ON SOME KIND OF SET-VALUED TRANSFORMATION

Shawich SATO

Department of Mathematics, Faculty of Science, Kumamoto University (Received October 5, 1964)

1. In this note we shall be concerned with the correspondences between a complex manifold and the set of linear submanifolds of a complex projective space, analytically defined, more general than usual holomorphic mappings. A primitive form of such correspondences will be found in Hopf's σ -process, though it is covered by the notion of meromorphic mapping already introduced. Hopf's σ -process of the complex number space C^n at the origin is constructed by the aid of the equations: $z_ip_j-z_jt_i=0$, $1\leq i,j\leq n$, where z_1, z_2, \dots, z_n are the coordinates of C^n , and p_1, p_2, \dots, f_n are the homogeneous coordinates of (n-1)-dimensional complex projective space P^{n-1} . These equations are regarded to define a transformation of C^n to P^{n-1} , the values of which are the linear submanifolds of P^{n-1} . By generalizing the coefficients of the equations above to general holomorphic functions we are lead to a transformation of C^n to P^{n-1} the values of which are the linear submanifolds of not neccessarily equal dimension, of P^{n-1} . The purpose of this note is to characterize such a transformation by usual holomorphic or meromorphic mapping with values in some complex Grassmann manifold.

By meromorphic mapping of a complex manifold X to another complex manifold Y, we mean a "meromorphic mapping" in the sense of REMMERT. Then the graph G of a meromorphic mapping is a proper modification of X. Through this note we assume the knowledge of the construction and elementary properties of complex Grassmann manifold, see [5].

2. Let X be a complex manifold and τ be a transformation of X to the set of linear submanifolds of n-dimensional complex projective space P^n with homogeneous coordinates (p_0, p_1, \dots, p_n) . Then τ will be given by a system of equations:

(1)
$$\sum_{j=0}^{n} a_{ij}(x) p_{j} = 0, (1 \le i \le l),$$

where $a_{ij}(x)$'s are the functions defined in X. The system of functions $\{a_{ij}(x)\}$ is not neccessarily unique with respect to τ . But the rank of the matrix $(a_{ij}(x))$ is uniquely determined at every point of X. The quantity $n - rank(a_{ij}(x))$ is denoted by $d_{\tau}(x)$ and called the dimension of τ at x. $d_{\tau} = inf_{x \in X} d_{\tau}(x)$ is called the minimal dimension of τ , or in short the dimension of τ . By definition $d_{\tau}(x)$ is the dimension of the submanifold $\tau(x)$; $d(x) \leq n$.

The transformation τ is said to be *meromorphic at* $x \in X$, if there exists [some choice of the matrix of (1) such that all the coefficients $a_{ij}(x)$'s are holomorphic in some neighborhood of x. τ is said to be *holomorphic at* x especially when τ is meromorphic and the rank of the matrix $(a_{ij}(x))$ is constant in some neighborhood of x. τ is said to be holomorphic (meromorphic) in X, if τ is holomorphic (meromorphic) at every point

of X.

First we consider the holomorphic case. The general (meromorphic) case will be treated in 3.

The matrix function $(a_{ij}(x))$ needs not to be defined in X. Since the meromorphy of τ is locally defined, it is sufficient to give locally defined $(a_{ij}(x))$. Once a $(a_{ij}(x))$ is given, there are various $(a_{ij}(x))$'s that are equivalent to the original $(a_{ij}(x))$. Then each $(a_{ij}(x))$ from those equivalent ones is called a *local representation* (of the matrix of the equations defining τ). Through this note a transformation denoted by *k-dimensional meromorphic transformation* is a set-valued transformation defined above. For simplicity the space appearing is assumed to be connected, and therefore $d_{\tau}(x)$ is constant.

