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ON THE THEORY OF MALCEV ALGEBRAS
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Introduction. A Malcev algebra or a Moufang-Lie algebra is a non-associative algebra
satisfying #?=0 and (xy)(zx)+ (xy-2)x+ (yz-2)x+ (zx-x)y=0. Malcev first discussed this
algebra in the study of Moufang-Lie loops [5]. Any associative algebra is a Lie
algebra relative to a multiplication ab-ba. Any alternative algebra is a Malcev algebra
relative to a multiplication ab-ba and the notion of Malcev algebra is more general
than that of Lie algebra. It was shown in a previous note [12] that a Malcev algebra
is a class of so-called general Lie triple systems.

The purpose of the present paper is to study certain properties of Malcev algebras
and their representations. The methods employed here are to use a trilinear multiplica-
tion [xyzl=x(yz) —y(xz)+ (xy)z with the original multiplication xy and to construct a Lie
algebra M@®T(M) from the given Malcev algebra M, where ©®(M) is a Lie algebra
generated by the derivations of the form 3(L.; L, ]+ Lzy,, L, being the left multiplica-
tion by x in M. '

In§1, it is shown that a Malcev algebra is characterized as a subspace satisfying
some conditions of Lie algebra. In§2, the concepts of solvability, radical, and semi-
simplicity are introduced and it is shown that the solvability and semi-simplicify of M
induce the same properties for the Lie algebra M@®T(M). '

We recall that a representation of a Lie algebra 2 into a vector space V is a
homomorphism' of € into the Lie algebra of linear transformations of V. For every x
in € the mapping x—ad x is a representation of @ with @ as a representation space.
But for a Malcev algebra the mapping of this type is not necessary a representation in
the sense stated above. Thus, in §§ 3 and 7 we generalize the concept of representa-
tion in three ways for a Malcev algebra, i.e. a generalized representation, a weak
representation, and a representation which includes the representation in the above
sense as a special case. A representation is a weak representation and a weak
representation induces a generalized representation. The representation has been
introduced by Eilenberg in [2]. Let p be a weak representation of a Malcev algebra
M and P be a generalized representation of M. If M is solvable then the Lie algebras

generated by o(M) and P(M, M) are solvable. § 4 is concerned with the cohomology

ring of Malcev algebra and in §§ 5, 6, and 7 we consider the cohomology groups which
are associated with three representations by an analogous way to the method of
Chevalley and Eilenberg [1]. Sagle showed in [6] that a seven-dimensional simple
Malcev ‘algebra C* which is not a Lie algebra is obtained from the Cayley-Dickson
algebra. In§8, the multiplication in a Lie algebra C*®®(C*) constructed from C*
is calculated as an application of § 1. Throughout this paper, we assume that the
base field is of characteristic zero and the algebras or vector spaces are to be finite-

1) Numbers in brackets refer to the references at the end of the paper.
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dimensional. The author is indebted for Sagle’s work [61, without it this paper would
not appear.

1. A characterization of Malcev algebras. Let @ be a Lie algebra over a field @
with multiplication [x, y1. Assume that @ is a vector space direct sum of a subspace
T and a subalgebra © such that [T, ®J<T. Then, any element x of Q is uniquely
expressed as xr+xs, where xr and xp denote the T— and ®-component of x. If we put

xy =[x, ylr,
[xyz] =[[x, ylo, 2]

for x, ¥, z in T, then we have the following relations:

(1D x2=0,
(1.2) [xxy]l =0,
(1.3 Cxyz]-+ [yzad+ Lzxyl+ (wp)z+ (y2)x +(220)y=0,
(1.4) [xy, z, wl+lyz, x, wltlzx, ¥, wl=0,
(1.5) Cx, v, 2zwl=[xyzJw+zlxyw],
1.6 Cxy [zow]1=[[xyz] vwl~+[z [xyv] wl+ Czo Lxyw]].

A vector space T over @ with bilinear composition xy and trilinear composition
[xyz] is called a general Lie triple system (gemeral L.t. s.) if these compositions satisfy
(1.1, (1.2),-, (1.6) [10]. Any Lie algebra is a general L.t.s. relative to xy=[x, y1
and [xyzl=[[x, y1z]. If [xyz]=0 for all x, y, z in T, the axioms stated above reduce to
that of Lie algebras and if xy=0 for all %,y in T, the axioms reduce to that of Lie
triple systems. In this sense, the general L.t.s. is a more general concept than those
of the Lie algebras and Lie triple systems.

A linear mapping D of a general L.t.s. T is called a derivation of T if D(xy)=
(Dx)y+x(Dy) and D([xyz])=[(Dx)yz]+[x(Dy)z]+[xy(Dz)] for all x, 9,z in T. (1.5
and (1.6) imply that 33 D(x; p): 2= [x:y:z] is a derivation of T. The set of all
derivations of T forms a Lie algébra ® under the multiplication [Dj, D:]J=D:1D;—D-D:
and the set of all derivations of the form X3 D(x;, y;) forms an ideal D(T) of ® since
D, D(x, ¥)1=D(Dx, y)+D(x, Dy) for every derivation D. In particular, we have
1.7 [D(x, ), D(z, w)1=D([xyzl, w)+D(z, Lxyw]).

Let T be a general L.t.s. and let & be a vector space direct sum TAD(T). If we
define a multiplication in 2 by

[x+2 D(ys z:), u+2 D(vs, w;)]
= xut+3 [yizadl —3 Doawaxd+ D(x, w)+ 33 [D(Ys z:), D(vj, ws)]
7 1 ,J
for «x, u, ¥s, 2 Vi, w; in T, then by (1.1), (1.2),---,(1.6) & becomes a Lie algebra relative
to this multiplication and satisfies [®(T), ®(TH1 <= T(T) and [T, 2(T)1<T. Therefore,

a structure of a subspace T of the Lie algebra 2 such that @ =T@® (vector space direct
sum) and satisfying [®, IS T, [T, L] C T is characterized by (1.1),-, (1.6).
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REMARK 1.1. In the Lie algebra Q=T@D(T) constructed out of the given general
L.tes. T, 3 D(x; 3:)=0 is defined by 33 [x:9:2]=0 for all 2€7. This means that
D(T) does r;ot contain a non-zero ideal oflﬁ. Thus, assume a Lie algebra Q is a vector
space direct sum MEN such that [P, NISIM and [, NISN, then that N does not
contain a non-zero ideal of Q is equivalent to say that [, M1=(0) for #ER implies
n=0. '

From (1.5), by using [12, Theorem 1.1] we have the following

THEOREM 1.1. For all elements x,y, z in a general L.1.s. assume a relation
1.8) _ Lxyz]l=x(yz) —y(x2)+ (xy)z.
Then, we have the ideniity
(1.9 (xy)(zx)+ (xy-2)x+ (yz- 2)x+ (2x- 2)y=0.

A non-associative algebra M over @ with a binary composition xy is called a Malcev
algebra or a Moufang-Lie algebra if it satisfies (1.1) and (1.9). Then, from Theorem
1.1 a general L.t.s. satisfying (1.8) has a structure of Malcev algebra relative to xy.
Conversely, in a Malcev algebra M with a composition xy if we define a trilinear

" multiplication [xyz] by (1.8), then M is a general L.t.s. relative to xy and [xyz] (12,
Theorem 2.1]. We call a general L.t.s. derived from M by using (1.8) the general
L.t.s. associated with M. A linear transformation D of a Malcev algebra M is a
derivation if D(xy)=(Dx)y+x(Dy) for all x,y in M. Then (1.5) says D(x, y): z—[xyz]
=x(yz)—y(xz)+ (xy)z is a derivation of M and the Lie algebra ©(M) generated by all

- derivations of the form 33 D(xi, 35) is an ideal of the derivation algebra of M. Any
derivation of M is a derizvation of the general L.t.s. associated with M.

Summarizing above results, we have the following characterization for Malcev
algebras.

THEOREM 1.2.2 For any Malcev algebra M over ©, there exists a Lie algebra  over
O such that 2 is a vector space divect sum of M and a subalgebra ¥ satisfying [M, D]1< M.
The product xy in M is an M-component [x, y],, of a product [x,y] in  and it holds:

(1.10) CLx, ¥1g, 21=L%, [y, 21,15 — Ly, L%, 215,15, +LLx, y14, 215,

for all x, v,z in M. Conversely, suppose that M is a subspace of a Lie algebra L such that
R is expressed as a vector space divect sum of M and a subalgebra ¥ satisfying [M, IS M
and (1.10). Define a product xy in M by [x, y1,, then M is a Malcev algebra with respect
to this product.

We note that, by the Jacobi identity, (1.10) is equivalent to:
(1.1D 200, ¥,y 21, =112, 21g, y1+Lx, Ly, 2151

for all x, y, z in M.

2) This theorem holds if the characteristic of @ is not 2 or 3.
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 REMARK 1.2. The above construction of a Lie algebra from the given general
L.t.s.. T can be slightly generalized. Let % be a Lie algebra formed from all deriva-
tions of T and let @ be a vector space direct sum TPD. A multiplication in & is
defined by

(1 12) [x1+D1, X2+ D2]='x1x2+ D1(xz)—D2(xl)+D(xh x2)+ [Dl, Dz]

for x£T, DD, i=1,2, then & is a Lie algebra such that [2, RISD, [T, 2]1<T and
xy=[x, ¥1z.

We recall some definitions and results on the derivations of Malcev algebra M.
Let L. be the left multiplication by x in M. 1f we put 4(x, )=[Ls Lyl—Lay, then
ACx, Yz+ (xy)z+ (y2)x+ (22)y=0. A J-nucleus of M is defined as the set N={z€ M:
A(x, ¥)z=0 for all x, yE M}, then N is a characteristic ideal of M. Let L(M) be the
vector space spanned by the set of all left multiplications of M. A subalgebra M)
of g((M), the Lie algebra of linear transformations of M, generated by L(M) is called
the Lie transformation algebra of M. From the relation [[Ls Lyl L3+ [Lay, L:1=Lizy=
it follows QM)=L(M)+LL(M), L(M)1. A derivation D of M is said to be inner
provided DEQ(M). In [6] Sagle proved that a derivation D of M is inner if and only
if D is of the form L,+3 D(x;9:), where D(x, 9)=[L, L+ Ly, nEN, J-nucleus, %
y.£M. The set of all inne; derivations forms an ideal of the derivation algebra of M
since the J-nucleus is a characteristic ideal of M.

Theorem 2.1 in [12] holds also for the inner derivation algebra. Let a Malcev
algebra M be given. Let ®(M) be the Lie algebra generated by all derivations of the
form 33 D(x;, v:) and let (M) and D be the inner derivation algebra and derivation
algebré respectively. If we put Q=MED(M), Q=MOX(M), and Q=M®T, then these
vector spaces form the Lie algebras under multiplication (1.12). We see easily that
Q and Q are ideals of Q. Thus we have

THEOREM 1.3. For a Malcev algebra M let (M) be the inner derivation algebra of
M. Put @=M®D(M) (vector space direct sum) and define a product in & by

[x+LZ+Z D(ys, Z:), u+Lm+Z D(v;, wi)]
— gt lutxm+3 [yizad—3 avixd+ La+ Dz, )+ LD 2z, D(vs wadl,
K3 k3 1.7

where I, mE N and n denotes Im +23] (yizm—2%3 (vawo)l, then Q is a Lie algebra relative
to this product. The original producé xy in M ;s the M-component of product [x,y] n
T and [M, DISM, (D, 21SD. Let (M) and D be the Lie algebra generated by all
derivations of the form 3 D(xi, ¥ and derivation algebra respectively, then the Lie algebras
MOD(M) and Q are thé ideals of Lie algebra M®R.

