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1. In this note we shall be concerned with the correspondences between a complex
manifold and the set of linear submanifolds of a complex projective space, analytically
defined, more general than usual holomorphic mappings. A primitive form of such
correspondences will be found in Hopf’s o-process, though it is covered by the notion of
meromorphic mapping already introduced. Hopf’s os-process of the complex number space
C» at the origin is constructed by the aid of the equations: zipi—2;5:=0, 1<i,7<m, where
21, 2, -, 2Zn are the coordinates of C» and py, Do ***, fa are the homogeneous coordinates
of (n—1)-dimensional complex projective space P»-t., These equations are regarded to
define a transformation of C* to P~ the values of which are the linear submanifolds
of P»-'. By generalizing the coefficients of the equations above to general holomorphic
functions we are lead to a transformation of C* to P»-1 the values of which are the
linear submanifolds of not neccesarily equal dimension, of P*-1. The purpose of this
note is to characterize such a transformation by usual holomorphic or meromorphic
mapping with values in some complex Grassmann manifbld. A _

By meromorphic mapping of a complex manifold X to another complex manifold Y,
we mean a “meromorphic mapping’’ in the sense of REMMERT. Then the graph G of a
meromorphic mapping is a proper modification of X. Through this note we assume the
knowledge of the construction and elementary properties of complex Grassmann manifold,
see [5]. ‘

2. Let X be a complex manifold and = be a transformation of X to the set of linear
submanifolds of #-dimensional complex projective space P with homogeneous coordinates
(Po, P1,*, Pn). Then = will be given by a system of equations:

(1) Peups=0 A<i<D,

where a;;(x)’s are the functions defined in X. The system of functions {a:3(x)} is not
neccesarily unique with respect to z. But the rank of the matrix (ay(x)) is uniquely
determined at every point of X. The quantity » — rank(a:;;(x)) is denoted by di(x) and
called the dimension of © at x. d.= infrexd:(x) is called the minimal dimension of z, or
in short the dimension of r. By definition d»'x) is the dimension of the submanifold
(x); d(x) = n.

The transformation r is said to be meromorphic at x € X, if there exists [some choice
of the matrix of (1) such that all the coefficients a:;(x)’s are holomorphic in some
neighborhood of x. r is said to be holomorphic at x especially when = is meromorphic
and the rank of the matrix (a:(x)) is constant in some neighborhood of x. = is said to
be holomorphic (meromorphic) in X, if ¢ is holomorphic (meromorphic) at every point

/30



Lol

On Some Kind of Set-valued Transformation 131

of X. .

First we consider the holomorphic case. The general (meromorphic) case will be
treated in 3.

The matrix function (a;(x)) needs not to be defined in X. Since the meromorphy
of = is locally defined, it is sufficient to give locally defined (a;;(x)). Once a (a@:;;(x))
is given, there are various (a;;(x))’s that are equivalent to the original (@:;;(x¥)). Then
each (a;;(x)) from those equivalent ones js called a local representation (of the matrix of
the equations defining 7). Through this note a transformation denoted by k-dimensional
meromorphic transformation is a set-valued transformation defined above. For simplicity
the space appearing is assumed to be connected, and therefore d.(x) is constant.

Assume: d.=inf.exd.(x)=Fk. Then, by definition the rank (a;;(x))=n—k and is
independent of the local representation (a;;(x)) of z. Now we shall proceed with a fixed
local representation (a;;(x)). Since d,(x)=d.= k, there exist a (n—Ek)-minor (@iip(2))
of (a:5(x)). For simplicity we change indeces 4, js to a, B, and assume both « and B
varie from 0 to n—k—1: 0<a,B<n—k—1. Then the equation (1) is solved with respect
to po, D1, vty D1t

(2) b= 3 b b, O<j<n—k—D),

Thus the linear submanifold = (x) is regarded to be the orbit of the point (fe, 1, -,
pn) given by

P
D= gobj n—tk+:(X) U, 0K ji<n—k-1),
(3) . .
b= D05 n-rriD w0, . (n—k<j<m),

where #;’s (0<{<k) varie independently in C**! and 8; ,—x+; is the KRONECKER’s symbol.

3. In this section we shall construct a holomorphic mapping ¢, that characterizes z, of
X to the complex Grassmann manifold H (% ») which represents the set of k-dimensional
linear submanifolds of n#-dimensional complex projective space p~.

