# ON INFINITESIMAL TRANSFORMATIONS OF CERTAIN-ALMOST-TACHIBANA SPACE

#### Masanori Kōzaki and Takeo Ohkubo

Kurume Technical College (M.K) and Department of Mathematics, Faculty of Science, Kumamoto University (T.O)
(Received September 30, 1965)

#### § 0. Introduction.

S. Tachibana<sup>1)</sup> proved that in an n-dimensional compact almost-Tachibana space with vanishing  $\widehat{K}$  an infinitesimal conformal (or projective) transformation is necessarily an isometry. On the other hand, S. Tachibana<sup>2)</sup> and H. Nakagawa<sup>3)</sup> discussed automorphisms of almost-Tachibana spaces under certain conditions.

In this paper, we shall consider an infinitesimal conformal (or projective or holomorphically projective) transformation of an n-dimensional compact almost-Tachibana space satisfying the equation  $R_{ji}^* = aR_{ji} + b\,g_{ji}$  (a,b; scalars or constants) and deduce Tachibana's results and that in an n-dimensional compact almost-Tachibana space of non-positive comstant holomorphic curvature an infinitesimal conformal (or projective or holomorphically projective) transformation is necessarily an isometry. Next, we shall discuss an automorphism of our space.

#### § 1. Preliminaries.

Let M be an n-dimensional almost-Hermitian space with almost-complex structure  $\varphi_i^h$  and positive definite Riemannian metric  $g_{ji}$  satisfying the relations:

$$(1.2) g_{rs} \varphi_j^r \varphi_i^s = g_{ji}.$$

From (1.2) it follows that tensors  $\varphi_j^i = \varphi_j^r g_{ri}$  and  $\varphi^{ji} = \varphi_r^i g^{rj}$  are skew symmetric. Let  $h \atop ji \atop ji \atop ji}$ ,  $R_{sji}^h$  and  $R_{ji} = R_{ij}$  be Christoffel symbols, Riemannian curvature tentor and Ricci tensor respectively. We denote be  $\nabla_j$  the operator of covariant derivative with respect to  $h \atop ij \atop jij}$ . It is well known that with respect to the canonical connection defined by

$$\Gamma_{ji}^{h} = \begin{Bmatrix} h \\ ji \end{Bmatrix} - \frac{1}{2} \varphi_{r}^{h} \nabla_{j} \varphi_{i}^{r},$$

<sup>1)</sup> S. Tachibana (6), 2) S. Tachibana (7), 3) H. Nakagawa (1) 4) S. Tachibana (5), 5) S. Tachibana (6),

tensors  $g_{ji}$  and  $\varphi_i^h$  are covariantly constant. If we denote by  $K_{lji}^h$  the curvature tensor of  $\Gamma_{ji}^h$  and put

$$\hat{K}_{ji} = 2K_{jir}{}^t \varphi_t^r, \quad R_{ji}^* = (1/2)\varphi^{tr} R_{trsi} \varphi_{j:}^s$$

then we have

$$(1.3) \hat{K}_{ji} = 4\varphi_j^r R_{ri}^* - \varphi_s^t \nabla_i \varphi_r^s \nabla_i \varphi_i^r.$$

If an almost-Hermitian space satisfies

$$\nabla_j \varphi_{ih} + \nabla_i \varphi_{jh} = 0,$$

then it is called an almost-Tachibana space. In an almost-Tachibana space, it is well known that the following equations are valid<sup>6)7)8)</sup>,

$$(1.5) R_{rs}^* \varphi_j^r \varphi_i^s = R_{ji}^*, \quad R_{ji}^* = R_{ij}^*,$$

$$(1.6) (R_{ji} - R_{ji}^*) v^j v^i \ge 0 \text{for any vector field } v^i,$$

(1.7) 
$$R-R^*=\text{constant} \ge 0$$
, where  $R=g^{rs}R_{rs}$ ,  $R^*=g^{rs}R_{rs}^*$ 

(1.8) 
$$\nabla^h N(v)_h = 0$$
 for any vector field  $v^h$ , where  $N(v)_h = \varphi_h^t (\nabla_t \varphi_{rs}) \nabla^r v^s$ .