Assume: $d_{\tau}=inf_{x\in X}d_{\tau}(x)=k$. Then, by definition the rank $(a_{ij}(x))=n-k$ and is independent of the local representation $(a_{ij}(x))$ of τ . Now we shall proceed with a fixed local representation $(a_{ij}(x))$. Since $d_{\tau}(x)=d_{\tau}=k$, there exist a (n-k)-minor $(a_{i\alpha j\beta}(x))$ of $(a_{ij}(x))$. For simplicity we change indeces i_{α} , j_{β} to α , β , and assume both α and β varie from 0 to n-k-1: $0 \le \alpha$, $\beta \le n-k-1$. Then the equation (1) is solved with respect to p_0 , p_1 , \cdots , p_{n-k-1} :

(2)
$$p_j = \sum_{i=n-k}^{n} b_{ji}(x) p_i, \quad (0 \le j \le n-k-1).$$

Thus the linear submanifold τ (x) is regarded to be the orbit of the point (p_0, p_1, \dots, p_n) given by

(3)
$$\begin{cases} p_{j} = \sum_{i=0}^{k} b_{j n-k+i}(x) u_{i}, & (0 \leq j \leq n-k-1), \\ p_{j} = \sum_{i=0}^{k} \delta_{j n-k+i}(x) u_{i}, & (n-k \leq j \leq n), \end{cases}$$

where u_i 's $(0 \le i \le k)$ varie independently in C^{k+1} and $\delta_{j,n-k+i}$ is the KRONECKER's symbol.

3. In this section we shall construct a holomorphic mapping φ , that characterizes τ , of X to the complex Grassmann manifold H (k, n) which represents the set of k-dimensional linear submanifolds of n-dimensional complex projective space p^n .

Since u_0 , u_1 , ..., u_k in (3) are independent, we can choose k+1 independent vectors $(u_0^{\alpha}, u_1^{\alpha}, \dots, u_k^{\alpha})$, $0 \le \alpha \le k$. Through (3) these vectors give rise to another system of k+1 independent vectors $(p_0^{\alpha}, p_1^{\alpha}, \dots, p_n^{\alpha})$, $0 \le \alpha \le k$. Then the system of quantities:

$$(4) \qquad P_{\lambda_0\lambda_1\cdots\lambda_k} = \begin{vmatrix} p_{\lambda_0}^0 & p_{\lambda_1}^0 & & p_{\lambda_k}^0 \\ p_{\lambda_0}^1 & p_{\lambda_1}^1 & & p_{\lambda_k}^1 \\ \vdots & & & & \\ p_{\lambda_0}^k & p_{\lambda_1}^k & & p_{\lambda_k}^k \end{vmatrix}, \ 0 \leq \lambda_0, \ \lambda_1, \ \cdots, \ \lambda_k \leq n,$$

gives the Plücker coordinates of the k-dimensional linear submanifold $\tau(x)$ of P^n . As is easily verified, the Plücker coordinates (4) are independent of special choice of the system of independent vectors $(u_0^{\alpha}, u_1^{\alpha}, \dots, u_k^{\alpha})$, and are therefore denoted by $P_{\lambda_0\lambda_1\dots\lambda_k}(x)$.

By the definition of τ , the matrix function $(a_{ij}(x))$ of the local representation (1) is

Ē.

holomorphic in an open set U. From now on we proceed with fixed U. As the first step we show the

Proposition 1. The Plucker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}$ of the image $\tau(x)$ are independent of

the special choice of the local representation (1) of τ .

For the proof let $(a'_{ij}(x))$ and $(a''_{ij}(x))$ be different two matrices providing the local representation of τ . Since these matrices represent the same transformation τ , $\sum_{j=0}^{n} a_{ij}(x) p_j$, $0 \le i \le l'$ and $\sum_{j=0}^{n} a_{ij}(x) p_j$, $0 \le i \le l''$ generate the same ideal associated to the linear manifold $\tau(x)$, and therefore the matrices $A' = (a'_{ij}(x))$ and $A'' = (a''_{ij}(x))$ are related with each other by two holomorphic matrices $M = (m_{\mu\nu}(x))$ and $N = (n_{\xi\xi}(x))$: A' = MA'' and A'' = NA'. It is easily verified that the matrices M and N induce a nonsingular linear transformation carrying the system of independent vectors $(p_0^\alpha, p_1^\alpha, \dots, p_n^\alpha)$, $0 \le \alpha \le k$, constructed by the aid of the local representation A' to another system of independent vectors constructed by the aid of another A''. On the other hand the Plücker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}$ are independent of the special choice of the system of mutually independent k+1 vectors $(p_0^\alpha, p_1^\alpha, \dots, p_k^\alpha)$ as is mentioned above. Thus the proof is completed.

