ON A MODIFICATION OF SCHEFFÉ'S AND URA'S ANALYSIS FOR PAIRED COMPARISONS* ## Masahiko SUGIMURA (Received September 30, 1962) 1. Introduction. H. Scheffé¹⁾ and S. Ura²⁾ treated the analysis of variance of paired comparisons. In Scheffé's model, each judge judges only once one ordered pair of two brands, whence a number of judges are indispensably for us, and also, in his model, he includes into the error term the difference due to the individual variation among the judges. In laboratory experiments or in certain kinds of delicate taste testing experiments, it may happen that the paired comparison experiments must be achieved by several expert judges. And, in such cases, it is necessary for each judge to test all ordered pairs. Therefore, Scheffe's model seems to be inadequate for us. While, the aforementioned defects caused by the application of Scheffé's model in special kinds of experiments, are considerably eliminated in Ura's model. That is: (1) As each judge compares only once each of all the possible ordered pairs formed from m kinds of food, so are the numbers of judges equal to the numbers of the times of repetition for each ordered pair only necessary. (2) He introduces the term representing the differences among individual sensations of individual preferences as the interaction between foods and judges in his model. (3) Moreover, in his model, he concludes, into the error term, the order effect in Scheffé's model which means the difference due to order of presentation in the preference for food T_i over food T_j , and further he introduces the term of the individual variation for the order effect. In certain kinds of our taste testing experiments, it seems most likely to introduce the term of (2), and, in addition, the order effect in (3) in the case of Scheffé's model, while it seems unnecessary to introduce the term of the individual variation for the order effect in (3). Thus, hereafter, we shall adopt a modification of Scheffé's and Ura's models as described in section 3. 2. The Method of Experiment. Suppose there are m foods T_1, T_2, \dots, T_m , to be compared. All the 2M possible ordered pairs are formed, where $M = \binom{m}{2} = \frac{m(m-1)}{2}$, that is, ^{*}This work is supported in part by the Public Health Service Grant (RG-9470). where (T_i, T_j) means the ordered pair performed from two foods T_i , T_j . Then r judges compare once each of these pairs respectively and report the results in the 7-point scoring system, that is, in comparing of (T_i, T_j) in the order (i, j), if he prefers T_i to T_j strongly then his score is 3, if he prefers T_i to T_j moderately then his score is 2, if he prefers T_i to T_j slightly then his score is 1, if no preference then his score is 0, if he prefers T_j to T_i slightly then his score is -1, if he prefers T_j to T_i moderately then his score is -2, if he prefers T_j to T_i strongly then his score is -3. Each judge compares these 2M pairs in a random order. In order to diminish the weariness of their senses of taste, it is necessary to prepare suitably a fixed rest among the experiments. 