is denoted by B"(Ju, V). By Theorem 4.1, B*(Ju, V) is a subspace of
Z"(Ju, V). The quotient space H*C s, V3=2"( I, V)/B*(Ju, V) is called the nth
cohomology group of Ju. : .

Let (L, R) be a representation of a J.t.s. J: of type I with representation space
V and let H*(J,, V). be the nth cohomology group of Ji. Then a Tepresentation Q, )
for an associated J.t.s. Ju of type II of Ji is induced from (L, R) and we have an #-
th cohomology group H (Ju, V). Define a linear mapping f—¢f of C"(J, V) into
Cm(] 11 V) by )

¢f=r v for fcC"(J,, V),n=0,1,2,

(¢f> th ) xn) = %‘f(xly Yy xn) - ‘%‘ f(xl: w0ty Xn—gy Xp—1y Xn, xn—z)

+ %’ f(xly Ty xn—3y xn, x,,_z, xﬂ—l)
for FEC™(J, V), n=>3,-
and define a linear mapping 8—¢& of C"(Ju, V) into C"(J,V) by

cg=g for gEC"(Ju, V), n=0,1,2,

(?g) (xl; Yy xn) :g<x11 ) xﬂ) +g<x17 Ty x""z’ x"’ x"—1>
for g€C"(Jy, V), n=3.

Then, ¢ and ¢ are inverse isomorphisms since both ¢$ and ¢y are identity mappings
and C"(J, V) = C"(Ju, V.

Denote 6.f a coboundary of fEC"(J, V) and denote 838 a coboundary of g€
C"(Ju, V), then we have by a direct calculation the following relations:

(511¢f) (2, 2,) = (6.) (%1, %) for fECOCJI, V),
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(311¢f) (xl, ) x7a+2>

=2 By, T =g B iy ) Ty Ty T, )
% O 5 i By Ty B Bnr)
for fEC™(J, V), n>1.
Conversely,
(6108 (%, %) = (6ug) (%, %) for 2€C°(Jy, V),

(5x50g> (%, o) Xpyn) = (6ug) (%, - "y Xnsz) + (6ug) (& =, Koty Forvs, Forr)
for g€C"(Ju, V), n>1,

From these relations ¢ maps Z"(J, V) onto Z"(Ju, V) and Z" T, V)= Z"(Ju, V).
Assume that f€B"(J,, V), n>>2, then f is the form o.f with f€C*2(J, V). We
have ¢f=6u4f and ¢ maps B"(J,V) onto B" (Jn, V), therefore B"(J, V) =
B"(J, V), n=>o0.

Thus we have the following theorem.

THEOREM 4.2. Let H"(J, V') be the nth cohomology group of a J.t.s. J, of type I
and let H"(J, V) be the nth cohomology group of an associated J.t.s. Ju of type II of J.
Then H"(Ju, V') is isomorphic to H”" (J, V).
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