## § 2. Certain almost-Tachibana spaces.

It is known that the followings are valid;

**Lemma 2.1.** In order that the form  $\widehat{K}$  vanishes it is necessary and sufficient that  $5R_{ji}^* = R_{ji}$ .

**Lemma 2.2.**<sup>10)</sup> In an n-dimensional  $(n \ge 4)$  almost-Tachibana space of constant holomorphic curvature k, we have

$$3R_{ji}^* = -R_{ji} + (n+2)kg_{ji}$$
 (k: constant).

It is well known that in an almost-Hermitian space the differential form  $\hat{K} = \hat{K}_{ji} dx^j \wedge dx^i$  is closed<sup>11)</sup>. Now, we consider an almost-Tachibana space (every eigen value of  $R_{ji} \neq R/n$ ) satisfying the equation

(2.1) 
$$R_{ji}^* = aR_{ji} + bg_{ji}$$
 (a, b: scalars).

In an almost-Tachibana space, from (1.3) we have

$$\hat{K}_{ji} = \varphi_j^r (4R_{ri}^* - R_{ri}).$$

Transvecting (2.2) with  $\varphi_k^j$ , we get

$$\varphi_k^i \hat{R}_{ji} = -5R_{ki}^* + R_{ki} = -5(R_{ki}^* - R_{ki}) - 4R_{ki}$$

<sup>6)</sup> S. Sawaki (2), 7) S. Sawaki (3), 8) S. Tachibana (4), 9) S. Tachibana (6). 10) H. Nakagawa (1). 11) S. Tachibana (5), this form  $\hat{K}$  is a generalization of Chern 2-form of Hermitian spaces.

from which we have

$$\nabla^k(\varphi_k^j \hat{K}_{ii}) = -(5/2)\nabla_i(R^* - R) - 2\nabla_i R.$$

If  $\nabla_k \hat{K}_{ji} = 0$ , taking account of (1.7) and the last equation we get  $\nabla_i R = 0$ . Hence R and  $R^*$  are constants.

If we contract (2.1) with  $g_{ji}$  and operate  $\nabla^{j}$  to it, we have

$$(2.3) \qquad (\nabla^j a) R + (\nabla^j b) n = 0.$$

On the other hand, if we operate  $\nabla^{j}$  to (2.1), then we have

$$(2.4) \qquad (\nabla^j a) R_{ji} + (\nabla^j b) g_{ji} = 0.$$

From (2.3) and (2.4) we get

$$(\nabla^j a) (R_{ji} - (R/n) g_{ji}) = 0,$$

from which by our assumption, we obtain  $\nabla^j a = 0$  and  $\nabla^j b = 0$ . Hence a and b are constants. Therefore we have the following

Theorem 2.1. In an almost-Tachibana space (every eigen value of  $R_{ji} \neq R/n$ ) satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$  (a, b: scalars), if  $\Delta_k \hat{K}_{ji} = 0$ , then a and b are constants.

### § 3. Infinitesimal conformal transformation.

Consider an almost-Tachibana space satisfying the equation  $R_{ji}^* = aR_{ji} + b g_{ji}$  (a, b: constants). Then for a vector field  $v^h$  we have

(3.1) 
$$\nabla^{j}(R_{ji}^{*}v^{i}) = a\nabla^{j}(R_{ji}v^{i}) + b\nabla^{j}v_{j}.$$

Now let  $v^h$  be an infinitesimal conformal transformation, then by definition there exists a scalar function  $\rho$  satisfying  $\pounds g_{ji} = 2\rho g_{ji}$  and as is well known the equation

(3.2) 
$$\pounds \begin{Bmatrix} h \\ ji \end{Bmatrix} = \rho_j \delta_i^h + \rho_i \delta_j^h - \rho^h g_{ji}, \quad \rho_i \equiv \nabla_i \rho_i$$

holds good, where we denote by £ the operator of Lie derivative with respect to a vector field  $v^h$ . From (3.2) we have

$$\rho_i = (1/n) \nabla_i f, \quad f \equiv \nabla_i v^i,$$

and

$$(3.3) \qquad \nabla^r \Delta_r v^h + R_r^h v^r = (2-n)\rho^h.$$

On the other hand, transvecting (3.2) with  $\varphi_l^i \varphi_h^i$  we get

(3.4) 
$$\varphi_{l}^{i} \nabla_{j} (\varphi_{h}^{i} \nabla_{i} v^{h}) + N(v)_{l} + 2R_{lr}^{*} v^{r} = -2\rho_{l}.$$

