ON SOME KIND OF SET-VALUED TRANSFORMATION ## Shawich SATO Department of Mathematics, Faculty of Science, Kumamoto University (Received October 5, 1964) 1. In this note we shall be concerned with the correspondences between a complex manifold and the set of linear submanifolds of a complex projective space, analytically defined, more general than usual holomorphic mappings. A primitive form of such correspondences will be found in Hopf's σ -process, though it is covered by the notion of meromorphic mapping already introduced. Hopf's σ -process of the complex number space C^n at the origin is constructed by the aid of the equations: $z_ip_j-z_jt_i=0$, $1\leq i,j\leq n$, where z_1, z_2, \dots, z_n are the coordinates of C^n , and p_1, p_2, \dots, f_n are the homogeneous coordinates of (n-1)-dimensional complex projective space P^{n-1} . These equations are regarded to define a transformation of C^n to P^{n-1} , the values of which are the linear submanifolds of P^{n-1} . By generalizing the coefficients of the equations above to general holomorphic functions we are lead to a transformation of C^n to P^{n-1} the values of which are the linear submanifolds of not neccessarily equal dimension, of P^{n-1} . The purpose of this note is to characterize such a transformation by usual holomorphic or meromorphic mapping with values in some complex Grassmann manifold. By meromorphic mapping of a complex manifold X to another complex manifold Y, we mean a "meromorphic mapping" in the sense of REMMERT. Then the graph G of a meromorphic mapping is a proper modification of X. Through this note we assume the knowledge of the construction and elementary properties of complex Grassmann manifold, see [5]. 2. Let X be a complex manifold and τ be a transformation of X to the set of linear submanifolds of n-dimensional complex projective space P^n with homogeneous coordinates (p_0, p_1, \dots, p_n) . Then τ will be given by a system of equations: (1) $$\sum_{j=0}^{n} a_{ij}(x) p_{j} = 0, (1 \le i \le l),$$ where $a_{ij}(x)$'s are the functions defined in X. The system of functions $\{a_{ij}(x)\}$ is not neccessarily unique with respect to τ . But the rank of the matrix $(a_{ij}(x))$ is uniquely determined at every point of X. The quantity $n - rank(a_{ij}(x))$ is denoted by $d_{\tau}(x)$ and called the dimension of τ at x. $d_{\tau} = inf_{x \in X} d_{\tau}(x)$ is called the minimal dimension of τ , or in short the dimension of τ . By definition $d_{\tau}(x)$ is the dimension of the submanifold $\tau(x)$; $d(x) \leq n$. The transformation τ is said to be *meromorphic at* $x \in X$, if there exists [some choice of the matrix of (1) such that all the coefficients $a_{ij}(x)$'s are holomorphic in some neighborhood of x. τ is said to be *holomorphic at* x especially when τ is meromorphic and the rank of the matrix $(a_{ij}(x))$ is constant in some neighborhood of x. τ is said to be holomorphic (meromorphic) in X, if τ is holomorphic (meromorphic) at every point of X. First we consider the holomorphic case. The general (meromorphic) case will be treated in 3. The matrix function $(a_{ij}(x))$ needs not to be defined in X. Since the meromorphy of τ is locally defined, it is sufficient to give locally defined $(a_{ij}(x))$. Once a $(a_{ij}(x))$ is given, there are various $(a_{ij}(x))$'s that are equivalent to the original $(a_{ij}(x))$. Then each $(a_{ij}(x))$ from those equivalent ones is called a *local representation* (of the matrix of the equations defining τ). Through this note a transformation denoted by *k-dimensional meromorphic transformation* is a set-valued transformation defined above. For simplicity the space appearing is assumed to be connected, and therefore $d_{\tau}(x)$ is constant. Assume: $d_{\tau}=inf_{x\in X}d_{\tau}(x)=k$. Then, by definition the rank $(a_{ij}(x))=n-k$ and is independent of the local representation $(a_{ij}(x))$ of τ . Now we shall proceed with a fixed local representation $(a_{ij}(x))$. Since $d_{\tau}(x)=d_{\tau}=k$, there exist a (n-k)-minor $(a_{i\alpha j\beta}(x))$ of $(a_{ij}(x))$. For simplicity we change indeces i_{α} , j_{β} to α , β , and assume both α and β varie from 0 to n-k-1: $0 \le \alpha$, $\beta \le n-k-1$. Then the equation (1) is solved with respect to p_0 , p_1 , \cdots , p_{n-k-1} : (2) $$p_j = \sum_{i=n-k}^{n} b_{ji}(x) p_i, \quad (0 \le j \le n-k-1).