Since #o, w1, -+, uz in (3) are independent, we can choose k-1 independent vectors
W2, u?, -, u%), 0<a<k. Through (3) these vectors give rise to another system of k+1
independent vectors (p%, p% -, p%), 0<<a<k. Then the system of quantities:

pio pgq pg\k
(4) Prgayorg = B, B, s,

'3 v k
p)\o Al p}\k

gives the Pliicker coordinates of the k-dimensional linear submanifold z(x) of P». As
is easily verified, the Pliicker coordinates (4) are independent of special choice of the
system of independent vectors (g, u® ---, %), and are therefore denoted by Pigy.ax(%).

By the definition of z, the matrix function (a:;(x)) of the local representation (1) is
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holomorphic in an open set U. From now on we proceed with fixed U. As the first
step we show the Coe

Proposition 1. The Plicker coordinates Papy-ri Of the image (%) are independent of
the special choice of the local representation (1) of <. ,

For the proof let (g,;(x)) and (a;;(x)) be different two matrices providing the local

¥ n
representation of . Since these matrices represent the same transformation z, 3 @:(%)
. Jg=0

pi, 0<i<l' and 3 awu(2)bs 0<i<l" generate the same. ideal associated to the linear
J=0

manifold =(x), and therefore the matrices A’ =(a;;(x)) and A" =(a;y(x)) are related with
each other by two holomorphic matrices M=(mu(x)) and N=(ng(x)): A'=MA" and
A'—=NA'.- Tt is easily verified that the matrices M and N induce a nonsingular linear
transformation carrying the system of independent vectors: e, p% -, DD, 0<a<k,
constructed by the aid of the local representation A’ to another system of independent
vectors constructed by the aid of another A”. On the other hand the Pliicker coordinates
Pippap are independent of the special choice of the system of mutually independent k41
vectors (pZ, p%, -+, Pp) as is mentioned above. Thus the proof is completed.

Since a;;(x)’s are all holomorphic, Papy-ax’s, which may be denoted Prpi-ax(%) by
Prop. 1, are all holomorphic in U, and by definition Pypr-ax(x) do not vanish simultaneo-
usly. Hence the Pliicker coordinates Prryan(), 020, A1y 05 A, define a holomorphic
mapping .of U to the Grassmann manifold H(k »n). Denote it ¢y. To every point X
there exists a neighborhood U furnished with-¢u constructed above. From the collection
of these ¢y we can construct a mapping ¢ of X to H (k,n). Thus we have the

Proposition 2. Let X be a complex manifold and © be a E-dimensional holomorphic
transformation of X to the n-dimensional complex projective space P". Then a holomorphic
mapping ¢ of X to the Grassmann manifold H(k,n) is canonically constructed from .

The converse of Prop. 2 is stated as follows:

Proposition 3. Let X be a complex manifold and ¢ be a holomolphic mapping of X to
the Grassmann manifold H(k,n). Then, a b-dimensional holomorphic transformation = of X
10 n-dimensional complex projective space P™ is canonically constructed from ¢.

Let P¥ be the ambiant space of H(k,n), N= (;11) —1. As the homogeneous coordinates
of PY¥ we can take the system of numbers Pipy-ap {40 Ay, ) C {1,2,-,m}) which is
alternate in it indices. Then H(k,n) is defined by

k+1 ’
'Zo (=D Pugpr-pgirironiKidg sy = 0
i

To every point of X there exists an open neighborhood U in which ¢ is represented
by ;’j:}) holomorphic functions Pipy-ax(%). Then a fundamental property of H(k,7)
asserts that the relations:

k+1
(5) 2 (=D aiPro-firg (8 =0,

=0
(2, A, -+, ) varies in the set of combinations of (1,2,3,-, n), induces a k-dimensional

transformation v of U. It is verified that rp is holomorphic. From the collection of zp
we construct a k-dimensional holomorphic transformation = of X to P~ In other words,
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a local representation of = is given by (5). . -

Combining Prop. 1 with Prop. 2 we obtain the

Theorem 1. A k-dimensional holomorphic transformation of a complex manifold X to the
n-dimensional complex projective space P™ is" represented by a holomorphzc mappmg of X to
the Grassmann manifold H(k,n).