If we operate  $\nabla^l$  to this equation and take account of (2.3), then we obtain

$$(3.5) \qquad \nabla^{l}(R_{lr}^{*}v^{r}) = -\nabla^{l}\rho_{l}.$$

Hence from (3.1) and (3.5) we have

(3.6) 
$$a\nabla^{j}(R_{ji}v^{i}) = -\nabla^{l}\rho_{l} - bf.$$

Next operating  $\nabla_h$  to (3.3) we have  $\nabla^r \nabla_r f + 2 \nabla^r (R_{ri} v^i) = (2-n) \nabla^h \rho_h$ , from which we get  $\Delta f = \lambda f \left(\lambda = nb/(na-a-1)\right)$  by virtue of (3.6). From the last equation, we have

**Theorem 3.1.** In a compact almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$ , if  $\lambda$  is non-negative, an infinitesimal conformal transformation is necessarily an isometry.

Especially, in a compact almost-Tachibana space with vanishing  $\widehat{K}$  or of constant holomorphic curvature we have

$$\lambda = 0$$
 or  $\lambda = -nk$ .

Hence we have the following

Corollary 1.<sup>12)</sup> In an  $n \neq 6$ -dimensional compact almost-Tachibana space with vanishing  $\hat{K}$ , an infinitesimal conformal transformation is necessarily an isometry.

Corollary 2. In an n-dimensional compact almost-Tachibana space of non-positive constant holomorphic curvature, an infinitesimal conformal transformation is necessarily an isometry.

# § 4. Infinitesimal projective transformation.

In the same way we can deal with an infinitesimal projective transformation. Let  $v^h$  be such a transformation, then by definition there exists a vector field  $\rho_i$  such that

$$\pounds \begin{Bmatrix} h \\ ji \end{Bmatrix} = \rho_j \, \delta_i^h + \rho_i \, \delta_j^h.$$

From the above we have

$$\nabla^r \nabla_r v^h + R_r^h v^r = 2\varrho^h, \quad \varrho_i = 1/(n+1) \nabla_i f, \quad f \equiv \nabla_r v^r.$$

In an almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$  (a, b: constants), we have

$$\Delta f = \lambda f$$
,  $\lambda = 2b(n+1)/(na-a-2)$ .

<sup>12)</sup> S. Tachibana (6),

From the last equation, we have the following

**Theorem 4.1.** In a compact almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$ , if  $\lambda$  is non-negative, an infinitesimal projective transformation is necessarily an isometry.

Corollary 1.<sup>13)</sup> In an  $n(\neq 11)$ -dimensional compact almost-Tachibana space with vanishing  $\hat{K}$ , an infinitesimal projective transformation is necessarily an isometry.

Corollary 2. In an n-dimensional compact almost-Tachibana space of non-positive constant holomorphic curvature, an infinitesimal projective transformation is necessarily an isometry.

## § 5. Infinitesimal holomorphically projective transformation.

In the same way we can deal with an infinitesimal holomorphically projective transformation (we call such a transformation HP-transformation). Let  $v^h$  be HP-transformation, then by definition there exists a vector field  $\rho_i$  such that

$$\pounds \begin{Bmatrix} h \\ ji \end{Bmatrix} = \rho_j \, \delta_i^h + \rho_i \, \delta_j^h - \tilde{\rho}_j \, \varphi_i^h - \tilde{\rho}_i \, \varphi_j^h, \quad \tilde{\rho}_j = \varphi_j^h \, \rho_h.$$

From this equation we have

$$\nabla^{r} \nabla_{r} v^{h} + R_{r}^{h} v^{r} = 0, \quad \rho_{i} = 1/(n+2) \nabla_{i} f, \quad f \equiv \nabla^{i} v_{i}.$$

In an *n*-dimensional almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$  (a, b: constants), we have

$$\Delta f = \lambda f$$
,  $\lambda = 2(n+2)b/(na+2a-2)$ ,

from which we obtain the following

**Theorem 5.1.** In an n-dimensional compact almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$ , if  $\lambda$  is non-negative an HP-transformation is necessarily an isometry.