$$ Thus the linear submanifold τ (x) is regarded to be the orbit of the point (p_0, p_1, \dots, p_n) given by (3) $$\begin{cases} p_{j} = \sum_{i=0}^{k} b_{j n-k+i}(x) u_{i}, & (0 \leq j \leq n-k-1), \\ p_{j} = \sum_{i=0}^{k} \delta_{j n-k+i}(x) u_{i}, & (n-k \leq j \leq n), \end{cases}$$ where u_i 's $(0 \le i \le k)$ varie independently in C^{k+1} and $\delta_{j,n-k+i}$ is the KRONECKER's symbol. 3. In this section we shall construct a holomorphic mapping φ , that characterizes τ , of X to the complex Grassmann manifold H (k, n) which represents the set of k-dimensional linear submanifolds of n-dimensional complex projective space p^n . Since u_0 , u_1 , ..., u_k in (3) are independent, we can choose k+1 independent vectors $(u_0^{\alpha}, u_1^{\alpha}, \dots, u_k^{\alpha})$, $0 \le \alpha \le k$. Through (3) these vectors give rise to another system of k+1 independent vectors $(p_0^{\alpha}, p_1^{\alpha}, \dots, p_n^{\alpha})$, $0 \le \alpha \le k$. Then the system of quantities: $$(4) \qquad P_{\lambda_0\lambda_1\cdots\lambda_k} = \begin{vmatrix} p_{\lambda_0}^0 & p_{\lambda_1}^0 & & p_{\lambda_k}^0 \\ p_{\lambda_0}^1 & p_{\lambda_1}^1 & & p_{\lambda_k}^1 \\ \vdots & & & & \\ p_{\lambda_0}^k & p_{\lambda_1}^k & & p_{\lambda_k}^k \end{vmatrix}, \ 0 \leq \lambda_0, \ \lambda_1, \ \cdots, \ \lambda_k \leq n,$$ gives the Plücker coordinates of the k-dimensional linear submanifold $\tau(x)$ of P^n . As is easily verified, the Plücker coordinates (4) are independent of special choice of the system of independent vectors $(u_0^{\alpha}, u_1^{\alpha}, \dots, u_k^{\alpha})$, and are therefore denoted by $P_{\lambda_0\lambda_1\dots\lambda_k}(x)$. By the definition of τ , the matrix function $(a_{ij}(x))$ of the local representation (1) is Ē. holomorphic in an open set U. From now on we proceed with fixed U. As the first step we show the **Proposition 1.** The Plucker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}$ of the image $\tau(x)$ are independent of the special choice of the local representation (1) of τ . For the proof let $(a'_{ij}(x))$ and $(a''_{ij}(x))$ be different two matrices providing the local representation of τ . Since these matrices represent the same transformation τ , $\sum_{j=0}^{n} a_{ij}(x) p_j$, $0 \le i \le l'$ and $\sum_{j=0}^{n} a_{ij}(x) p_j$, $0 \le i \le l''$ generate the same ideal associated to the linear manifold $\tau(x)$, and therefore the matrices $A' = (a'_{ij}(x))$ and $A'' = (a''_{ij}(x))$ are related with each other by two holomorphic matrices $M = (m_{\mu\nu}(x))$ and $N = (n_{\xi\xi}(x))$: A' = MA'' and A'' = NA'. It is easily verified that the matrices M and N induce a nonsingular linear transformation carrying the system of independent vectors $(p_0^\alpha, p_1^\alpha, \dots, p_n^\alpha)$, $0 \le \alpha \le k$, constructed by the aid of the local representation A' to another system of independent vectors constructed by the aid of another A''. On the other hand the Plücker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}$ are independent of the special choice of the system of mutually independent k+1 vectors $(p_0^\alpha, p_1^\alpha, \dots, p_k^\alpha)$ as is mentioned above. Thus the proof is completed. Since $a_{ij}(x)$'s are all holomorphic, $P_{\lambda_0\lambda_1\cdots\lambda_k}$'s, which may be denoted $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ by **Prop. 1**, are all holomorphic in U, and by definition $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ do not vanish simultaneously. Hence the Plücker coordinates $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$, $0 \le \lambda_0$, λ_1 , ..., $\lambda_k \le n$, define a holomorphic mapping of U to the Grassmann manifold H(k,n). Denote it φ_U . To every point X there exists a neighborhood U furnished with φ_U constructed above. From the collection of these φ_U we can construct a mapping φ of X to H(k,n). Thus we have the **Proposition 2.