“The above construction of a Lie algebra Q=M®@R(M) from the given Malcev
algebra M is called the standard construction. Its meaning will be explained -by the
following examples.

The standard construction of a Lie algebra from the given Malcev algebra M is
not necessary the most general among the Lie algebras Q such that @ is a direct sum
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M®D and satisfying (+): [D, DIS®, [M,DISM and zy=[x, 3], for x, yeM. For
example, let M be a 2-dimensional abelian Malcev alzebra, then Q=MPD(M)=M is
a 2-dimensional abelian Lie algebra. Let & be a Lie algebra with base Xj, X, X, in
which a multiplication is defined by [Xi, X,1=X;, [Xi, Xs1=X1, [ X5, X;1=X.. Denote M’
a subspace of & spanned by X; and X,, then Q=M'+0X;. Define a new multiplication
in M' by X:X;=[Xs, X1y, 1,7=1,2, then M’ is isomorphic to M and & is a 3-dimensional
simple Lie algebra satisfying the property ().

Next, if M is a simple Malcev algebra with base X;, X,, X; such that XiXo=X,,
X Xs=—X;, XoXs=X;, then Q=M®PD(M) is a 6-dimensional semi-simple Lie algebra.
Let ¢ be a Lie algebra with base Xj, Xs, Xs;, X, in which a multiplication is defined

by [Xi, X;1= X», [ Xy, Xsl=—X,, [ X, Xi]= o (X, Xol=X—Xi, [ X, X1=X,, [ X5, Xil=—X,,

0 0
(e.g. Xo=x7_- 8x’ Xo=x7- oy Xa—ydx, Xi= ygy—) If we put M'=0X,+0X,+0X; and define

a product X;X; in M’ by [Xl,X]M, then M’ is a Malcev algebra isomorphic to M.
The Lie algebra & satisfies the property () and is not semi-simple.

By using [12, Theorem 1.1] we obtain another proof of Malcev’s result concerning
a commutator algebra of the alternative algebra, which is a non-associative algebra
defined by x(yy)=(xy)y and (xx)y=x(xy).

THEOREM 1.4. (Malcev) Any alternative algebra A with multiplication xy is a Malcev
algebra relative to [x, yl=xy—yx.

PROOF. Let L. and R, denote the mappings z—xz and z-zx, respectively, for all z
in A. From [8, (12)], 2(L., L,J+2[ L., R,1J+2[R., R,] is a derivation of A, hence of a
commutator algebra of A. If we put A,=L,—R,, then [, 2]+ Aey=2[Ls, Ly]1+2[ L., Ry
+2[R., R,], hence [xy[z,wll=[[xyzl, wl+[z [xywl], where [xyzl=[x[y,2z]1]1—[y[x, 211+
[[x,v]z]. Therefore, the theorem is proved from [12, Theorem 1.1]. A Malcev algebra
derived from an alternative algebra. A by Theorem 1.4 is called to be associated with
A. ' _

The following diagram shows the relations among certain classes of non-associative
algebras®, where

3) (i) An alternative algebra is a (special) Jordan algebra relative to ad--ba [8].
(ii) An associative (alternative) algebra is a Lie (Malcev) algebra relative to ad—ba.
(iii) A Jordan algebra is a Jordan triple system of type I (of type II) relative to x(yz)

(Ex2)— 2y +3 2y [3; 111

(iv) A Jordan triple system of type I with multiplication {xyz} is that of type II relative
to %{xyz}—%{yzx} —i—%{zxy} [3; 111.

(iv)’ A Jordan triple system of type II with multiplication <xyz> is that of type I relative
to <zyz>+<xzy> [3; 111

(v) A Jordan triple system of type II with multiplication <xyz> is a Lie triple system
relative to <xyz>—<yxz> [3; 11]?

(vi) A Lie algebra with multiplication [#,y] is a Lie triple system relative to [[x,yJ2] [3].

(vii) A Lie triple system 7 with multiplication [xyz] is a general Lie triple system by
defining xy=0 for all x,y in 7.
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- A=B means B is a more generalized concept than A,
A—B means A has the structure of B.

Binary system i Ternary system

Associative algebra

‘ Jordan triple system of type I

/ Jordan algebra l
\Jordan triple system of type II

Alternative algebra l

3 Lie algebra ____——> Lie triple system

Malcev algebra
‘ B General Lie triple system

2. Solvability.? Let A, B and C be the subspaces of a Malcev algebra M. A-+B
denotes the subspace spanned by A and B. AB and [A B C] means, respectively, the
subspaces of M spanned by all elements of the forms xy and [xyzl=x(yz)—y(x2)+ (xy)z,
where x€EA, yCB, z6C. 1f A and B are ideals of M, then ANB and A+B are ideals of
M, but AB is not necessary so [6, Example 3.4]. We have the following lemma, which
is fundamental in the sequel.

LEMMA 2.1. Let A and B be 1he ideals of a Malcev algebra M, then AB+[IM A B]
+[M B A1 is an ideal of M.

PROOF. An identity 2(xy)z-+[zxyl—[zyx1=0in M implies M(AB)S[M A B1+LM B Al.
Since z—[xyz] is a derivation of M, we have x[yzwl=Lyz(xw)]1—Lyzxlw for every
x, yEM, z€A, wEB, hence MLM A BIS[M A B1+AB. Similarly MCM BAISIM B A1+ AB
and the lemma is proved. .

Let A be an ideal of M. For an integer k=0 we define inductively A® by A®
=A, AOD=AA+[M A A], AB=AG-DAG=DL[ N A®-DA*-D],  Since AP =(A*- DD by
Lemma 2.1, A® is an ideal of M. A'is called to be solvable in M provided A™=(0)
for some integer #>0. Any ideal of abelian Malcev algebra M is solvable in M.

4) For the proofs of the existence of radical, the relations between the properties of M and
Lie algebra M@D(M) in this section, and the relations between the properties of M and a weak
(or generalized) representation of M in the next section, we follow the method of Lister [4, II].
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Let ® be a Lie algebra with multiplication [x, y] and let A be a (Lie) solvable
ideal of 2 Denote the derived subalgebra of Lie algebra A by A™), k=0,1,2,---. Since
[xyz]l=2[[x,y1z], AW=[A, AJ+[RAAICSTA, A1=A". Assume ADZA™, then A*®+DC
[AM, ABII4IQ, AMIAMICLAM, A®]=A%+1, hence, A is (Malcev) solvable in the
Malcev algebra 2. Conversely, suppose A is (Ma'lc'_'e'vn) solvable in 2. Since AMRCA®>
by definition, A is a (Lie) solvable ideal of Q

PROPOSITION 2.1. Let Q be the Lie algebra MOTD(M) (standard construction) and let
N be a solvable ideal of Q, then N, is a solvable ideal in M.

PROOF. MR, =L[M, R,1,,S[M, R1,,=R,,, hence %,, is an ideal of M. RNy =INR,,,
o 1y SN, RI=N"Y, and [MR,N,1=L[LM, R, Jown, NpISIIM, RIRISIR, NI=R", hence
Ny PSR, Assume R, PSR, then similarly R, ** DSREY therefore R, SRH for
any integer k=0, from this 9, ™=(0) for some integer » and the proposition is proved.

LEMMA 2.2. Let A and B be solvable ideals in a Malcev algebra M, then A-+B is so.

PROOF. (A+B)®=(A+B)(A+B)+[M A+B A+BICAA+BB+[M A AJ+[M B B]
+ANBSA®W+B®Y+ANB. Assume that (A+B)®CA®LB® L ANB, then (A-+B)*+vC
ABABD L BOB® LM A®D A®I+[M BRB®]1+ ANBS A%+Y+ B*+D L ANB. Hence (A+B)®
SA®+B®+ANB for each integer %, and there exists an integer # such that (A+B)™
SANB, from this (A+B)®*2=((A+B)™)WS(ANB)PZA®=(0) for some integer I,
therefore A+ B is solvable in M. ,

From Lemma 2.2 it follows that in a finite-dimensional Malcev algebra M there
exists an unique maximal solvable ideal. We call this maximal solvable ideal the
radical of M. A Malcev algebra M is called semi-simple if the radical of M is (0). If
R is the radical of M, then M/R is semi- sxmple Let S be an ideal of M such that
M/S is semi-simple;-then S2R. T

THEOREM 2.1. Let Q be a Lie algebra M@A,(M) (standard construction). Denote by
M® and Q¥ the derived subalgebras of order k of M and Q respectively, then

k-1
S(Zk—l) g-; M(k)_i__z D(M(i)’ M(Zk—Z—’i))’
=0

@.1
Qe < M(k)+k§ D(M®, Mk-1-0),

=0

Hence, if M is solvable, then 2 is a solvable Lie algebra.

PROOF. QW=[Q, QICMM+D(M, M)+[M M MI1+LD(M, M), D(M, M)]gM“H—,
D(M, M) by (1.7). Similarly S®SM®+D(M, M®). Suppose that the theorem has
been proved in case 2k—1. Then,

(Zk)/'[M(k) M(k):H_Z [M(‘L)M(Zk 2— z)M(L):H_Z E [D(M(z) M Cek—2- z)) D(M(J) M@E-2- J))]

=0 j=0
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Now, 0<i<k-1, so 2k=2-i=k-1, hence [M® MCeE-2-D M@ISIM ME-D)fE-DIC M@, By
the skew-symmetry of the product [D(x, ¥), D(u, v)]1 we can assume 1<j.
[D(M(i), M(zk-z—i)), D(M(J:), M(zk—z—j))]
CD(IM® M@—2=d M@], Mek-2=-DY+ D(MP, [M® M @k=2-D | [k-2-DT)
SD(CM MP M@], MC@E-2=DY+ D(MD, [M M®-2=D M@k-2-DT)
CD(M@+D, M@-2-0) 4+ D(MP, MCE=1-9),

Hence,
2(2/6);M(L)M(L) + D(M(k)’ M(k)) + M(k) _I_kél D(M(L), M(Zk— 1—13))
=0
SM® 45 DOM®, Me=1D),
=0

Assume the formula has been proved in case of 2k, then in case 2k+1 the formula is
proved in a similar fashion and this theorem is proved.

COROLLARY. Let M be a solvable Malcev algebra and let D(M) be the subalgebra of
o((M) generated by all derivations of the form 23 [La; Lyd+ Lay,, where Lz is the left
multiplication by x. Then D(M) is a solvable Lie algebra.

THEOREM 2.2. Let M be a semi-simple Malcev algebra, then Q=M®PD(M) (standard
construction) is the semi-simple Lie algebra. I

PROOF. Denote R the radical of , then R=R,DNaocn (vector space direcf sum).
By Proposition 2.1 %, is a solvable ideal in M hence %,,=(0) and R=Nowun- We show
next Rown=C_0). [Reun, MI=[R, MISH and the construction of & implies [Rowun, MiEM
hence [Roun, MISRNM=RounNM=(0), i.e. the elements of Rown trivialy operate on
M, so Rsun=(0) and € is a semi-simple Lie algebra.

THEOREM 2.3.9 If a Malcev algebra M is semi-simple, then every derivation Dof M
s inmer.

PROOF. Put Q=MPD(M) (s’ééndard construction). The element of 2 is of the
form x+33 D(¥:, 2, %, i, M. By using that (M) is an ideal of the derivation algebra
of M, we define a linear mapping D of Q as follows:

D(x+3 D(9i, 2))=D(@+3 [D, D(3:, 2.