4. In the following we consider the case of £—dimensional meromorphic transformation
with d,(x) not neccesarily constant. First we shall show the

Proposition 4. Let © be a k-dimensional meromorphic transformation of X to P*. Then
a meromoyphic mapping ¢ of X to H(k,n) is canonically constructed from «

- Put N={x€X: d.(x)>#n}. Then by definition N is a proper analytic subset of X.
d"(x) is equal to the constant 2 in X—N, and therefore r is holomorphic in X—N.
By Th. I a holomorphic mapping ¢ of X—N to H(k n) is canonically constructed from
z|X—N.

Now let U be any open set such that UN\N # ¢, in which a local representatwn (ais
(%)) of = exists. Let us denote by Pip,. ax(x) the functions defining ¢ in U—N, constructed
from (a;;{x)) as in 2. Then, as is seen in 2, P, (%)’s are all rationally related with
the functions a;;(x). Since am(x) s are holomorphic in U, Papa;.-a (%) are all meromorphi-
cally extended to U. It is almost obvious that thus Pipny-ax(x)’s define a meromorphic
mapping of U to H(k, 7). Thus ¢ is meromorphically extended from X—N to X.

We are able to prove a proposition analogous to Prop. 3 as follows: .

Proposition 5. Let ¢ be a meromorphic mapping of a complex manifold X to the Gras-
smann manifold H(k,n). Then a k-dimensional meromorphic transformation © of X to the
n-dimensional complex projective space P~ is canonically constructed from .

Since ¢ is a meromorphic mapping of X to H (k,m), ¢ is regarded to be a meromorph1c
mappmg of X to the N-dimensional projective space P¥ which is the ambiant space- of
H(k,n), N= (ZI}) —1. Let X be the graph of ¢. Then the tri- -tuple (X,7,X) is a proper

modification of X, where n is the natural projection of X in XXP¥ to X. If U is an
arbitrary relatively compact holomorphically complete open subset of X such that U=rz-1
(U) is an analytic subset of UXP¥, by a theorem stated in [3], the structure of U is
given as follows: there exists a finite number of homogeneous polynomials Pl(x Do, D1, -
D)y -, Pu(x, o, D1, -+, pv) with the coe fficients holomorphic in U such that U is given by
. U—{(x ?): Pi(x, p)—m—PA(x p) =0}. There exists an analytic set N in U such that =
is biholomorphic in U— N, n(U N) is dense in U, and, by meromorphiy of ¢, n.'(N) is
analytic in U; the tri-tuple (U 7, U) is a proper modification of U. Since 7 is biholomor-
phic in the open dense subset U—N, all polynomials Pi(x, ), -, Py(x,p) must be linear.
Hence the singurality of ¢, if it appears, is induced only by simultaneous vanishing of
the holomorphic coefficients of Py(x,)’s. Since ¢ is a mapping of X, hence of U, to
H(k,n), we can adopt the notation Prori-ap instead of po, i, -+, P as before. At last as
the solutions of the equations: Pi(x, p)=Py(x, p) = = w(%, P)=0, we obtain the functions
Pygr-ax(x) holomorphic in U—N, and meromorphic in U, N—-:(N)

Now, we construct the transformation = in the present Prop.. ¢o= is holomorphic in
U. By Th. I we can construct a A-dimensional holomorphic transformation 7y of U to P=.
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A local representation of zp = (ngﬁ —N)on_, in some neighborhood of a point of U—N is
constructed from the meromorphic functions Papp-an(x) through ®):

k+1
(6) ) z_% (—1)ipMPAo--3\i---/\k+1(x) =0.
Let us denote by 4(x) the least common multiple of the denominators of Prgrp-ar(%)-
Then

(7 B (DA Proringn () = O
is again a local representation of zy in U—N, and defines a E-dimensional meromorphic
transformation of U to P». In other words 7y is extended from U—N to U. Since U
was arbitrarily chosen, we can construct a k-dimensional meromorphic transformation 7
of X to P» from the collection of z¥. Thus Prop. 5 is proved.

Summarizing the Prop. 4 and 5 we obtain

Theorem II. A E-dimensional meromorphic transformation of a complex manifold X to
the complex projective space P is canonically represented by a meromorphic mapping of X to
the complex Grassmann manifold H(k,n). '
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