** Let X be a complex manifold and τ be a k-dimensional holomorphic transformation of X to the n-dimensional complex projective space P^n . Then a holomorphic mapping φ of X to the Grassmann manifold H(k,n) is canonically constructed from τ . The converse of Prop. 2 is stated as follows: **Proposition 3.** Let X be a complex manifold and φ be a holomolphic mapping of X to the Grassmann manifold H(k,n). Then, a k-dimensional holomorphic transformation τ of X to n-dimensional complex projective space P^n is canonically constructed from φ . Let P^N be the ambiant space of H(k,n), $N=\binom{n+1}{k+1}-1$. As the homogeneous coordinates of P^N we can take the system of numbers $P_{\lambda_0\lambda_1\cdots\lambda_k}$, $\{\lambda_0,\lambda_1,\cdots,\lambda_k\}\subset\{1,2,\cdots,n\}$ which is alternate in it indices. Then H(k,n) is defined by $$\sum_{i=0}^{k+1} (-1)^i P_{\mu_0 \mu_1 \cdots \mu_{k-1} \lambda_i} P_{\lambda_0 \lambda_1 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}} = 0$$ To every point of X there exists an open neighborhood U in which φ is represented by $\binom{n+1}{k+1}$ holomorphic functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$. Then a fundamental property of H(k,n) asserts that the relations: $$(5) \qquad \sum_{i=0}^{k+1} (-1)^i p_{\lambda_i} P_{\lambda_0 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}}(x) = 0,$$ $(\lambda_0, \lambda_1, \dots, \lambda^n)$ varies in the set of combinations of $(1, 2, 3, \dots, n)$, induces a k-dimensional transformation τ_U of U. It is verified that τ_U is holomorphic. From the collection of τ_U we construct a k-dimensional holomorphic transformation τ of X to P^n . In other words, a local representation of τ is given by (5). Combining Prop. 1 with Prop. 2 we obtain the **Theorem I.** A k-dimensional holomorphic transformation of a complex manifold X to the n-dimensional complex projective space P^n is represented by a holomorphic mapping of X to the Grassmann manifold H(k,n). 4. In the following we consider the case of k-dimensional meromorphic transformation with $d_{\tau}(x)$ not necessarily constant. First we shall show the **Proposition 4.** Let τ be a k-dimensional meromorphic transformation of X to P^n . Then a meromorphic mapping φ of X to H(k,n) is canonically constructed from τ . Put $N = \{x \in X: d_{\tau}(x) > n\}$. Then by definition N is a proper analytic subset of X. $d^{\tau}(x)$ is equal to the constant k in X-N, and therefore τ is holomorphic in X-N. By **Th**. I a holomorphic mapping φ of X-N to H(k,n) is canonically constructed from $\tau \mid X-N$. Now let U be any open set such that $U \cap N \neq \emptyset$, in which a local representation $(a_{ij}(x))$ of τ exists. Let us denote by $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ the functions defining φ in U-N, constructed from $(a_{ij}(x))$ as in 2. Then, as is seen in 2, $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$'s are all rationally related with the functions $a_{ij}(x)$. Since $a_{ij}(x)$'s are holomorphic in U, $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ are all meromorphically extended to U. It is almost obvious that thus $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$'s define a meromorphic mapping of U to H(k,n). Thus φ is meromorphically extended from X-N to X. We are able to prove a proposition analogous to Prop. 3 as follows: **Proposition 5.