Since $a_{ij}(x)$'s are all holomorphic, $P_{\lambda_0\lambda_1\cdots\lambda_k}$'s, which may be denoted $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ by **Prop. 1**, are all holomorphic in U, and by definition $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ do not vanish simultaneously. Hence the Plücker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$, $0 \le \lambda_0$, λ_1 , ..., $\lambda_k \le n$, define a holomorphic mapping of U to the Grassmann manifold H(k,n). Denote it φ_U . To every point X there exists a neighborhood U furnished with φ_U constructed above. From the collection of these φ_U we can construct a mapping φ of X to H(k,n). Thus we have the

Proposition 2. Let X be a complex manifold and τ be a k-dimensional holomorphic transformation of X to the n-dimensional complex projective space P^n . Then a holomorphic mapping φ of X to the Grassmann manifold H(k,n) is canonically constructed from τ .

The converse of Prop. 2 is stated as follows:

Proposition 3. Let X be a complex manifold and φ be a holomolphic mapping of X to the Grassmann manifold H(k,n). Then, a k-dimensional holomorphic transformation τ of X to n-dimensional complex projective space P^n is canonically constructed from φ .

Let P^N be the ambiant space of H(k,n), $N=\binom{n+1}{k+1}-1$. As the homogeneous coordinates of P^N we can take the system of numbers $P_{\lambda_0\lambda_1\cdots\lambda_k}$, $\{\lambda_0,\lambda_1,\cdots,\lambda_k\}\subset\{1,2,\cdots,n\}$ which is alternate in it indices. Then H(k,n) is defined by

$$\sum_{i=0}^{k+1} (-1)^i P_{\mu_0 \mu_1 \cdots \mu_{k-1} \lambda_i} P_{\lambda_0 \lambda_1 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}} = 0$$

To every point of X there exists an open neighborhood U in which φ is represented by $\binom{n+1}{k+1}$ holomorphic functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$. Then a fundamental property of H(k,n) asserts that the relations:

$$(5) \qquad \sum_{i=0}^{k+1} (-1)^i p_{\lambda_i} P_{\lambda_0 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}}(x) = 0,$$

 $(\lambda_0, \lambda_1, \dots, \lambda^n)$ varies in the set of combinations of $(1, 2, 3, \dots, n)$, induces a k-dimensional transformation τ_U of U. It is verified that τ_U is holomorphic. From the collection of τ_U we construct a k-dimensional holomorphic transformation τ of X to P^n . In other words,

a local representation of τ is given by (5).

Combining Prop. 1 with Prop. 2 we obtain the

Theorem I. A k-dimensional holomorphic transformation of a complex manifold X to the n-dimensional complex projective space P^n is represented by a holomorphic mapping of X to the Grassmann manifold H(k,n).

4. In the following we consider the case of k-dimensional meromorphic transformation with $d_{\tau}(x)$ not necessarily constant. First we shall show the

Proposition 4. Let τ be a k-dimensional meromorphic transformation of X to P^n . Then a meromorphic mapping φ of X to H(k,n) is canonically constructed from τ .

Put $N = \{x \in X: d_{\tau}(x) > n\}$. Then by definition N is a proper analytic subset of X. $d^{\tau}(x)$ is equal to the constant k in X-N, and therefore τ is holomorphic in X-N. By **Th**. I a holomorphic mapping φ of X-N to H(k,n) is canonically constructed from $\tau \mid X-N$.

Now let U be any open set such that $U \cap N \neq \emptyset$, in which a local representation $(a_{ij}(x))$ of τ exists. Let us denote by $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ the functions defining φ in U-N, constructed from $(a_{ij}(x))$ as in 2. Then, as is seen in 2, $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$'s are all rationally related with the functions $a_{ij}(x)$. Since $a_{ij}(x)$'s are holomorphic in U, $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ are all meromorphically extended to U. It is almost obvious that thus $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$'s define a meromorphic mapping of U to H(k,n). Thus φ is meromorphically extended from X-N to X.

We are able to prove a proposition analogous to Prop. 3 as follows:

Proposition 5. Let φ be a meromorphic mapping of a complex manifold X to the Grassmann manifold H(k,n). Then a k-dimensional meromorphic transformation τ of X to the n-dimensional complex projective space P^n is canonically constructed from φ .