Then D(M)YSM and D(@MMSD(M) since [D, D(y, )1=D(Dy, )+ D(y, D). It is
easy to see that D is an derivation of @ From Theorem 2.2 Q is a semi-simple Lie
algebra, hence every derivation of Q is inner, so there exists [ in @ such that D= ad I.
Put I=a+3 D(bs, ¢:;). For arbitrary x€M 13(x)=ax+D(a, )+ [hicix], hence D(a,x)
=0 which {mplies [axyl=0 for all x,y€ M and D(x)=(La+Zi} 1D(bi, c))(x). We show

5) In [7], Sagle proved this result. However, he called a Malcev algebra M is to be semi-
simple if M is a direct sum of simple ideals.




On the Theory of Malcev Algebras , 17

that @ is an element of J-nucleus of M. . Since b(D(x, y))=—[xya]+2 LD(b;, cy),
D(x, y)] we have [xyal=0 for all x,y€ M. On the other hand [xyz]—!—[z;cy]—[zyx]
=4(x, y)z for all x,y,z€ M, hence 4(x, )a=0 for all x,y€ M, i.e. a belongs to the
J-nucleus of M. Thus this theorem is proved.

Since every representation of semi-simple Lie algebra is completely reducible we
obtain the following '

COROLLARY.® The derivation algebra © of any semi-simple Malcev algebra M is
completely reducible in M.

3. Weak and generalized representations. We first recall the representation of a
Lie algebra Q over @. A representation of € into a vector space V is a linear mapping
% —-p(x) of 2 into the algebra G(V) of linear transformations of V satisfying

o(Cx, yD=p)p(3) — p(3)p(x)
for all x,y€Q. This says that
(a) p is a homomorphism of Q into the Lie algebra g((V) of linear transformations
of V,
and implies that
(b) the vector space spanned by all p(x) forms a subalgebra of al(v).
As an example of the representation of Q we have -

(c) an adjoint representation /— ad I, where ad] denotes a linear transformation
x—[l, %] in Q. : ' '

In Malcev algebras, a mapping of this type is not necessary a representation in
the sense stated above. In fact, let L, be the left multiplication by x, then that x—L,
is a homomorphism is equivalent to say that the Jacobi identity holds in the Malcev
algebras. Also, the vector space spanned by all L. does not necessary form a sub-
algebra of g((M).

Let p be a linear mapping x—p(x) of a Malcev algebra M into the algebra E(V).
Put

3.1 A(x, )=L[p(x), p(¥)I1—p(xy)

for x,y€ M. 1If 4(x, y)=0 for all x,y€ M, i.e. p is a homomorphism, then we call p a
special representation of M and we shall generalize the notion of representation for
Malcev algebras in three ways which correspond to (a), (b), and (c). In the case of
(c), this generalization was already done by Eilenberg [21.

Standing on a viewpoint of (a) we define a more general representation than the
special representations for Malcev algebras as follows:

DEFINITION 3.1. A linear mapping p of a Malcev algebra M into the algebra of
linear transformations of a vector space V over @ is called a weak representation of M
if

(3.2) CD(x, ), p(2)1=p([xyz])
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for all x, y, z€ M, where
(3.3) D(x, )=[px), p(3)I+p(xy)-

If p is a special representation of M, then p is a representation in the sense
defined above, particulary a representation of Lie algebra Q is a weak representation
of Malcev algebra . ‘

For xEM, let L, be a left multiplication z—xz in M, then x—L. is a weak repre-
sentation of M which is called to be regular [6, Proposition 8.3]. For a regular repre-
sentation, D(x, ) is an inner derivation in M. We note that in an anti-commutative
algebra, for the left multiplication Ls (3.2) characterizes a Malcev algebra [12,
Theorem 1.11. Let A be a subalgebra of M and let B be an ideal of M, then a
regular representation of M induces a weak representation of A into B. Let K be a
kernel of weak representation. If ECK, then [xy k1€ K for all x, y€ M, hence K is an
invariant subspace of the inner derivation of the form [La, L,+L,,. Let (o5, V), i=
1,2,---,n, be the weak representations of M such that p«(x) commutes with p4(y) for all
x,9 € M; i#j. 1f we put p(x)=.§] 0:i(x), then p is a weak representation of M into V.
This fact implies the following 1{\;70 results. Let (ps Vi) be the n weak representations
of M and V the tensor product_V1®-~-®V,,. For xEM, define an n-linear mapping
5(x) of Vix:- XV, into V as p(x)(v1, s vﬂ)=_‘ﬁ Q- @)D vy, then there exists
a linear transformation p(x) of 14 satisfying1’-,61(36)(111,-~-,vn)=p(x)(v1®~--®vn). x—p(x) is
a weak representation of M with V as a representation space. Next, let (p,V) and
(s, W) be the weak representations of M and denote .2(V, W) a vector space of all
linear mappings of V into W. For xEM, we define a linear transformation c(x) of
V, W) by ()W) =0(x)(f(w))—fplx)v) for fEQV, W), vEV. Put (r(@NH@)=0a(x)-
F), (z()H(@)=—Ffp(x)v), then (e1(0) e @)=z (21D N (W)= —(a()(fo ()0,
hence x—z(x) is a weak representation of M with QV, W) as the representation
space.

A representation of an alternative algebra A into a vector space V is a pair (L, R)
of linear mappings of A into ©&(V) satisfying

[L., R=[R:, Ly]=Lny—Ly,=Rny—ny
for all x,y in A [81.

PROPOSITION 3.1. Let (L,R) be a representation of an alternative algebra A. Then,
x—L.— R, is a weak representation of a Malcev algebra associated with A.

PROOF is similar to that of Theorem 1.4. We see that [Ls, Lyd=Lizy—20Lz Fyl
and [R., R,1=Riy.s;—2( Lz, Ry], and we can use these relations to obtain A(x, ) +6[La,
R,1=0 which implies D(x, 9)=2[La, Ly]+2L L=, R+2[R., R,]. The proposition follows
from these relations.

For a weak representation p of Malcev algebra, we have the following relations.

G.H D(xy, 2)+D(yz, x)+D(zx, y)=0,

or
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(3.5) A(xy, 2)+4(yz, x)+4Czx, y)+20(J(x, y, 2))=0,
where J(x, y, 2)=(xy)z+(y2)x+ (zx)y.

REMARK 3.1. (3.4) (or (3.5)) and a relation [D(x, y), o(3)I=p(Lxyy]) are equivalent
to (3.2). In fact, a linearlization of [D(x,y), p(9)1=p([xyy]l) implies [D(x,y),0(2)]
+LD(x, 2), p(¥)1=p([xyz])+p([xzy]), then by interchange of x and y and subtract we
have 3(CLD(x, y), p(2)1—p((xyz]))=D(xy, 2)+D(yz, x)+D(zx, ¥), hence (3.2).

(3.6) [D(x, ), Di(z, w)l=Di([xyz], w)+Di(z, [xyw]),
where Dy(z, w)=L[p(2), p(w)1+ko(zw) and k is an integer. In particular,
(3.6) [D(x, ¥), D(z, w)l=D([xyz], w)+D(z, [xyw]).

Hence, we have the following

LEMMA 3.1. For a weak representation p of a Malcev algebra M into V, a vector space
spanned by 33 D(x;, y:;) forms a subalgebra of the Lie algebra gI(V).

3.7 204(x, ), p(2)1+34(xy, 2)=4(yz, x)+ 4(2x, ¥),
from which, by using (3.6) with 2=—1
(3.8 [4(x, ), 4(z, w)1=4([xyz]+xy -z, w)+4(z, [xywl+xy-w)-+34(xy, zw).

Therefore we have the following

LEMMA 3.2. For a weak representation p of a Malcev algebra M into V, a vector space
spanned by 33 4(x;, y:) forms a subalgebra of the Lie algebra gl(V).

THEOREM 3.1. For a weak representation of a Malcev algebra M let A(M, M) be the
Lie algebra generated by all 23 4(x;, ¥:), %i, ¥: € M and denote by A(M, M)™ the nth derived
subalgebra of A(M, M). Then,

A(M, M)(zk—ngkz"]‘ A(M®, pek-1-),
=0
(3.9) k
ACM, MO A(M®D, M=),

=0

Hence, if M is a solvable Malcev algebra, then A(M, M) is a solvable Lie algebra.

PROOF. The formula is easily proved in case n=1,2 by using (3.8). Assume that
the formula has been proved in case n=2k—1. Then,

A(M, M)(zk)_;_ki}l 5 [A(M®, M@=1=2) g(M@, Mk-1-9)]

i=0 J=0

g"f\‘ 5 ACCMOME-1=D N[ D] MO CE-1=D. | [ J[Ck=1-5))

i=0 J=0

+kz—}1 %1 A(MD, [M(i)M(Zk—l—i)M(zk—l—j)]+M(i)M(2k—1—-i)_M(Zk——l—j))
i=0 J=0
k—1k-1

+37 33 AMDM =10 MDD CE=1-5))

=0 J=0
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We can assume i<j by the skew-symmetry of the product [4(x,y), 4(z, w)], then 2k—1
—i>j. Using that M is an ideal of M

A(M, M)

_g__ki ACMG D, MCE=1=9) 4 A(MD, M=)+ A(M 1=, M eE=1-97)

Jg=0

=37 A(M®, M=),

=0

k
Next, we obtain 4(M, M)@+DC Y ACM®, M@+1-9) similarly and the theorem is proved.
=0

COROLLARY. If M is a solvable Malcev algebra, then the Lie algebra generated by all
33 [Leys Ly d— Layy, is solvable.

Denote D(A, B) (4(A, B)) a vector space spanned by all 3 D(x, ¥2) (32 4, Yi))s

xiEA, y:£B. A subalgebra 9 of a Lie algebra 2 is called to be subinvariant in @ if
there exists a finite sequence of subalgebras 2=%, Ay, Wr=A such that 9(; is an
ideal of 9As—y, =1, 2,---, 7. '

PROPOSITION 3.2. Let N be an ideal of a Malcev algebra M. Then the Lie algebra
D(N, N) is an ideal of D(M, M) and the Lie algebra A(N, N) is subinvariant in A(M, M).

PROOF. From (3.6) D(N, N) is an ideal of D(M, M). Next, A4(N,N) is an_ideal
of A(IN, M) and 4(N, M) is an ideal of A4(M, M) by (3.8).

PROPOSITION 3.3. VLet o be a weak representation of Malcev algebra M. Then the
eveloping Lie algebra of o(M) is p(M)+Lo(M), p(M)]. Let N be an ideal of M. Then
a Lie algebra o(N)+Lo(N), p(N)] is subinvariant in o(M)+Lo(M), p(M)1.

PROOF. The first part is an immediate consequence of (3.2) and the second part
follows from that o(IVN)+L[o(N), p(IN)] is an ideal of p(N)+Lo(IN), p(M)] and p(N)
+Lo(N), p(M)] is an ideal of p(M)—l—[p(M), o(M)]. '

THEOREM 3. 2. Let o be a weak representation of a Malcev algebra M. If M is solvable
then the enveloping Lie algebra Q of p(M) is solvable.

PROOF. From Proposition 3.3 2=p(M)+L[p(M), p(M)] hence Q=p(M)+D(M, M).
Denote by M® and ® the derived subalgebras of order & of M and 2 respectively.
By a similar manner as the proof of Theorem 3.1 we have: '

Q(Zk—l)go(M(k))_}_kZ—}l D(M(i), M(Zk"z—i)),
) i=0
g(2k);D(M(k)>+L§ D(M(i), M(Zk—l—i))_
: =0

Thus if M is solvable then there is an integer » such that 2®=(0), which proves the




On the Theory of Malcev Algebras 21

theorem.