3. Model of Data. Let us denote by x_{ijk} the score which the judge 0_k assigns on an ordered pair (T_i, T_j) . We assume the following mathematical model: (1) $$x_{ijk} = (\alpha_i + \alpha_{ik}) - (\alpha_j + \alpha_{jk}) + \gamma_{ij} + \delta'_{ij} + \delta_0 + \varepsilon_{ijk} \quad (x_{iik} = 0),$$ where the parameters have the following means respectively: α_i characterizes an object T_i and satisfies $$\sum_{i=1}^{m} \alpha_i = 0 \ (i=1, 2, \dots, m),$$ $lpha_{ik}$ is an individual difference of preference for an object T_i and satisfies $$\sum_{i=1}^{m} \alpha_{ik} = 0, \sum_{k=1}^{r} \alpha_{ik} = 0 \ (i=1, 2, \dots, m; k=1, 2, \dots, r),$$ au_{ij} represents a deviation from subtractivity and satisfies the relations $$\gamma_{i,j} = -\gamma_{ji}, \sum_{j=1}^{m} \gamma_{i,j} = 0, \ \gamma_{i,i} = 0 \ (i, j=1, 2, \dots, m),$$ δ_0 is an average order effect, that is, $$\delta_0 = \sum_j \sum_i \delta_{ij}/2M$$, $2\delta_{ij}$ is a difference due to order of presentation in the mean preference for T_i over T_j , and satisfies $$\delta_{ij}=\delta_{ji} \ (i,j=1,2,\cdots,m),$$ δ_{ij}^{\prime} is an deviation of δ_{ij} from the average order effect δ_0 , and satisfies $$\sum_{j}\sum_{i}\delta_{ij}^{\prime}=0,$$ ε_{ijk} is an observational error which distributes independently each other and normaly with the mean 0 and the variance $\sigma^2(i,j=1,2,\cdots,m;\ k=1,2,\cdots,r)$. 4. Estimation of Parameters. For simplicity, we use the following notations: $$x_{ij} = \sum_{k=1}^{m} x_{ijk}, \ x_{i\cdot k} = \sum_{j=1}^{m} x_{ijk}, \ x_{\cdot jk} = \sum_{i=1}^{m} x_{ijk},$$ (2) $$x_{i}..=\sum_{j=1}^{m}\sum_{k=1}^{r}x_{ijk},\ x_{\cdot j}.=\sum_{i=1}^{m}\sum_{k=1}^{r}x_{ijk},\ x_{\cdot ..}.=\sum_{i=1}^{m}\sum_{j=1}^{m}\sum_{k=1}^{r}x_{ijk}.$$ Using these notations, we can obtain the estimates of parameters as follows: $$\hat{\alpha}_{i} = \frac{1}{2mr} (x_{i}..-x_{.i}.) = \frac{1}{2} (\bar{x}_{i}..-\bar{x}_{.i}.),$$ $$\hat{\alpha}_{ik} = \frac{1}{2m} (x_{i\cdot k}-x_{.ik}) - \hat{\alpha}_{i} = \frac{1}{2} (\bar{x}_{i\cdot k}-\bar{x}_{.ik}) - \frac{1}{2} (\bar{x}_{i}..-\bar{x}_{.i}.),$$ $$\hat{\tau}_{ij} = \frac{1}{2r} (x_{ij}.-x_{ji}.) - (\hat{\alpha}_{i}-\hat{\alpha}_{j}) = \hat{\tau}_{ij} - (\hat{\alpha}_{i}-\hat{\alpha}_{j})$$ $$= \frac{1}{2} (\bar{x}_{ij}.-\bar{x}_{ji}.) - \left\{ \frac{1}{2} (\bar{x}_{i}..-\bar{x}_{.i}.) - \frac{1}{2} (\bar{x}_{j}..-\bar{x}_{.j}.) \right\},$$ where π_{ij} is a average preference for i over j that is averaged over the two orders, and $\pi_{ij} = -\pi_{ji}$, and $\hat{\pi}_{ij}$ is a estimate of π_{ij} , $$\hat{\delta}_{0} = \frac{1}{m(m-1)r} x... = \bar{x}...,$$ $$\hat{\delta}_{ij} = \frac{1}{2r} (x_{ij.