Corollary 1. In an  $n \neq 8$ -dimensional compact almost-Tachibana space with vanishing  $\hat{K}$ , an HP-transformation is necessarily an isometry.

Corollary 2. In an n-dimensional compact almost-Tachibana space of non-positive constant holomorphic curvature, an HP-transformation is necessarily an isometry.

#### § 6. Automorphism.

<sup>13)</sup> S. Tachibana (6).

If an isometry is almost-analytic, it is called an automorphism. In an almost-Tachibana space, if a vector field  $v^h$  is almost-analytic then the followings are valid:

$$(6.1) \qquad \nabla^r \nabla_r v_i + R_{ir} v^r = 0,$$

(6.2) 
$$2N(v)_{i} = (R_{ir}^{*} - R_{ir})v^{r}.$$

In an *n*-dimensional almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ij}$  (a, b: constants), from (6.2) we have

$$2N(v)_i = (a-1)R_{ji}v^j + bg_{ji}v^j$$
.

If we operate  $\nabla^i$  to the above equation we have

(6.3) 
$$(a-1)R_{ji}\nabla^{j}v^{i} + bf = 0, f \equiv \nabla^{i}v_{i}.$$

On the other hand, from (6.1) we have

$$(6.4) \qquad \nabla^r \nabla_r f + 2R_{ir} \nabla^i v^r = 0.$$

From (6.3) and (6.4) we obtain

$$\Delta f = \lambda f$$
,  $\lambda = 2b/(a-1)$ ,

and hence we have the following

**Theorem 6.1.** In an n-dimensional compact almost-Tachibana space satisfying the relation  $R_{ji}^* = aR_{ji} + bg_{ji}$ , if  $\lambda$  is non-negative, an almost-analytic vector is an automorphism.

From this theorem, we have the following

Corollary 1.<sup>14)</sup> In an n-dimensional compact almost-Tachibana space with vanishing  $\hat{K}$ , an almost-analytic vector is an automorphism.

Corollary 2.<sup>15)</sup> In an n-dimensional compact almost-Tachibana space of non-positive constant holomorphic curvature, an almost-analytic vector is an automorphism.

If an  $\pi(>2)$ -dimensional almost-Tachibana space is conformally flat, then we have

$$(n-2)R_{ji}^* = 2R_{ji} - R/(n-1)g_{ji}, \quad R = \text{constant} \ge 0,$$

and hence we have the following

Corollary 3.<sup>16)</sup> In an n(>4)-dimensional compact conformally flat almost-Tachibana space, an almost-analytic vector is an automorphism.

<sup>14)</sup> S. Tachibana (5), 15) H. Nakagawa (1), 16) S. Tachibana (7).

### **Bibliography**

- (1) H. Nakagawa: On automorpisms of an almost Tachibana space of constant holomorphic curvature. Sci. Rep. Tōkyo Kyoiku Daigaku, Vol. 7, No. 185 (1963) 269-274.
- (2) S. SAWAKI: On infinitesimal transformations of almost-Kählerian space and K-space. Kōdai Math. Sem. Rep. Vol. 16 (1964) 105-115.
- (3) S. SAWAKI: On the Matsushima's theorem in a compact Einstein K-space. Tōhoku Math. Jour. Vol. 13 (1961) 455-465.
- (4) S. Tachibana: On almost analytic vectors in certain almost Hermitian manifolds. Tōhoku Math. Jour. Vol. 11 (1959) 351-363.
- (5) S. Tachibana: On automorphisms of certain compact almost-Hermitian spaces. Tohoku Math. Jour. Vol. 13 (1961) 179–185.
- (6) S. Tachibana: On infinitesimal conformal and projective transformations of compact K-space. Tōhoku Math. Jour. Vol. 13 (1961) 386-392.
- (7) S. Tachibana: On automorphisms of conformally flat K-spaces. Jour. Math. Soc. Japan, Vol. 13 (1961) 183–188.