COROLLARY. If M is a solvable Mualcev algebra, then the inmer devivation algebra of
M is a solvable Lie algebra.

PROPOSITION 3.4. Let p be a weak representatien of a Malcev algebra M with V as a
representation space and let N be an ideal of M. Then, for any subspace W of V stable
under p, A(M, N)W is a stable subspace of V.

PROOF. This follows easily from (3.7). In this proposition, assume o is regular,
then it follows that for ideals Ni, N, of M, J(M, Ny, N,) is an ideal of M [6, Theorem
3.51.

We shall next define a generalized representation for Malcev algebras from a
viewpoint of (b).

DEFINITION 3.2. Let M be a Malcev algebra. Let P be a bilinear mapping of
MXM into an algebra of linear transformations of a vector space V. P is called a
generalized representation of M if

(3.10) P(x, )+ P(y, x)=0
and
(3.1D) LP(x, ¥), P(z, w)1=P([xyz], w)+ Pz, [xyw])

for all x,y,2,w in M.

From this definition, a vector space P(M, M) spanned by all 33 P(xi, 30), %5, ¥:€M,
forms a subalgebra of g{(V). Let p be a weak representation of M ir;to a vector space V,
then (3.6) shows that (x, y)—~D(x, y)=[p(x), po(3)1+p(xy) is a generalized representation
of M with V" as the representation space. Let A be a subalgebra of M and let B be
an invariant subspace for all inner derivations of the form D(x, y)=[L., L,]+ L., 'x,y
€M, then D induces a generalized representation of A into B. Let (P, V), i=1,2,-
be the generalized representations of M such that P;(M, M) commute with P;(}M, M)
for i#j. If we put Plx,y)= E Pi(x,y), then P is a generalized representation of M
into V. )

Let @ be the Lie algebra MA(M) constructed out of the Malcev algebra M. “For
arbitrary element x in M, define a linear transformation p(x) in @ by I—[x, ], where
[/, m] denotes the product in Q. If we put P(x, y)=[o(x), p(»)I—p(xy), then P(x, )1
=[D(x,¥),11, D(x, y)=[Ls, L]+ Loy, from which we'see that P is a generalized repre-
sentation of M with @ as the representation space. In this case, x—p(x) is not Inecés-
sary a weak representation of M. For example, let M be a vector space with base
X1, Xo, X5, Xy and define a multiplication in M by XiX,=—X,, XiXo=—X,;, X X=X,
XoX3=2X,, X;X;=—X;X;, i#j, and the others are 0. Then, M is a Malcev algebra [6,
Example 3.1] and the Lie algebra @=M@T(M) is a 7-dimensional Lie algebra with the
following multiplication table, in which Y;=D(X,, X,), Y,=D(X;, X3), Y:=D(X1, X))
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(= —D(Xs, Xe))

X X X X Y Ye Y
X1 0 —X>+Y1 —X;+Y. XutYs 2Xe 2Xs 2X:
X, X,—Y) 0 v 2X1—Ys 0 0 2Xy 0
X Xs—Y> —2X4+Ys 0 0 —2X; 0 0
X, | —Xu—Ys 0 0 0 0 0 0
Y —2X> 0 2X, 0 0 4Y3 0
Y. —2X3 —2X 0 0 —4Y; 0 0
Ys —2X, 0 0 0 0 0 0

For x=z=X;, y=Xs, =11, [[p(x), o(MI+p(xy), p(2)1I)=8(X,—Yy) and o(Lxyz))(D=4X,,
hence p is not a weak representation of M.

THEOREM 3.3. Let P be a generalized representation of a Malcev algebfa M and let
P(M, M) be the Lie algebra generated by all >3 P(x;, 9, %6 y: € M. If M® and P(M, M H®
are the derived subalgebras of order k of M and P(M, M) respectively, then

P(M, M )@= _g_ki P(M®, M@E-1-9),
(3.12) =0
P(M, M)H©e» < gkj P(M®, ME=D),
=0

If M is a solvable Malcev algebra, then P(M, M) is a solvable Lie algebra.

PROOF. By using (3.10) and (3.11) this is proved in a similar fashion as the proof
of Theorem 3.1.

COROLLARY. Let M be a solvable Malcev algebra. Let P be a generalized representation
of M into a vector space V over an algebraically closed field. Then there exists a one-
dimensional P-invariant subspace of V.

PROOF. This follows from Theorem 3.3 and Lie’s theorem.

A Malcev algebra M is said to be nilpotent if there is an integer s such that Lz L
--.L,,=0 for every x;€M. A nilpotent Malcev algebra is solvable. If M is nilpotent
then D(x1, y)D (%2, y2)+--D(x, y)=0 for some integer /, where D(x; ¥)=[Ls, Ly]+ Lay.

"THEOREM 3. 4. Lei P be a generalized representation of a nilpotent Malcev algebra M
into” a vector space V. Then the Lie algebra P(M, M) generated by all = P(x:, ¥:) is a
nilpotent .subalgebra of gl(V).

PROOF. By the induction on #, it follows that (ad 33 P(x:;, y))"P(z, w)=33 P(D(¥js

93D (%gor Y3502 D(Fagy Y1)+ D(Fxes Y)W, where s+t=n and D(x, z=x(yz)—y(xz)+ (29)z.
Since M is nilpotent there exists an integer ] such that D(%:, yi)--D(&is y:,)=0, s0
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(ad 323 P(x;, y:))"=0 for some integer n. Hence, by Engel’s theorem, P(M, M) is a
nilpotent Lie algebra.

COROLLARY. Let M be a nilpotent Malcev algebra and let M) be the Lie algebra
generated by all derivations of the form. 33 OLay Ly d+Layy,. Then (M) is a nilpotent Lie
algebra.

4. The cohomology ring of a Malcev algebra. Let M be a Malcev algebra over a
field @ of characteristic 0. A 2p-dimensional cochain in M, p=1, is a 2p-linear function
fof MX---XM (2p times) into @ such that if %p_,=2xm, k=1,2,--, p,

S, Kooy Kagmry Xony -y Xop)=0.

Denote by C*(M), p=0,1,2,-, the vector space over O spanned by 2p-dimensional
cochains of M, where we define C°(M)=0.

A coboundary operator § is a linear mapping of C??(M) into C?*2(M) defined by
the formula

} 8f=0 for FEC°(MD),
“.1D

B P 2p+2 . X

(5f)_(x1, oy Koprg) =k2~1 _%H( _1)kf(x;,' s Xok—1, Xoxy' 'y [ Xok—1XerXi], 0, x2p+2>

fOr fECZ])(M>’ p':l: 2’ 3)""

J

where the sign A over a letter indicates that this letter is to be omitted.
For x,y€ M, x(x,%) is a linear mapping of C»(M) into C(M) defined by

k(x, y)f=0 : ~for fEC'(MD,
4.2)

, .
(’C(x: y)f) (xl""1x2p>=_é1f(xh"" [xyxj],"',xzp> for fECZZI(M>’ p': 1’ 2: 3:"'—

For x,y€ M, ¢«(x,9) is a linear mapping of .C*?(M) into C?*-2(M) defined by

«(x, D=0 , for fEC'(MD,
(4.3)

(e, 21D Conyoovy Hop-2) = (X, ¥, X1, Xap—s) for fEC*(M), p=1,2,3,-
From above definitions we have immediately the following two relations: ‘ .
4. {e(x, ), 0} f=r(x, ) for fEC*(M), p=0,1,2,-,

and

(4.5) Celx, 30, «(z, w)1f=c(Lxyz], w)f+e(z, Laywl)f for fEC*(M), p=0,1,2,
Next, we obtain for fEC*(M), p=0,1,2,,

(4.6) Le(x, ), k(2 w)If=k(Cxy2d, w)f+ (2, Lxywl)f.

For, in case p=0, (4.6) is trivial and if p=1 then a direct computation implies (4.6).

6) {a, b} denotes the Jordan product ad+ba.
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Hence, we assume that this relation has been proved for all fec(M) and let fc
Cer+2(M), p=1. Then for arbitrary u, vEM, using (4.5) we obtain

«Cu, VILe(x, 3, £(2, w)1f
=k, ), £(z, w)eCu, v)f+(Czwlxyuld, v)f—(Cxylzwnll, nf
+¢(u, Czwlayv] D) f—e(u, LxyLzwv]DS.

On the other hand, we have by (4.5)

(u, ) ((Lxyzd, w)+r(z, Lxyw))f
= (r(Lxyz], w)+ £z, Lryw]))e(u, v)f—([Layzlwul, v)f
—e(C2Lxywln], v')f—— (ut, CLxyzlwo]) f—e(u, Czlaywlv)f.

Hence by (1.7) ¢(u,v) (L%, ¥, k(z, w)1—r([xyzl, w) —«k(z, Lxyw]))f=0. Since u,v are
arbitrary (4.6) holds for all fec»2(M).
For fECZPCM)’ pzo: 1’ 2:"';

“.7 : k(x, Y0 =08k(x, ¥) 1.

PROOF. If p=0 (4.7) holds trivially and if p=1 (4.7) is proved by a direct com-
putation. Hence, we assume that this relation has been proved for all feC*?(M) and
let fEC?+2(M), p=1. Then for arbitrary z, wEM, by (4.4), (4.5), (4.6) ¢(z, w)lx(x, ), 01f
=00, £(x, )1z, w)f+Le(x, ¥), £z, w)1f—{([xyz], w), 8) f— (¢(z, Layw]), 6) f=0. Since z, w
are arbitrary, (4.7) holds for feC?**(M).

Using these facts we have the following relation:

(4.8) 08f=0 for fEC*(M), p=0,1,2,.

For (4.8) holds trivially in case p=0 and is easily proved in case p=1. Therefore, we
assume that (4.8) has been proved for all fEC(M) and let fEC?+:(M), p=1. Then
by (4.4), (4.7) for arbitrary x, yeM «(x, )86 f=(—0e(x, )+ (%, ))0f=00¢(x, ) f—ox(x, Yf
+k(x, )8f=0. Since x,y are arbitrary, (4.8) holds for feC?*2(M).

. A cochain fEC??(M) is called a cocycle if 3f=0 and a coboundary if f is of the
form 0g for some geC?-2(M). Denote Z:2(M) and B**(M) the subspaces of c(M)
spanned by the 2p-dimensional cocycles and coboundaries respectively. From 4.8),
B»(M) is a subspace of Z??(M). The factor space Her(M)=2Z*(M)/B>*(M), p=0,1,2,,
is called the 2pth cohomology group of the Malcev algebra M, where we identify B'(M)
with 0.

Let two cochains fEC??(M) and gcC*(M) be given. We define a cochain fUgE
CxXPp+D( M) by setting ‘

(AU (1,5 Zop) =f(20,7, Xap) - & for ¢=0,
4.9) (fUQ) (21, xeg) =1 8(%1,"+5 Xag) for p=0,
T (ng) (-xli"'yxz(p+q)> “

_ .

= . <2< . Sgn<i1“'ip+g)f(x2i1—19 xzily Tty xzip—ly x2ip>g(x2ip+ 1= xZip-)—q)’
1< <ip

ip+1<<ip+q )

where

(1t __{ 1 if (4--ip) is an even permutation of (12--m), __ .. _
SEN \ir-ip+e/ =) _1 if (§,---ip) is an odd permutation of (12---n).
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This \U-product is distributive and associative:
(4.10) FUDHUR=,U(gUh)
for fEC*?(M), geCu(M), heC*(M).

PROOF. We assume p >0, ¢ >0, » >0 since (4.10) is easily proved in the other

€ases.