} + x_{ji.}) = \frac{1}{2} (\bar{x}_{ij.} + \bar{x}_{ji.}),$$ $$\hat{\delta}'_{ij} = \frac{1}{2r} (x_{ij.} + x_{ji.}) - \frac{1}{m(m-1)r} x... = \frac{1}{2} (\bar{x}_{ij.} + \bar{x}_{ji.}) - \bar{x}...$$ $$= \hat{\delta}_{ij} - \hat{\delta}_{0},$$ where $$\bar{x}... = \frac{x...}{m(m-1)r}, \qquad \bar{x}_{ij.} = \frac{1}{r} \sum_{k=1}^{r} x_{ijk},$$ $$\bar{x}_{i\cdot k} = \frac{1}{m} \sum_{j=1}^{m} x_{ijk}, \qquad \bar{x}... = \frac{1}{mr} \sum_{i=1}^{m} \sum_{k=1}^{r} x_{ijk},$$ $$\bar{x}_{i...} = \frac{1}{mr} \sum_{j=1}^{m} \sum_{k=1}^{r} x_{ijk}, \qquad \bar{x}... = \frac{1}{mr} \sum_{i=1}^{m} \sum_{k=1}^{r} x_{ijk}.$$ 5. Analysis of Variance. The total sum of square S_t is divided into six components S_{α} , S_{α_k} , S_{γ} , S_{δ_0} , $S_{\delta'}$, S_{ϵ} , and these sum of squares are statistically independent, where they are respectively sum of squares due to main effects, interactions between main effects and individual preference, deviations from subtractivity, average order effect, deviations from average order effect, error. Each sum of square are computable as following: $$\begin{split} S_t &= \sum_{i=1}^m \sum_{j=1}^m \sum_{k=1}^r x_{ijk}^2 = \sum_i \sum_j \sum_k \left[\{ x_{ijk} - \left(\frac{\bar{x}_{i\cdot k} - \bar{x}_{\cdot ik}}{2} - \frac{\bar{x}_{i\cdot k} - \bar{x}_{\cdot i\cdot}}{2} \right) - \frac{\bar{x}_{i\cdot j\cdot}}{2} \right] \\ &- \frac{\bar{x}_{j\cdot k} - \bar{x}_{\cdot jk}}{2} + \frac{\bar{x}_{j\cdot k} - \bar{x}_{\cdot j\cdot}}{2} \right) - \bar{x}_{ij\cdot} \} + \left\{ \frac{\bar{x}_{ij\cdot k} - \bar{x}_{\cdot j\cdot}}{2} - \bar{x}_{\cdot \cdot \cdot} \right\} + \left\{ \bar{x}_{\cdot \cdot \cdot \cdot} - \bar{x}_{\cdot \cdot \cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} \right) - \left(\frac{\bar{x}_{j\cdot k} - \bar{x}_{\cdot jk}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\} \\ &+ \left\{ \frac{\bar{x}_{ij\cdot k} - \bar{x}_{\cdot ik}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\} + \left\{ \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\}^2 \\ &+ \left\{ \frac{\bar{x}_{ij\cdot \cdot} - \bar{x}_{ii\cdot}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\} + \left\{ \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right\} \right\}^2, \\ &+ \left\{ \frac{\bar{x}_{ij\cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\} + \left\{ \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right\} \right\}^2, \\ &+ \left\{ \frac{\bar{x}_{ij\cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} \right) - \left(\frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\}^2, \\ &+ \left\{ \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j\cdot}}{2} \right) \right\}^2, \\ &+ \left\{ \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \left(\frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot i\cdot}}{2} \right) \right\}^2, \\ &= \frac{1}{2r} \sum_{i < j} \sum_{j = 1}^{m} \sum_{k = 1}^{r} \left\{ \frac{\bar{x}_{i\cdot j} - \bar{x}_{ji\cdot}}{2} - \frac{1}{2mr} \sum_{i < j}^{r} \left(x_{i\cdot \cdot \cdot} - x_{\cdot i\cdot} \right)^2, \\ S_{\delta} - \sum_{i = 1}^{m} \sum_{j = 1}^{m} \sum_{k = 1}^{r} \left\{ \frac{\bar{x}_{i\cdot \cdot} - \bar{x}_{ji\cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot} - \bar{x}_{i\cdot \cdot}}{2} - \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{i\cdot \cdot}}}{$$ where S_δ is a sum of square due to the order effect for i over j) $$S_{e} = \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{r} \left[x_{ijk} - \frac{\bar{x}_{i\cdot k} - \bar{x}_{\cdot ik}}{2} + \frac{\bar{x}_{j\cdot k} - \bar{x}_{\cdot jk}}{2} + \frac{\bar{x}_{i\cdot \cdot \cdot} - \bar{x}_{\cdot i}}{2} - \frac{\bar{x}_{j\cdot \cdot \cdot} - \bar{x}_{\cdot j}}{2} - \bar{x}_{ij} \right]^{2}$$ $$= \sum_{i} \sum_{j} \sum_{k} \left[x_{ijk} - \frac{x_{i\cdot k} - x_{\cdot ik}}{2m} + \frac{x_{j\cdot k} - x_{\cdot jk}}{2m} + \frac{x_{i\cdot \cdot \cdot} - x_{\cdot i}}{2mr} - \frac{x_{j\cdot \cdot \cdot} - x_{\cdot j}}{2mr} - \frac{x_{ij\cdot \cdot}}{r} \right]^{2}$$ $$= S_{t} - (S_{\alpha} + S_{\gamma} + S_{\alpha_{k}} + S_{\delta}),$$ where summation $\sum_{i < j}'$ denotes the sum over all the possible ordered pairs (i, j), i < j. We show the analysis of variance based on our model in Table 1. Table 1. | Source | Sum of Squares | Degrees of Freedom | Mean Square | |--|---|--|---| | Main Effects | Sa | m-1 | $S_{\alpha}/(m-1)$ | | Main Effects ×
Judges | S_{α_k} | (m-1) (r-1) | $S_{\alpha_k}/(m-1)(r-1)$ | | Deviation from
Subtractivity | S_{γ} | $\frac{(m-1)(m-2)}{2}$ | $S_{\gamma}/\left(\frac{(m-1)(m-2)}{2}\right)$ | | Order Effects Average Order Effect Deviation from Average Order Effect | $S_{\delta} egin{bmatrix} S_{\delta_0} \ S_{\delta'} \end{bmatrix}$ | $\frac{m(m-1)}{2}$ $\begin{bmatrix} 1 \\ m^2 - m - 2 \\ 2 \end{bmatrix}$ | $S_{\delta} / \left(\frac{m(m-1)}{2} \right)$ $\begin{bmatrix} S_{\delta_0} \\ S_{\delta'} / \left(\frac{m^2 - m - 2}{2} \right) \end{bmatrix}$ | | Error | Se | $(m-1)^2(r-1)$ | | | Total | S_t | m(m-1)r | | | | | , | | 6. Numerical Example. The foods are four kinds of sausages made from some fish meat which contain respectively Ribotide and Monosodium Glutamate with the Table 2. Scores by Judges $0_1, \cdots, 0_6$ | | | | | | 5 5 | | | 1, , | 06 | | | | | | | |-------------------------------|-------------------------|---------------|--------------------------------|---------|---------|-------|-------|---------|---------|--------------------------|-------|-------|-------|-------|------| | j i | $T_1 T_2 T_3 T_4$ | $x \cdot j_1$ | j i | T_{I} | T_{i} | T | 3 T | $x.j_2$ | | i | T_1 | T_2 | T_3 | T_4 | x.j3 | | T_1 | * 3 1 -2 | 2 | T_1 | * | 1 | -1 | 1 | . 