** Let φ be a meromorphic mapping of a complex manifold X to the Grassmann manifold H(k,n). Then a k-dimensional meromorphic transformation τ of X to the n-dimensional complex projective space P^n is canonically constructed from φ . Since φ is a meromorphic mapping of X to H(k,n), φ is regarded to be a meromorphic mapping of X to the N-dimensional projective space P^N which is the ambiant space of $H(k,n), N=\binom{n+1}{k+1}-1$. Let \widetilde{X} be the graph of φ . Then the tri-tuple (\widetilde{X},π,X) is a proper modification of X, where π is the natural projection of \widetilde{X} in $X \times P^N$ to X. If U is an arbitrary relatively compact holomorphically complete open subset of X such that $\widetilde{U}= au^{-1}$ (U) is an analytic subset of $U \times P^N$, by a theorem stated in [3], the structure of U is given as follows: there exists a finite number of homogeneous polynomials $P_1(x, p_0, p_1, \dots, p_n)$ p_N), ..., $P_m(x, p_0, p_1, ..., p_N)$ with the coe fficients holomorphic in U such that \widetilde{U} is given by $\widetilde{U}=\{(x,p)\colon P_1(x,p)=\dots=P_N(x,p)=0\}$. There exists an analytic set \widetilde{N} in \widetilde{U} such that π is biholomorphic in $\widetilde{U}-\widetilde{N}$, $\pi(\widetilde{U}-\widetilde{N})$ is dense in U, and, by meromorphiy of φ , $\pi(\widetilde{N})$ is analytic in U; the tri-tuple (\widetilde{U},π,U) is a proper modification of U. Since π is biholomorphic in the open dense subset $\widetilde{U}-\widetilde{N}$, all polynomials $P_1(x,p),\cdots,P_N(x,p)$ must be linear. Hence the singurality of φ , if it appears, is induced only by simultaneous vanishing of the holomorphic coefficients of $P_i(x,p)$'s. Since φ is a mapping of X, hence of U, to H(k,n), we can adopt the notation $P_{\lambda_0\lambda_1\cdots\lambda_k}$ instead of p_0,p_1,\cdots,p_N as before. At last as the solutions of the equations: $P_1(x, p) = P_2(x, p) = \cdots = P_m(x, p) = 0$, we obtain the functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ holomorphic in U-N, and meromorphic in $U,N=\pi(\tilde{N})$. Now, we construct the transformation τ in the present **Prop.**. $\varphi \circ \pi$ is holomorphic in \widetilde{U} . By **Th**. I we can construct a k-dimensional holomorphic transformation $\widetilde{\tau}_U$ of U to P^n . A local representation of $\tau_{\overline{U}}=(\widetilde{\tau}_{\overline{U}}|\widetilde{U}-\widetilde{N})\circ\pi_{-1}$ in some neighborhood of a point of U-N is constructed from the meromorphic functions $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$ through (5): $$(6) \qquad \sum_{i=0}^{k+1} (-1)^i p_{\lambda_i} P_{\lambda_0 \cdots \hat{\lambda}_i \cdots \lambda_{k+1}}(x) = 0.$$ Let us denote by $\Delta(x)$ the least common multiple of the denominators of $P_{\lambda_0\lambda_1\cdots\lambda_k}(x)$. Then (7) $$\sum_{i=0}^{k+1} (-1)_i p_{\lambda_i} \mathcal{L}(x) P_{\lambda_0 \cdots \lambda_i \cdots \lambda_{k+1}}(x) = 0$$ is again a local representation of τ_U in U-N, and defines a k-dimensional meromorphic transformation of U to P^n . In other words τ_U is extended from U-N to U. Since U was arbitrarily chosen, we can construct a k-dimensional meromorphic transformation τ of X to P^n from the collection of τ^U . Thus **Prop. 5** is proved. Summarizing the Prop. 4 and 5 we obtain **Theorem II.** A k-dimensional meromorphic transformation of a complex manifold X to the complex projective space P^n is canonically represented by a meromorphic mapping of X to the complex Grassmann manifold H(k,n). ## References - [1] H. GRAUERT und R. REMMERT, Zur Theorie der Modifikationen I. Stetige und eigentliche Modifikationen komplexer Raume, Math. Ann., 129 (1955), 274-296. - [2] H. GRAUERT und R. REMMERT, Komplexe Räume, Math. Ann., 136 (1958), 245-318. - [3] H. GRAUERT et R. REMMERT, Espaces analytiquement complets, Comptes Rendus, 245 (1957), 882-885. - [4] R. REMMERT, Holomorphe und meromorphe Abbildungen Komplexer Räume, Math. Ann., 133 (1957), 328-370. - [5] VAN DER WAERDEN, Einführung in die Algebraische Geometrie, Julius Springer, Berlin, 1939.