(SUDUR) (21,5 Zacprgen)

- i< §p+ Sgn(;lmigigi:>CNgD(x“""'"’x21p+9)h’(x2ip+q+1‘1""’ Keipigrr)
i
ip+g+1<+<ip+g+r

Lo ptgtr 41 i
= 2 P2 sgn (il""ip+'q+r) sgn (Jr-ﬁglg
11<+<ip+q J1<<dp
ip+g+1<-<ip+g+r Jp+1<-<Ip+g

f(Hzgr-1ss xZ.ip)g(x?.ip+1—1,"', xsz+q)h<x2i,,+q+ 1= x27:p+q+r)-
(fu(guh>> (xlx ) x2(p+q+,-)>
P pPro+r 7;11+1"'7;11+q+r> )

= . 2 i . 2 . sgn <i1--~ip+q+r> sgn (J’p+1"~.7'p+q+r
21<<ip Jp+1<~<dp+gq
p+1<<ip+g+r  JIp+o+1<-<dp+g+r

'f(xzn——u ) xzip)g(x2jp+ 1= x?jp+q)h(x2jp+q+ 1= Xegprgs r)'

‘These two expressions equal to

L 1eeDtgtr
G sgn (J1~~‘Jp+q+r)f<x2.7']—1)'"’ x2.7'p>g(x?.7p+1—l!'“’ x?.ip+q>h<x2.7'p+q+1—1;"': x2jp+q+r)’
1<+ <dp ’
Ip+1<-+<Jp+q
Jp+g+1<-<Ip+g+r

therefore, (4.10) follows.
~We obtain easily the relation:

4.1 fUg=(—1DrgUf for feC*(M), geC*(M).
Also, we have

4.12) £, YU =r(x, UG+ Ur(x, 3)g for fEC*?(M), gcC*(MD).

PROOF. (4.12) holds trivially in case »=0 or g=0. Hence we assume p»>0 and
4>0.

((x, y) (SUL)) (K1, Xagprg))
2(p+9)

=— E (UL (a1, [ayx5,+5 Xagprg))

» .
Loepig
== 2] . >3 sgn (‘i}'“ip-{»q),fij'g(-xZip_(.]—l!.“! xzip+q>
=1+ 41<-<ip
tp+1<+<ip+g
p+g forecofig
— 2] >3 sgn (il-"‘ip«}-q)f(xﬁl—l:“" X2ip) * Gigs
J=p+1 1< <ip
ip+1<-<ip+g

where
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fij‘——f(xzil—n"" [xy xzij—l:]""', xzip>+f(x21;1_1,"', [xyxgij],"', xzi],),

gij=g<x2ip+1—-l1"': [xyxzu—ﬂ,“', x“zip+q)+g(x2ip+1—ls coy Ly X051, xzi,,ﬁ)-

Hence (x(x, MFUD) G Xapra) =(k(x, NAIGH Ur(x, N, Faor)) and (4.12)
follows.
For feC»(M), geC*(M)

(4.13) : «(x, ) SUD=c(x, wfUg+(—12fUe(x, y)8.
PROOF. This is trivial if p=0 or ¢=0. Assume p>0 and g > 0.

ey, 22) (UL (35005 Xatp+e))
= (fug) (xlr Tty xz(p+q))

= i <2<. sgn (:21£:Z>f<x15 X2y Xoiz—1,"""> x2ip>g<x2ip+1—-1"": x2’l3p+q)
2l <ip :
ip+1<-<ip+q
+ 03 sgn Gl i it ) f(eip a1 s Xaipr 1) (X1, Koy Xaiprz—15""s Xeiprg)

2l <ip+1
ip+2<l-<ip+g

= (o1, %) UG (3,7, xz<p+q>)+ (—D?PfUe(x1, %) 8) (K35 Xagp+a))-

Hence (4.13) is proved.
For feC?(M), geC*(M)

4.14) : (U =0fUg+ (—=1)?fUdg.

PROOF. (4.14) is trivial if p=0 or ¢ =0 and can be proved by direct calculation
if p=g=1. Hence assume that (4.14) has been proved for all fECA(M) and gEC*~:(M).
For g€C2(M), ¢ >1, by (4.4), (4.12),(4.13)

e(x, y) (3(fUL—0fUg+ Udg)

= —8¢(x, 3) (FUD+ (%, 3) (FUD— (% 3) (BFUD +e(x, ) (FUSL)

= —8(e(x, MU +0FUe(x, M) +r(x, (UL —e(x, ) (0AUL+c(x, y) (FUdL)

=(k(x, ) —8c(x, Y)—e(x, PO UG+ U (k(x, y)—0c(x, y)— (%, )6)&=0.
Since this holds for arbitrary x, yM, (4.14) holds for every ¢ =0 in case p = 1. Hence,
by the induction on p, assume that (4.14) holds for any ¢=0 in case p-1 and let
feC=(M). Since by (4.11) if ¢ =1 the formula holds for any p, we assume the formula
holds for all geC?-2(M) and let gEC*(M). Then the same manner stated above implies

Cx, PHOFUL —0Jg—(—1)PAUdg)=0 for arbitrary z, yEM, hence (4.14) holds for f€
C>(M), geC*(M) and (4.14) is proved.

From (4.14)
fEZ2(M), gEZ*(M) implies fUZEZ*P+O(M),

feZ»(M), gEB*(M) implies AJZEB*P*D(M),
feBP(M), gEZ*(M) implies fUZEB*®*P(M),




£
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hence, it can be defined the \J-product between two chomology classes of arbitrary
dimensions and by this product the direct sum 2 H**(M) becomes a ring, which is
called the cokomology ring of Malcev algebra M.

5. Cohomology groups associated with a generalized representation. Let (P, V) be
a generalized representation of a Malcev algebra M and let f be a 2p-linear mapping
of MX---XM (2p times) into V satisfying

S, %aye ey Xogo, Xokyt+*y Xap) =0 for wo_1=xm, k=1, 2,--, b,

f is called a 2p-V-cochain. Denote C**(M,V), p=0,1,2,--, a vector space spanned by
2p-V-cochains, where we identify C°(M, V) with V. We define a linear mapping ¢ of
C*(M,V) into C**2(M, V) as follows:

@) (21, x2) =P(ax1, %)f for fEC'(M, V),
(5- 1) <5f) (xl: Ky vy x2p+2>

p+1
=k2 (—1>k+1P(x2k—1, o) f(21, 22,00, z’/ezk—-n »%zk,"', x2p+2)
=1 E

P 2p+2
+3 3 <—1>kf<x1y Tty 9ACzk—1, sz,"‘, [Xor—1 KXoz %57, x2p+2)

k=1 g=2k+1
for fECZp(M, V)) ﬁ=1:2,“',
where the sign A over a letter indicates that this letter is to be omitted. We shall
prove 90f =0 for any f. In case fEC°(M,V), this follows from (3.6). To prove the
general case, we consider two linear mappings.
For a pair x,y in M, a linear mapping x(x, ¥) of C?*(M, V) into itself is defined by
the formulas:
£(x, ) f=P(x, Nf for fEC'(M, V),
2p i
&(x, D) (21, Xoye+s %ap) =P(x, YD (X1, Koy s Hap) —J};‘.l S, 20,0, [y 51,5 Xop),
for fECZP(M’ V)) p = 19 2: 3:""

(5.2)

and a linear mapping ¢(x, y) of C**(M, V) into C*-*(M, V) is defined by the formulas:

t((x, ) f=0 for fEC'(M, V),

(t(x’ y)f) <x17 X250ty pr—2>=f<x, J’, X1y Xoy°t0y x2}7—2>
for feC*(M, V), p=1,2, 3,---.

(5.3)

Then by a direct calculation we have:

6.4 _ {e(x, 90,0} f = (%, f
and ' '
(5.5) Celx, ), ¢z, w)lf= e(Exyz]‘, w) f+ «(z, Lryw]f.

We can next verify the following two formulas by induction on 7 and (1.7), 3.6),



28 ... K. YAMAGUTI.

(5.5):
(5.6) C[eCx, 9), (2, w)] f= & (Lxyz], w) f+ £ (2, LxywD) f
V fOI‘ fEC”’(M, V); p = 0, 1’ 21""
and
(5. 7) f:(x, y) 5f= 6E<-x, y)f for fECZp(M, V): p =0, 1) 2’

Assume that 86f=0 for every fEC**(M,V) and let fEC?+2(M, V). Then ¢(x, ¥)30f=0
for all %,y in M and 80f=0. Therefore, we proved that for the coboundary operator §
defined by (5.1) we have

(5.8) 88f = 0.

Denote Z2*(M, V) a subspace spanned by elements f of C*?(M, V) such that §f=0,
which is called a 2p-P-cocycle and B?(M, V) a subspace spanned by elements of
C»(M,V) of the form &f, fEC*?~2(M,V), which is called a ‘2p-P-coboundary, where
B(M, V)=0 by definition. Then B*(M,V) is a subspace of Z*?(M,V) by (5.8). The
quotient space H2?(M, V)=2Z*(M,V)/B*»(M,V) is called the 2pth cohomology group of M
relative to the generalized representation P.

Let (P,V) be a generalized representation of M. A Killing form ¢ of M is a
bilinear symmetric form defined by ¢(x, y)=Tr (L.L,), L. being the left multiplication
by x. From [[La, Ly+ Lay, L:Luw]=Lizys L+ L:Lizyy We get

(5.9) o(Lxyz], w)+e(z, Lxywl)=07.
Let X1, X»,-, X, be a base of M. If the matrix (¢(X;, X;)) is regular, then ¢ is celled
to be non-degenerate. Assume ¢ is non-degenerate and let (m;;) be an inverse matrix
of (¢(X:, X)), then (my) is symmetric and X;= Z‘. miXs 1=1,2,--,m, is also a base of
M. 1In this case a linear operator I' of Vis defmed by ‘

I = Z} P(Xi, X)P(Xs, X5).

“4,J=1

I’ may also be expressed as Z‘, P(Xz, XDP(X:, X,), since myy=ms.

2,J=1

LEMMA 5.1. Let (P, V) be a generalized representation of a Malcev algevra M with
non-degenerate Killing form . Then I' commutes with P(x,y) for all x,y in M.

PROOF. For x,y in M, put [xy X;1= Z‘, a;; X, [xyX] Z BMXJ, then by using (5.9)
we have ay;+B;=0. Therefore, [P(x, ), T’] Z [P(x, y), P(Xi, X)NIP(X;, X.,)-f—Z P(X;,
XHLP(x, ), P(Xs X)) 1= b2 (P(CxyX:d, X)+PX, [y DP(Xey X5) + = P(X, X;)(P(Lxy
X1, X)+P(X;, CxyX; :D)— E (it Br) P(Xr, X)P( X, XJ)-F E B+ akJ)P (X:» Xi)P (Xs, X5)
=0, and the lemma is proved

THEOREM 5.1. Let (P, V) be a generalized represeniation of a Malcev algebra M with

7) (5.9) follows also from [6, Theorem 7.16].
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non-degenerate Killing form. Assume I' is not a zero-operator and V is irreducible ‘for‘P.
Then H*(M, V)=(0). :

PROOF. We use the same notations as in Lemma 5.1. Let f be a 2- P—cocycle then
we have P(x, y)f(z, w)—P(z, w)f(x, y)—f(lxyz], w)—f(z, [xywl)= 0 Put e=31 P(X, )
i,J=1
f(Xo X5), then

P(z,y)e= 3} [P(%, ), P(Xey X)If(Xes X+ 3 P(XKe X)P(x, y)f(Xz, Xa
= 3 aaP(Xs, XD f(Xo XD+ 3 BiP(Xey XX X))
+ 3 P, X)PCt, A X)
—— 2 P(X,, X5) (FLayX 3, XD+ (X, LxyX51))
+ 3 P(Xe, X)P(5 9)f( X, X5)
= 3 P(Xs, XPP(Xs, X fCx, )
= I'f(x, y).