1 | | T_1 | * | 0 | -1 | -1 | -2 | | T_2 | 1 * -1 0 | 0 | T_2 | 0 | * | 1 | -2 | -1 | | T_2 | 1 | * | 1 | -1 | 1 | | T_3 | -1 -1 * 1 | -1 | T_3 | 0 | 2 | * | -1 | 1. | | T_3 | 1 | 1 | * | 0 | 2 | | T_4 | 0 2 1 * | 3 | T_4 | -2 | 3 | 0 | * | 1 | | T_4 | 2 | 2 | 0 | * | 4 | | $x_{i\cdot 1}$ | 0 4 1 -1 | 4 | $x_{i\cdot 2}$ | -2 | 6 | 0 | -2 | 2 | | x_{i-3} | 4 | 3 | 0 | -2 | 5 | | $x_{\cdot i_1}$ | 2 0 -1 3 | | $x_{\cdot i2}$ | 1 | -1 | 1 | 1 | | | $x_{\cdot i3}$ | -2 | 1 | 2 | 4 | | | $(x_{i\cdot 1}-x_{\cdot i1})$ | -2 4 2 -4 | | $(x_{i\cdot 2}-x_{\cdot i2})$ | -3 | 7 | -1 | -3 | | (x | $i \cdot 3 - x \cdot i3$ | 6 | 2 | -2 | -6 | | | ()2 | 4 16 4 16 | 40 | ()2 | 9 | 49 | 1 | .9 | 68 | | ()2 | 36. | 4 | 4 | 36 | 80 | | i | T_1 T_2 T_3 T_4 | | i | _ | | - | | | | | | | | | | | j | 11 12 13 14 | X.j4 | j | T_1 | T_2 | T_3 | T_4 | x.j5 | j | i | T_1 | T_2 | T_3 | T_4 | x.j6 | | T_1 | | -1 | T_1 | * | 1 | -1 | -2 | -2 | | T_1 | * | 1 | -1 | 0 | 0 | | T_2 | 1 * -1 -3 | -3 | T_2 | 1 | * | 0 | -1 | 0 | | T_2 | 0 | * | 1 | -1 | 0 | | T_3 | -1 2 * 1 | 2 | T_3 . | 1 | 1 | * | -1 | 1 | | T_3 | -2 | 0 | * | 1 | -1 | | T_4 | 0 1 1 * | 2 | T_4 | 2 | 2 | 1 | * | 5 | | T_4 | 1 | 2 | 2 | * | 5 | | <i>x</i> _{i·4} | 0 4 -1 -3 | 0 | <i>x</i> _{<i>i</i>·5} | 4 | 4 | 0 | -4 | 4 | , | $x_{i \cdot 6}$ | -1 | 3 | 2 | 0 | 4 | | x.i4 | -1 -3 2 2 | - | x. _{i5} | -2 | 0 | 1 | 5 | | | <i>x</i> . <i>i</i> 6 | 0 | 0 | -1 | 5 | | | $(x_{i\cdot 4}-x\cdot_{i4})$ | 1 7 -3 -5 | | $(x_{i\cdot 5}-x_{\cdot i5})$ | 6 | 4 | -1 | -9 | | (x_i) | $-6-x{i6}$ | -1 | 3 | 3 | -5 | | | ()2 | 1 49 9 25 | 84 | ()2 | 36 - | 16 | 1 | 81. | 134 | (|)2 | 1 | 9 | 9 | 25 | 44 | concentration combination ($\alpha\%$, $\beta\%$), ($3\alpha\%$, $\beta\%$), ($5\alpha\%$, $\beta\%$), (0, 1.5 $\beta\%$), and let us denote by the signs T_1 , T_2 , T_3 , T_4 respectively for these four foods. The judges are six expert panels 0_1 , 0_2 ,..., 0_6 which were chosen by means of the method of reference (3) from the students of Kumamoto Women's University. The data in Table 2 were obtained in a taste testing experiment performed by the above judges 0_1 , 0_2 , ..., 0_6 (r=6) for T_1 , T_2 , T_3 , T_4 (m=4). Table 3. Sum of Scores | i | T_1 | T_2 | T_3 | T_4 | х. ј. | |-----------------|-------|-------|-------|-------|-------| | T _{1.} | * | 7 | -4 | -5 | -2 | | T_2 | 4 | * | 1 | -8 | -3 | | T_3 | -2 | 5 | * | 1 | 4 | | T_4 | 3 | 12 | 5 | * | 20 | | x_i | 5 | 24 | 2 | -12 | 19 | | x.i. | -2 | -3 | 4 | .20 | | | $(x_ixi.)$ | 7 | 27 | -2 | -32 | | | ()2 | 49 | 729 | 4 | 1,024 | 1,806 | Table 4. $\hat{\alpha}_i$ and $\hat{\alpha}_{ik}$ | | | | Table 4. | | | | | |------------------|---|---------------------------------------|---|---|---------------------------------------|---------------------------------------|-------------------| | i | $\hat{\alpha}_i = \frac{x_i \dots - x_{i}}{48}$ | $\frac{x_{i\cdot 1}-x_{\cdot i1}}{8}$ | \hat{lpha}_{i1} | $\frac{x_{i\cdot 2} - x_{\cdot i2}}{8}$ | $\hat{m{a}}_{i2}$. | $\frac{x_{i\cdot 3}-x_{\cdot i3}}{8}$ | \hat{lpha}_{i3} | | 1 | . 1458 | 2500