Since φ is a meromorphic mapping of X to H(k,n), φ is regarded to be a meromorphic mapping of X to the N-dimensional projective space P^N which is the ambiant space of $H(k,n), N=\binom{n+1}{k+1}-1$. Let \widetilde{X} be the graph of φ . Then the tri-tuple (\widetilde{X},π,X) is a proper modification of X, where π is the natural projection of \widetilde{X} in $X \times P^N$ to X. If U is an arbitrary relatively compact holomorphically complete open subset of X such that $\widetilde{U}= au^{-1}$ (U) is an analytic subset of $U \times P^N$, by a theorem stated in [3], the structure of U is given as follows: there exists a finite number of homogeneous polynomials $P_1(x, p_0, p_1, \dots, p_n)$ p_N), ..., $P_m(x, p_0, p_1, ..., p_N)$ with the coe fficients holomorphic in U such that \widetilde{U} is given by $\widetilde{U}=\{(x,p)\colon P_1(x,p)=\dots=P_N(x,p)=0\}$. There exists an analytic set \widetilde{N} in \widetilde{U} such that π is biholomorphic in $\widetilde{U}-\widetilde{N}$, $\pi(\widetilde{U}-\widetilde{N})$ is dense in U, and, by meromorphiy of φ , $\pi(\widetilde{N})$ is analytic in U; the tri-tuple (\widetilde{U},π,U) is a proper modification of U. Since π is biholomorphic in the open dense subset $\widetilde{U}-\widetilde{N}$, all polynomials $P_1(x,p),\cdots,P_N(x,p)$ must be linear. Hence the singurality of φ , if it appears, is induced only by simultaneous vanishing of the holomorphic coefficients of $P_i(x,p)$'s. Since φ is a mapping of X, hence of U, to H(k,n), we can adopt the notation $P_{\lambda_0\lambda_1\cdots\lambda_k}$ instead of p_0,p_1,\cdots,p_N as before. At last as the solutions of the equations: $P_1(x, p) = P_2(x, p) = \cdots = P_m(x, p) = 0$, we obtain the functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ holomorphic in U-N, and meromorphic in $U,N=\pi(\tilde{N})$.

Now, we construct the transformation τ in the present **Prop.**. $\varphi \circ \pi$ is holomorphic in \widetilde{U} . By **Th**. I we can construct a k-dimensional holomorphic transformation $\widetilde{\tau}_U$ of U to P^n .

A local representation of $\tau_{\overline{U}}=(\widetilde{\tau}_{\overline{U}}|\widetilde{U}-\widetilde{N})\circ\pi_{-1}$ in some neighborhood of a point of U-N is constructed from the meromorphic functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ through (5):

$$(6) \qquad \sum_{i=0}^{k+1} (-1)^i p_{\lambda_i} P_{\lambda_0 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}}(x) = 0.$$

Let us denote by $\Delta(x)$ the least common multiple of the denominators of $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$. Then

(7)
$$\sum_{i=0}^{k+1} (-1)_i p_{\lambda_i} \mathcal{L}(x) P_{\lambda_0 \cdots \lambda_i \cdots \lambda_{k+1}}(x) = 0$$

is again a local representation of τ_U in U-N, and defines a k-dimensional meromorphic transformation of U to P^n . In other words τ_U is extended from U-N to U. Since U was arbitrarily chosen, we can construct a k-dimensional meromorphic transformation τ of X to P^n from the collection of τ^U . Thus **Prop. 5** is proved.

Summarizing the Prop. 4 and 5 we obtain

Theorem II. A k-dimensional meromorphic transformation of a complex manifold X to the complex projective space P^n is canonically represented by a meromorphic mapping of X to the complex Grassmann manifold H(k,n).

References

- [1] H. GRAUERT und R. REMMERT, Zur Theorie der Modifikationen I. Stetige und eigentliche Modifikationen komplexer Raume, Math. Ann., 129 (1955), 274-296.
- [2] H. GRAUERT und R. REMMERT, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
- [3] H. GRAUERT et R. REMMERT, Espaces analytiquement complets, Comptes Rendus, 245 (1957), 882-885.
- [4] R. REMMERT, Holomorphe und meromorphe Abbildungen Komplexer Räume, Math. Ann., 133 (1957), 328-370.
- [5] VAN DER WAERDEN, Einführung in die Algebraische Geometrie, Julius Springer, Berlin, 1939.