Therefore we have P(x, y)e=If(x,y). From Lemma 5.1 I'V is an invariant subspace of
V for P. Since I' is not a zero-operator, I'V=V and there exists an inverse operator
I''. Then f(x,y)=I"P(x,y)e=P(x, I and f is a 2-P-coboundary. Thus, this
theorem is proved.

6. Cohomology groups associated with a weak representation. Let (p, V) be a weak
representation of a Malcev algebra M and let f be a 2p-1-linear mapping of MX- XM
(2p-1 times) into V such that if Xp-1=%ux, £=1,2,---,p—1,

S, Xayeeey Kok—1, Koty s Hop-1)=0.

We denote C?2-'(M, V) a vector space spanned by such mappings and identify C°(M, V)
with V. The coboundary operator ¢ is a linear mappmg of C*-(M,V) into C?**'(M, V)
defined by the formulas:

@H@=px)f : ' for feC°(M, V),
(6f) Cxly X257 x217+1) ‘
(6.1 / =(—D”P({‘zw1>['P<_xzp—1>f(xh"', Xap—z, Xop) — p(Hap) [(X1,+, Xap-1)

+f<'x1, sty Xop—2, xzp—lx?ip)]
P
+1221 (—1*D(xo-1, 2o2) (21, X2y0e, 5\521:—1, '9?21:,“', Xop+1)
» 2pil A A .
+2 X (=1)*f(1, 22,005 Hor—1, Xor, -+ [Xor—1%e %5150, Xopi1)
k=1 J=2k+1 .
for fECZP—l(M, V)’ p = 1) 21 3;"'7

where the sign A over a letter indicates that this letter is to~be omitted. Then by
using the method in § 5, we obtain ddf=0 for every g-V-cochain f and we can define
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the 2p-1th cohomology group H2-1(M, V) relative to the weak representation p by the
quotient space Z2*~(M,V)/B*~*(M, V), where Z22-}(M,V) is a vector space spanned by
f such that 6f=0 and B*~'(M, V) is a vector space spanned by f of the form f=ég,
gEC?-3%(M, V). By definition H°(M, V)=Z(M,V), a subspace of C'(M,V) spanned by
f such that p(x)f=0 for all x€M. :

Let a weak representation p of M into V be given, then p induces a generalized
representation of M by putting P(x, y)=D(x, y) hence the statements in- § 5 is épplied
to this case and the even-dimensional cohomblogy groups of M relative to P can be
considered. We denote by &' the coboundary operator for 2p-V-cochains. Then from
(3.2) by direct computation we have ‘ o

THEOREM 6.1. Lei (p, V) be a weak representation of a Malcev algebra M. Define a
lLinear mapping 6 of CM,V) into C*(M,V) by (0 (%, N=p)f (P —p@fx)+ fxp).
Then the following diagram is commutative:

co(M, V) i 5 CAM, V).

e \C‘(M. V)

Define a linear mapping 0 of C**~*(M,V) into cx(M,V) by
@0 (e x2p)=P(x2p—1>f(x1,'“s x-z;-z.: xzp)—P(xzp)fCZh”‘, x2}7—1) + f(21,0 5 Xop—2, xzp-ﬁ‘zp)-

Then the- following diagram is commitative: -

~CEL V) = SO,V

[} . [}

4 gcsz(M,V) - _,

—C (M, V)—

COROLLARY. 0 induces a homomorphism 6%: H**~*(M, V—H>?*(M,V), p=1,2,3,-.

Let (p,V) be a weak representation of M with base Xi, Xz, Xn. Assume the
Killing form ¢ of M is non-degenerate and put X,=3) m;Xj, (mi) being an inverse
J=1 n P,
matrix of (¢(X;, X;)). A Casimir operator C of o is defined as C=33 (X o(Xo).
- =1

THEOREM 6.2. Let (p,V) be a weak ‘representation of a Malcev algebra M with non-
degenerate Killing form ¢. Then the Casimir operator C of p commutes with D(x, y) for
all x,y in M. S

PROOF. From (3.2) we have [D(x, %), p(@pw)l= p(Cxyz]) p (W) +p (2) p (Lxyw]),
hence [D(x,y), C1=2 p([_xyX:])p()E-)-F%‘s o(X)p([xy X:1). Put [xyX:l= ? ;i X,
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[xyX1= E EWXJ then by (5.9) aij+FP7=0. Therefore [D(x, y), Cl= E cmo(X,)p(X,)—l-Z
B’LJD(X’L>D(XJ) 0.

COROLLARY "(Casimir). Let p be a representation of a semi-simple Lie algebra Q. Then
the Casimir operator C of p commutes with all o(x), x in Q.

PROOF. It is well known that the Killing form of @ L is non-degenerate if and.only
1f Q is semi-simple and in thlS case any element x of Q is of the form Z‘. Ly 2:]. Hence
p()C= 2 o(Lys, 2)DC= ~E D(y, ZDC——E CD(yi, z0)= 2 Co(Tys 1) = Cp(x)

Let f and g be hnear mappmgs of a vector space V into a vector space W and W
into itself respectively, then a linear mapping gf of V into W is defined by (gf) (v)

=g(f(v)) for v€V. : Under the same notations as Theorems 6.1 and 6.2 we have

THEOREM 6.3. Let (o, V) be a weak representation of a Malcev algetra M- with non-
degenerate Killing form, then (CO*(H'(M,V))=(0). Assume V is irrveducible for D and C
is not a zero-operator, then 0*(H*(M,V))=(0).

PROOF. For arbitrary x,y € M, if we put [xyX]= 2 a;X; then [xyXJ——Z‘: aﬂXJ
by (5.9). Let f be 1-p-cocycle and put e= Z} o(X; )f(Xz) Then (de) (x, y)= Z [D(x, ),
p(X; )]f(X)+Z‘. o(X)D(x, HAX)= > p([xyXDf(X)JrE p(X)D(x, y)f(Xl)——Z (X0
SCxy X; ])+Z} p(XDD(x, NFXD). From f(LxgzD)=D(x; F(2)—p(2)p(DF )+ p(Dp(3)F)
—p(2)f(xy) ‘we have (&e)(x, y)=(COf)(x,y). This proves (CO*(H'(M,V))=(0). Neéxt
suppose that V is irreducible for D, then CV#(0) is invariant under D from Theorem
6.2, so.CV=V and there exists an inverse operator C-' of C. Then O (x, )= C'la’
(x, )= C’lD(x, ye=D(x, y)C le=¢'C~'e(x, y) hence 0*(H (M, V))=(0).

7.. Representations. In this section, we shall study a representation which is more
restrictive than that defined in § 3. We fi_rst prove the following

THEOREM 7.1. Let p be a linear mapping of a Malcev algebra M into the algebra of
linear transformations of a vector space V. Then the following three conditions are equivalent
each other.

(7.1)  play-2)—p(x-y2)=[p(x2), p(y>]+Ep(_x)-_p_(z), () 1+ (D p(y2)—p(xy)p(2).

(7.2) p(xy-2)=p(2)p(¥2)+p(x2) p(3)+L[p(2), p(3)p(2)]. e o

(;/ 5 ) 0(x-32)—p(2) {0(x), p(MN} + () (p(x), p(2))
.0a
= {p(®), p(92)} —p (@D p(xY)+ p(¥)p(x2),

(7.3b) . [D(x, 9, p(2)]1=p(Lxyz]),

where D(x, y>‘=Ep(x>,' oI+ pxy). Le-
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~ PROOF. (7.1)=(7.2): & play-z=x-y2)=6(Lo(x2), p0(30)1+Lo(2)0(2), p(y)]+p(x)p(y2)
~p(xy)p(z)) where © denotes the summation obtained by cyclic permutations of x, ¥, 2,
implies p(J(%x, 5, 2))+Lop(xy), p(2)1+Lo(y2), 0(2)14+[p(2x), p(»)1=0. Using this relation
and (7.1) we have (7. 2).

(7.2)=(7.3a): In (7.2) 1nterchange % with y and x with z and add to (7.2), then
we obtain (7.3a).

(7.2)=(7.3b): In (7.2) interchange y with z and x with z and add to (3.2), then
we obtain (7.3 Db).

(. =>(7.1): (7.3 a) is rewritten as (a@): 4(x,y2)—24(y, 2)p(x)—p()4(x, 2)+ p(2)
A4(x, »)=0. In (a) interchanging x and y we have (B): 4(y, xz)—24(x, 2Dp (M) —p(x)4(y,2)
—o(2)4(x, y) 0. (7.3Db) is rewritten as (1): [4(x, ), p(2)1+24(xy, 2)+p(J(x, ¥, 2))=0,
‘hence by using (a) we obtain (8): [4(x,y), p(2)1—44(x, Wo(2)+20(N4(z, £)—2p(x)4(2, ¥)
+p(J(x,9,2))=0. In () interchanging y and.z we have (&): 204(x,2), p(¥)I+44(xz, y)
—20(J(x,,2))=0.. Then (")— () +(e) 1mp11es o(J(x, 3, D)+ 40, 22)+ p(2)4(y,2) — 4(x, D)

p(2)=0 and this gives (7.1).

A linear mapping x—p(x) of a-Malcev algebra M into the algebra of linear trans-
formations of a vector space V is called a representation of M if o(x)’s satisfy one of
the .conditions in Theorem 7 1.

COROLLARY. A representatzon of a Malcev algebra M is a weak representation of M.
A weak representation p of M reduces to a representation of M if and only zf p satisfies
(7.3a).

. If p is the linear mapping x—L, in M, (7. 2) is an expression in Proposition 2.21
in’ [6] hence (7.2) and the anti-commutative law characterize a Malcev algebra.
‘Therefore we obtain

COROLLARY ® In an antz commutative algebra, the Malcev condition (1.9) is eqmvalent
10" any one of the following conditions.

(7.1 (y-Dw—(x-yD)w=(x2)(yw) — (x9)(200) +5(9z-w) — yCxzw)+ 5z y0) (- 210).
(7.2) (x2) (yw) = (xy-Dw+ (yz-w)x+ (zw- D)y+ (wx-y)z. i
(7.3) [x, ¥, zwl=[xyzlw+z[xyw],

w‘h:c‘ré Doyt Gl

The regular representation x—L, of M is-a representation of M into M. Let A
be a subalgebra of M and let B be=an ideal of M, then the regular representation of
M induces a representatiom of A into B. Since (7. 3a) may be expressed as 4(x, yz)
=24(y, 2)p(@)+p(N4(x, 2)—p(2)4(x, y) a special representation of M is also a represen-
tation.” In the following, we base our argument on the relation (7.3). Let (o, V) be
' a representation of M. If we put p(xv=xv=—uvx for v in' V, we have

8) (7.1), (7.2), and (7.3)’ are (2.11), Proposition 2.21, and Proposition 8.3 in [6] respectwely
That in an anti-commutative algebra (1.9) is equivalent to (7. 3)’ has stated in [12, Theorem 1.17].
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(7.4) . Xv=—0x,

7.5 (x-y2)v—2(x-y0) —2(y-x0) +y(x-20) + y(z - xv)
=x(yz-0)+(y2) (v)—2z(xy-v)+y(xz-0),

_ x(y'zv)—y(x.'zv)—Z(x'ylifzﬁy'vxv)+(xy)(zv)—2<xy'v) .