. 5000 | 3958
0625 | 3750
.8750 | 5208
.3125 | .7500
.2500 | .6042
3125 | | 3 | 0417
6667 | . 2500 | . 2917 | 1250
3750 | 0833
.2917 | 2500
7500 | 2083
0833 | | \overline{i} | $\frac{x_{i\cdot 4} - x_{\cdot i4}}{8}$ | \hat{lpha}_{i4} | $\frac{x_{i\cdot 5} - x_{\cdot i5}}{8}$ | \hat{lpha}_{i5} | $\frac{x_{i\cdot 6}-x_{\cdot i6}}{8}$ | \hat{lpha}_{i6} | - | | 1
2
3
4 | .1250
.8750
—.3750
—.6250 | 0208
.3125
3333
. 0417 | .7500
.5000
— .1250
—1.1250 | . 6042
0625
0833
4583 | 1250
.3750
.3750
6250 | 2708
1875
. 4167
. 0417 | | Table 5. $\hat{\gamma}_{ij}$ | | | $(x_{ij}$ | $-x_{ji}.)$ | | | $\frac{(x_{ij}$ | | $(x_{ij}x_{ji}.)^2$ | | | | | |---|---|-----------|-------------|----|---|-----------------|--------|---------------------|---|---|----|-----| | j | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | 1 | * | | 2 | 8 | * | — . 2500 | . 1667 | . 6667 | * | 9 | 4 | 64 | | 2 | * | * | 4 | 20 | * | * | . 3333 | 1.6667 | * | * | 16 | 400 | | 3 | * | * | * | 4 | * | * | * | .3333 | * | * | * | 16 | | 4 | * | * | * | * | * | * | * | * | * | * | * | * | | | | \hat{lpha}_i- | âj | | $\hat{\gamma}_{ij} = \frac{x_{ij} - x_{ji}}{12} - (\hat{\alpha}_i - \hat{\alpha}_j)$ | | | | | | | |-------|---|-----------------|--------|--------|--|--------|------|--------------|--|--|--| | i j | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | | | 1 | * | 4167 | . 1875 | .8125 | * | . 1667 | 0208 | 1458 | | | | | 2 | * | * | .6042 | 1.2292 | * | * | 2709 | . 4375 | | | | | 3 | * | * | * | . 6250 | * | * | * | 2917 | | | | | 4 | * | * | * | * | * | * | * | * | | | | Table 6. $\hat{\delta}_{ij}$, $\hat{\delta}_{0}$, $\hat{\delta}'_{ij}$ | | (. | x_{ij} . – | $+x_{ji}$ | .) | | $\hat{\delta}_{ij} = (x_{ij} + x_{ji})/12$ | | | | $(x_{ij}.+x_{ji}.)^2$ | | | | $\hat{\delta}'_{ij} = \hat{\delta}_{ij} - \hat{\delta}_0$ | | | | | |-------|----|--------------|-----------|----|-----|--|-------|-------|---|-----------------------|----|----|---|---|--------|--------|--|--| | i j | 1 | 2 | 3 | 4 | . 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | | | | 1 | * | 11 | -6 | -2 | * | .9167 | 5000 | 1667 | * | 121 | 36 | 4 | * | . 6528 | 7639 | 4306 | | | | 2 | * | * | 6 | 4 | * | * | .5000 | .3333 | * | * | 36 | 16 | * | * | . 2361 | . 0694 | | | | 3 , | * | * | * | 6 | * | * | * | .5000 | * | * | * | 36 | * | * | * | . 2361 | | | | 4 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | | | $$\hat{\delta}_0 = \frac{x...}{72} = \frac{19}{72} = .2639$$ Table 7. Analysis of Variance | | Modification | | | | | Ura's Model | | | | | | | |--|---|----------------|---------------|--------|--|--|----------------|---------------|--------|--|--|--| | | | | , | | OTA S MIOUEI | | | | | | | | | Source | S. of S. | D.