=(x-y2)v—(y-x2)v+(xy-2)v

for all x, y, zin M, v in V. Following Eilenberg a vector space V with bilinear
compositions xv, vx, x in M, v in V, such that xv, vx in V, is called a Malcev module if
these compositions satisfy (7.4), (7.5), and (7.6). Conversely, let V be a Malcev
module for M. If we define a linear mapping p(x) of V by p(x)v=xv, then p is a
representation of M with representation space V. Therefore the concept of represen-
tation of M is equivalent to that of Malcev module for M.

Let (L, R) be a representation of an alternative algebra A-into V and let A be a
vector space direct sum A@V. If we define a product in A by

(a4 v1) (et v2)=x12+ L., (v2)+ Rz,(v1),

where x,€A, v.€V, i=1,2, then A is an alternative algebra and V is an ideal of A.
Hence V becomes an ideal of an associated Malcev algebra AS of A and x—L,—R, is
a regular representation of A hence a representation of A into V. Thus we have

PROPOSITION 7.1.9 Let (L, R) be a representation of an alternative algebra A. Then
x—L.—R. is a represeniation of a Malcev algebra associated with A.

EXAMPLE 7.1. Let M be a Malcev algebra over @ with base X, X», X3, X, in which
a multiplication is defined by XiX,=—X,, X\ Xo=—X;, X, X,=X,, X, Xs=2X,, X:X;=—X;X;,
i7j, and the others equal zero.®> 0X;+0X, forms a subalgebra V of M and 0X,+0X,
forms an ideal W of M. Let p be the regular representation of V and ¢ a represernta-
tion of V into the space W, which is induced from the regular representation of M.
For x€V, if we define a linear transformation z(x) of Q(V, W) by

@) W=a()f()—Fp(Hv), JerV, w), vev,
then = is a weak representation of V; but not a representation. For exambple, define f
by f</21X1+ 22X2)=<21—22)X3, LE@, and let x=X2, y:Xl, Z=.X1+X2, then (r(.xy-z)—z-(x)f(yz)
—7(x2)7(y) —(D)r(P)r () + (M) (2D (D) X1+ X2) =12X,7#0.
PROPOSITION 7.2. Let p be a representation of a Malcev algebra M. If we put
(7.7 6(x, y)={p(x), 0(»)} —p(xy)

Jor all x, y in M, then the bilinear mapping 0 satisfies the following relations:

9) The proof of this proposition follows the method in [8] and this is a refinement of Propo-
sition 3.1.
10) [6, Example 3.17.
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7. 8 D(x, 5)+6(x, ) —0(y, £)—4(x, =0,

x 0z 32— p(3)0Cx, -+ p (DO, 3)=0,

(7.10) 0(xy, 2)—0(x, 2)p(y)+0(y, 2Dp(x)=0,

7.1D) 6(z, w)b(x, y)—0(y, w)b(x, 2)—0(x, [yzw1)+D(y, 2)0(x, w)=0,
(7.12) [D(x, ), 6(z, w)1=0(Lxyz], w)+0(z, Lxyw]).

PROOF. (7.8) is clear and (7.9) follows from (7.3 a).

(7.10): From (7.9) 6(y, 20)—p(2)0(y, x)+p(x)6(y, 2)=0. Adding this relation to
(7.9) and subtracting (7.4) we have (7.10).

(7.11): We apply twice (7.9) to 6(x, [yzw]) and we obtain (7.11).

(7.12): Using a relation [D(x, y), 0(2)p(w)1=p([xyz) p(w)+ p(2) p(Lxyw]l) we have
(7.12).

Let p be a linear mapping of a general L.t.s. T into the algebra G(V) of linear
transformations of a vector space V over @ and let § and D be bilinear mappings
of TXT into &(V). (p,0,D) is called a representation of T into V provided these
mappings satisfy (7.3b), (7.8), (7.9), -, (7. 12). Hence a representation of a Malcev
algebra M induces a representation of a general L.t.s. associated with M. For a
representation of a general L.t.s. we can prove that D(xy, 2)+D(yz, x)+D(zx, y)=0 and
[D(x, ¥), D(z, w)1=D([xyz], w)+D(z, [xyw]) hence the vector space spanned by 33 D(x;, y:)
forms a subalgebra of gi(V). ‘

Under the notations and definitions in § 6 we have

THEOREM 7.2. Let p be a representation of a Malcev algebra M with non-degenerate
Killing form ¢. Then the Casimir operator C of p commutes with all p(x), x in M.

PROOF. From (7.2) in Theorem 7.1 we have o(X:Xi-%)=p(X:)p(X:x)+ p(Xix)p(Xs)
+ () p(X)o(X)—p(X)p(X)p(x). Hence
[C, p(0)1=p((Z XXDD)—2 (o(aX)p(X)+ (X p(2X).
Since m ;= Z}XX Z r,JXlXJ 0, therefore the first term on the right hand
vanishes. We show the second term is also zero. If we put xX;= Z} a;;X; and xXi= Z}
BiiXs i=1,2,--,m, then ay+PB;=0 since ¢(xX,, X+ o(Xs, X)) =0 [6 Theorem 7. 16]

and ¢(.X’L,Xk> Ok Hence E (ﬂchDP(X)‘l‘P(Xt)ﬂ(xXz)) 2 (B‘IJD(XJ>P<X1)+Q1J0<X1>
0(X;))=0, and we obtain [C, p(x)] 0. This completes the proof

Let (p,V) be a representation of a Malcev algebra M and let f be a multilinear
mapping of MX--XM (2p times) into V such that if xp-1=%ux, kE=1,2,---, D,

f(-xh X2,y x2k—1’ xzky'", x2p>=0-

We denote by C?*(M,V), n=0,1,2,---, the vector space épanned by such 2p-linear
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mappings, where we identify C°(M,V) with V and denote CM,V) the vector space
of linear mappings of M into V. We call f in C%(M, V) a g-V-cochain.
We define a linear mapping ¢ of C*?(M,V) into C#+:(M,V), n=0,1,2,---, and of
CY(M, V) into C3(M,V) as follows:
(0f) (1, %) =A(21, %) f . for fEC'(M, V),
(0 (1, 22) = p () f2) — p () o) — f1%2) for fEC'(M, V),
Bf) (21, %2+, Xapea)
=(=1) L0 (Xap+1) 0 (Kop-1)f (X1, 5 Fap—2, Xapy Xaps2) — p(Xaps1) p (Kap) f(t1, -, L
— P (Kep+2) 0 (Xap- DS (1,5 Xap-2s Xap, Xope1)+ 0 (Kapr2) 0 (Kap) f(H1,+, Zap_1y Xopar)
—d(Kop 1, Zap+2) (21, o, Xop)
— P Xap-1) (X1, 5 Xap—ss Xapy Xops1Zapsa) + p(Kop) F(H1, s Xap-1, Xops1Xapsa)
+ 0 p+1) (%1, 5 Xop—1, XopFopr2) — 0 (Xape1) f2, -, Xop-25 Xaps Xop—1%api2)
+0(Kap+1) (1,75 Xap—2, Xap-1%op, Xop+2)
—P(xzpfz)f(xh“" Xep-1, xszg,,ﬂ)—l—p(xz,,)‘rz)f(x-l,--~, Xop—25 Xop, Xap—1%ap+1)
—P(xzp;bf(ﬂéh "ty Xop-2, Xap-1%p, Xaps1)
— [, 5 Fap—1, Xop(Kop+1%ap+2) )+ (1,5 Xap—2, Xopy Kap—1(Fops1%apss))
— (&1, Xop-s, Xop-1%2p, Xap+1%ep+2)]

P
+k21 (—=1)*"D(%zp—1, 222 ) (1, %2y, 9?21,-1, 7'221:,“', Xop+2)

P 2p+2
A A
+k21 X EL L (=%, Xor—1, Koty *+ey [Xop—1%0kX5], -5 Xopaz)
=1 J=2k+

for fEc2p<M’ V); p L= 1} 2’ 3)""

where the sign A over a letter indicates that this letter is to be omitted.

Then by the method stated in § 5 we have 06f=0 for every cochain f. A ¢-V-
cochain f is called a g-p-cocycle if §f=0. Denote Z?(M,V) a subspace of C¢(M,V)
spanned by g-p-cocycles. Put BX (M, V)=0C (M, V) and B?(M,V)=06C?»-2(M,V), n=2,
3,4,-. B'(M,V)=B'(M,V)=(0) by definition. If we define a linear mapping 6 of
C(M, V) into C'(M, V) by (01)(x)=p(x)f, then the following diagram is commutative:

')
C (M, vy >C M, V),

C'(M, V)

from which 6C°(M, VIS B*(M, V). BM,V) is a subspace of Z?2(M, V) and the quotient
space H'(M,V)=Z(M,V)/B*(M,V) is called the gth cohomology group of M relative
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to the representation p.

H°(M, V) is the subspace of V spanned by the invariant elements for 4. In part1cular,
if p is a regular representation then H(M, M) is the J-nucleus of M. A linear
mapping f of M into a representation space V is called a derivation of M into V if
Fx)=p) (D —pMf(x). If p is regular fis a derivation of M. Then,

H\(M, V) is the vector space spanned by derivations of M into V.

Let M, M*, V be the Malcev algebras over a same field. An extension of M by |4
. is an exact sequence 0—>V——>M*ZM—»O of Malcev algebras, or M* is called an extension
of M by V simply. Two extensions 0—>V—>M*—*M—»0 and OaV—»M*’iM——>0 are said to
be equivalent if there is a homomorphism . of M* into M* such that the following

diagram is commutative:
M*
/ \

h

14 M.
M¥

We consider an extension M* of a Malcev algebra M with an abelian kernel V, i.e.
VV=(0). Let I be a linear mapping of M into M* such that nl(x)=x for all xEM.
For xEM if we put p(x)v=I(x)v, vEV, then p(x) is a linear transformation of V and
this definition is independent of the choice of I. p is a representation of M into V
because o(xy-2)v—p(x)p(¥D)v—p(22)p(Mv—Lp(2), p(Mp () Iw=I(xy-2)v—1(x) - Iy2)v—I(x2)
IGNv—1(2) U -1+ () - 1(2Dv) = xy-2) — IO - 12— 1) (U(y2)—I(I(2))v)
—(I(x2)—1(D)I(2)) U(Mv)=0, %, y, 2eEM, V€V, by (7.2), hence p satisfies (7.2). Since =
is a homomorphism,

FCx, =IOy —1(xy)

is an element of V and f is a 2-V-cochain. For x,y,2, wEM we have [I(x), I(¥), I(z)-
1) 1=LIINI) U (w) + 1(DTIx)I(yI(w)], from which it follows:

D(x, N f(z, w)+ 4z, w)f(x, y)—p(2)p(X)f(y, w)+ (@ p (D f(x, w)+p(w)p (O, 2)—pw)p(y)
fx, 2)+ p(Of(y, 20)— p(WFCx, 2w) — p(2) (Fx, yw) —f(y, 2w)+F(xy, w))+ o(w) (fx, y2)—f(y,
x2) 4 F(xy, 2))+F%, y-2w) — F(, x-200)+ f(xy, 2w) —f([x92], w) — (2, Lxyw1) =0,

i.e. (8F) (%, 3, z, w)=0, therefore f is a 2-p—cocycle. Let I’ be another linear mapping
of M into M* such that nl/(x)=x for all xEM, then g(x)=U(x)—I(x) is in V and g is a
1-V-cochain. If we put f(x, y)=U(x)I(y)—1'(xy), then f(x, »=1f(x, N+ (6(x, y), hence
f=f+06g and f and f belong to the same cohomology class.