of
F. | M. S. | Result | Source | S. of S. | D.
of
F. | M. S. | Result | | | | | Main Effects | $S_{\alpha} = 37.63$ | 3 | 12.54 | ** | Main Effects | $S_{\alpha} = 37.63$ | 3 | 12.54 | * * | | | | | Main Effects×
Judges | $S_{\alpha_k} = 18.62$ | 15 | 1.24 | - | Main Effects×
Judges | $S_{\alpha_k}=18.62$ | 15 | 1.24 | | | | | | Deviation from
Subtractivity | $S_{\gamma} = 4.79$ | 3 | 1.60 | _ | Deviation from
Subtractivity | $S_{\gamma} = 4.79$ | 3 | 1.60 | · _ | | | | | Order Effects | $S_{\delta} = 20.75$ | 6 | 3.46 | * * | Order Effects×
Judges | $S_{\delta} = 6.42$ | 6 | 1.07 | | | | | | Average Order
Effect
Deviation from
Average Order
Effect | $S_{\delta_0} = 5.01$ $S_{\delta'} = 15.74$ | | [5.01
3.15 | * | Average Order Effect Deviation from Average Order Effect | $S_{\delta_0} = 5.01$ $S_{\delta'} = 1.41$ | | [5.01
0.28 | | | | | | Error | $S_e = 43.21$ | 45 | 0.96 | _ | Error | $S_e = 57.54$ | 45 | 1.28 | _ | | | | | Total | $S_t = 125$ | 72 | | . — | Total | $S_t = 125$ | 72 | _ | _ | | | | Conclusion: (1) The null hypothesis H: $\alpha_i=0$ (for all i) can be rejected with $\alpha=0.01$ in both analysis of variance based on each model. (2) In the analysis of variance based on the modification model, the hypothesis H: average order effect $\delta_0=0$ can be rejected and the hypothesis that all δ_{ij} are equal each other can be also rejected (α =0.05). (3) In the analysis of variance based on Ura's model, the null hypothesis H: δ_0 =0 can be not rejected and moreover the significant difference between individual order effects δ_k is not recognized, because the value of the error sum of square is larger than the value of the case of the modification. Whence it seems that we could explain more faithfully this kind of the experimental data by means of the modification model. 7. Some Remarks. (1) In our model, we introduce four terms representing the following effects respectively: (a) the main effect, (b) the deviation from subtractivity for i over j, (c) the individual variation of the main effect, (d) the order effect for i over j. While, in our model, as the error term, we treat the following variations: (a') the individual variation of the deviation from subtractivity, (b') the individual variation of the order effect, (c') the individual preference of each judge, (d') the other experimental error. (2) Taking into consideration of the observed scores, we are unnecessary to adopt the 7-point scoring system essentially in numerical example of section 6. Therefore, we would like here to adopt the 5-point scoring system. Moreover, in the above example, we have not tried to test the hypothesis of the homogeneity of variance with respect to the data. In conclusion, the author wishes to express his heartiest thanks to Doctor A. Kudo for his kind advice and valuable suggestions in connection with this work. Department of Mathematics and Physics, Kumamoto Women's University ## Reference - 1) H. Scheffé, "An Analysis of Variance for Paired Comparisons," J. Amer. Statist. Assoc., 47, 381 (1952). - 2) S. Ura, "Statistical Methods in Sensory Tests, Chapter 3, A Modification of Scheffé's Analysis of Paired Comparisons," Ph. D. Dissertation (1961). - 3) S. Kinoshita, "Process of Making Most Excellent Soup-stock in Special Consideration of Taste Examination. I," J. Kumamoto Women's Univ., 14, 15 (1962).