Let p be a representation of a Malcev algebra M into a vector space V and f be
a 2-p—cocycle. If we put M*=V@M (vector space direct sum) and define a multipli-
cation in M* by

(01, %) (W2, %) =0 (x)v2— p (21 + (1, %), Faxe),

e

o

st AR

did Lt

T T
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' ) ¢ T
then M* is a Malcev algebra and we have an extension 0—-V—-M*->M—-0 with ((v)=
(v,0) and n(y, x)=x. Put I(x)=(0, x), then I(x)I(x)=(f(x1, x2), 0)+1(x1x,) and f is one
of cocycles defined by this extension. Therefore we have

THEOREM 7.3. To each equivalent class of extensions of a Malcev algebra M by abelian
Malcev algebra V corresponds an element of H*(M,V). Let p be a representation of a
Malcev algebra M into a vector space V. If fis a cocycle belonging to the element of H*(M,
V), then there is an extemsion of M by V such that f is one of cocycles defined by this
extension.

Now, we assume the base field @ is algebraically closed. Let (P, V) be a general-
ized representation of a nilpotent Malcev algebra M and P(M) the Lie algebra gener-
ated by all 33 P(x;, y;). A linear form 2 on P(M) is called a weight of the generalized
representatién P of M if there exists a non-zero element v of V such that P(»)=2(P)v
for all PEP(M). Let (p,V) be a weak representation of M, then a generalized repre-
sentation of M is induced from p by putting P(x, y)=D(x,y) and a weight of the weak
representation p of M is defined similarly. Theorem 3.4 and Lie’s theorem imply for
a nilpotent Malcev algebra there is at least a weight of P (or p). Let A be a linear
transformation of a vector space V. For A and €0, put V(A4, D)= {veV: (A—2D"v=0
for some integer »>>0}. For a generalized representation (P, V) let 2 be a linear form
on P(M) and let V. a subspace of V spanned by v such that there is an integer » >0
satisfying (P—A(P)I)"v=0 for all PEP(M). Then V>\=PEQM)V(P, A(P)). By applying the
well known result in'Lie algebras to P(M), (e.g. [9, Exposé n° 9, Théoréme 11), we
have the following

THEOREM 7.4. Let P be a generalized representation of a nilpotent Malcev algebra M
into a vector space V. Then,

(i) Vi is P-invariant subspace of V,

(i1) if Va7£(0), then 2 is a weight of P, and vice versa,

(iii) V=¥ Vi (direct sum).

THEOREM 7.5. Let (o, V) be a weak represeniation of a nilpotent Malcev algebra M. If
P is a generalized representation induced from p by putting P(x, y)=D(x,y), then each Vi
is invariant under p.

PROOF. It is sufficient to prove that V(Z D(xs, ¥:), 1), HEOD, is p-invariant for
every 33 D(%;, y:). From (3.2) we have ’

(= D(x;, yi>—ﬂ1>p<z>=p<z>'<; D(xi, 90— 2D+ p(S (5 y22D).
By the induction on »n, we obtain

(5 Dy 90 —uD)"p@ =3 (3)o((S Dla, 3)*-2)(T Dl 3 —ul)" ™,
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where D(x, y)z=[xyz]. Since M is nilpotent, there is an integer s such that (E l_)(xz,
y))*=0 for all x; y:£M and (Z} D%z, y5) — pl)@imV(=PEevd-1.9=0 for all vEV(Z D(xz, Y0,

), hence for some integer ¢ 1t holds (Z} D(xl,yi) —uD?p(2)v=0 for all zEM uEV(Z

D(xs, v2), 1), so that V(}] D(%s, y2), ) is 1nvar1ant under p.

Let N be a nilpotent subalgebra of a Malcev algebra M and p a representation of
N into M induced from the regular representation of M. A weight of p is called a
root of N in M. Since N is nilpotent, there exists a non-zero element zEN such that
> [xiyiz]—o for all x;, y: EN, hence a zero form on ®(N) is a root. We denote M

i;lstead of V.. Then, we have the following

THEOREM 7.6. If N is a nilpotent subalgebra of a Malcev algebra M, then
(i) M=M®MD -®M,, where 0, a,-, 7 are roots of N in M,

(ii) MoMsZMasg if a+pB is a root, and MaoMg=(0) otherwise,

GiD) My is a subalgebra of M and NEM. |

8. Simple Malcev algebra C* derived from Cayley-Dickson algebra In [6, 8§ 3, 83
Sagle showed that a 7-dimensional simple Malcev algebra C*, which is not a Lie
algebra, can be derived from the Cayley- _Dickson algebra and discussed the left

multiplications and derivations of C*. In this section we shall determine the Lie
algebra Q=C*®PD(C*) (standard construction) since it seems that C* is useful as an
example of a simple Malcev algebra which is not a Lie algebra. For the sake of
completeness, we first recall the known results of C*. Let e e ¢ be a base of
vector space C*, then a Malcev algebra C* is defined by the following multiplication
table:

e - e e eq s e - er

e 0 %, 2 2, —2; —25 —2

e —2e, 0 2e;  —2eg e 0 0

; es3 —2e3 —2e 0 2e;5 0 ey 0
ey —2e, 2eq —2e5 0 0 0 2

es 2es —o 0 0 0 —2ey 2e3

e 2e¢ 0 - —e 0 2ey 0 .—2e

er 2eq 0. 0 —e; —2e3 26, 0

Let x= Z‘, xe; and y= Z y:e; be arbitrary elements of C*, then the derivation D(x, y)
=[L,, Ly]+Lzy of C* is expressed by
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0 4x11y5] 4x11Y6] 4dx11y73- 4x1y2] 4x11y3] 4x01y4
. +2x13y4] — 2125411 +2x[2y3] +2x16Y73 —2x1:y7] +2x1:y61
4x12Y51 . '
—8x[1Y2] 9 , - PERE Axniyn —4x11Y61
_ —2%x12¥61 6x12Y61 6xr2y71 -0 ;
4x16Y1] DSt +2x12y3] +2x12y4]
—2X[2Y5]
—8x11¥31 o B 5 —4xnyn 4x01Y5)
+4x(5y7) 61351 iéi[sy” RS I s . +2xraya | 7T
[4Y1] : .
—2%x12Y5] : .
—8x11y4] : 4x11¥6] —4x01¥35]
B . 621451 6x14Y61 —2x13)6] _ iy 4 0 >
4x[5Y6] +4xr4y0) 212941 2x[_sy41
. S dxays)
—8x[1Y5] 4xn1ya —4x01ys] . - ’ _ _
—4xr3y4 9 +2x15Y5] +2x15y11 Igiigg 64ras1 Certati
: a B 29—6[23’5]
—8211Ys] —4x01y41 Ax11Y2)
-, =i -
+4x12Y4] —2x[5Y6] 0 +2x6y11 s +2§£g/6; S
' ' 2%19¥5]
—8xn1y1) 4x113] —4x11Y2] - —6xrsy 2
—4212y3 —2x[5)1] —2216Y7] 0 Bxtzyn Sxtan . i4§£32
where xp;y; denotes x;y;,—x;y;. We see that
D(ey, e2)=2D(es; er), D(ey, e5)=—2D(es, er),

D(es, e)=2D(es, e, D(e,, es)=2D(es, es),
D(ey, e)=—2D(es, e2),  D(es, e)=2D(es, &5, e
D(es, es)=—DC(es, es)—D(es, e7).

If we put

Yi=D(es, €3), Y,=D(es, 1), Ys=D(ez, €), Yi=D(er, €1,
Ys=DC(es, es), Ye=D(es, ¢5), Yr=D(es, €5), Ys=DC(es, €7,
Yo=D(es, s), Yio=D(ey, ¢5), Y1u=D(e4, €7), Y12=D(es, €5),
Yiz=D(es, ¢7), Yiu=DC(es, €7),
then the Lie algebra ©®(C¥*) generated by Z}AD(;CZ-, y:) is a (14-dimensional) simple Lie

algebra of type G, with base Yi,--, Y4, the;e‘fore L=C*PD(C*) is a 21-dimensional Lie
algebra. The multiplication in Q is given by Table 1.

Let us consider the following base transformation:

Xi=e;,, Xo=e,—Yu, Xs=e3+Y1, Xi=e,—Y,

Xs=es+Ys, Xe=es—Y2, Xo=e;+Y1, Xe=2¢,—Y1, =

Xo=2¢s+Ys, X10=Y3, Xu=Ys, Xp=205—Y5,

Xi5=Ye, Xu=Yr, Xis=Ys, Xie=Yo, Xir=Y1o,

Xis=Y1, Xie=2e4+Y1, Xeo=2e3—Y13, Xnn=2€s+Y 1. %
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Then, a multiplication of this base Xy, Xz is given by Table 2. In the following we
assume the base field @ is algebraically closed. From Theorem 2.2 & is a semi-simple

. Lie algebra. Xi, Xu, Xis form a Cartan subalgebra § of & For an arbitrary element
aX1+ BX14+TX18 of @, if we pllt w1=—‘2a—26—2T, a)2=—2at+4B—2T, w;=-—2a¢—-23+47’, then
the roots of § in @ and the elements belonging to these roots are:

w1, — w1, W3, — Ws, w3, — s,

S X X, X5 X X» X

w1t ws, —w—wz, witws, —01—ws Wrtws, TWrT s,
Xs, Xig, Xy e X0, X1z, Xa1,
01—y, —wi1tw,, w—w3 —oi1tws 0203, —we+ ws,

XIO, -XIS: th Xlﬁ: XlS) X17-

Hence, the roots w;—w,, w,—ws, wz form a simple system of roots with Dynkin diagram
Bs and Q is a simple Lie algebra of type Bs. Since the derivation algebra of C*
reduces to ©(C*) we have the following i '

THEOREM 8.1. Let D be a derivation algebra of C* over an algebraically closed field,
then the Lie algebra C*®D, in which a multiplication is defined by (1.12), is a simple Lie
algebra of type Bs. . '

Conversely, let @ be a simple Lie algebra of type B; with base X, Xo,--, X, then
we may assume the multiplication in € is given by Table 2. If we define a new base
e, e Yu,-, Yy by (8.1), then we obtain Table 1 as a multiplication of this base.
Let M and ® be subspaces of ¢ spanned by e, €7 and Y., -, Y, respectively, then Q
is a vector space direct sum of M and 2. For x, yeM, define a multiplication xy in M
by the M-component of [x, y], then this multiplication in M coincides with that in C¥,
hence an algebra M is isomorphic to the 7-dimensional simple non-Lie Malcev algebra
C*, Next, ©® forms a 14-dimensional simple Lie subalgebra of 2 and Y7, Y, form a
Cartan subalgebra § of ®. For an arbitrary element aY,+BYy of ©, if we put o1=2a
— 4B, w,=—4a+2B then the roots of § in D are: Loy, +wy, +(w—wy), *(w1tw),
+(2w14ws), *(w1+2w;) and the roots wi—ws, w2 form a simple system with Dynkin
diagram G.. Hence, ®© is an exceptional simple Lie algebra of type G relative to the
multiplication [x, y]. Therefore we have the following

THEOREM 8.2. Let Q be a simple Lie algebra -of type Bs over an algebraically closed
field and assume a multiplication [x,y7 in Q is given by Table 2. Define a new base e,
er, Y00, Y by (8.1). Then, the subspace of & spanned by ei, e forms a simple Malcev
algebra isomorphic to C¥ velative to a multiplication [x, y1u, an M-component of [x,¥]. The
subspace of  spanned by Y1,-+, Y forms an exceptional simple Lie algebra of type G, relative
to [x, y1.
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