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In this paper we study from a more general point of view an algebraic con-
struction which appeared in E. Cartan’s classification of simple real Lie algebras
(see, for example, [ 3] and [7]) and which has turned up again in connection with
the relation of Lie algebras of type & and the exceptional simple Jordan algebras
C8D- :

One way to formulate the general situation is as follows: Let 2 be a non
associative algebra over a field @, and suppose that S is a reflection in 2 in the
sense that S is an automorphism of % with S*= I'and S+ 1. Let % =%, (S)PA_,
(8)=2Ai DA, be the associated decomposition of . Now 2, is a subalgebra and
2_; is, in the obvious sense, a sub triple system of . For any « € @ a new algebra
@, S, @) =B can be built on the vector space U as follows:

1) If a, b € A, the product {ab} in B is given by {ab} = aab.
ii) 2 is a subalgebra of 8.

iii) 2 acts on 2_; in B just as it does in .

Examples show that B is not generally isomorphic to 9. This suggests the twin
problems of determining criteria for the isomorphism of 2 and & and of classify-
ing the algebras B which can be obtained from U by varying S and a. Note that
if A belongs to a class of algebras defined by multilinear identities, then % is in
the same class. In the sequel 2 will be a Lie algebra, _, consequently a Lie
triple system. Rather than proceed from 1z and S we will begin with a more
basic Lie triple system construction. Results on Lie triple systems cited without
reference may be found in [67].

1. Variants and Twists. Let < be a Lie triple system over a field @ of characte—
ristic 0, and suppose that the ternary operation in % is (a, 4, ¢)>[abc]. For each
« € 0* denote by ¢ the triple system consisting of the vector space of ¥ and the

operation
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<abc> =«alabc].

Since the class of Lie triple systems is defined by multilinear identities ¢ is a
Lie triplésystem, which will be called the a-variant of <.

Tueorem 1. a) T and T have the same subalgebras, ideals, inner derivations,
and the same automorphisms. b) if g€ (0*)? then I¥~Z* In particular, if a
field £ 2 0 (a*'?) then  and $* are isomorphic over 2, i. e., To == (T¥),.

Proor. Part a) is easily verified. It is worth noting, however, that if D,q: x —
[abx], then D g5 = aDyy. Part b) follows from the observation that if v = g2
then x — B« is an isomorphism of $* and g,

Let S be a reflection of a Lie algebra &, and let T =2_,(S). Then S induces a
reflection in the ideal M=TH[TLT] and [ITI]= M,(S). Conversely if I, is a
triple system for which 3, [<,Z,]= & then the unique endomorphism S, such
that £, =28_,(S,) is a reflection of 2. Given a reflection S of & and « € 0*, define
another algebra with product < > on the vector space of & by setting:

1) <ab>=calab]fora,beT, T=2.S9).

i) <ab> =[ab]if both ¢ and b are in [¥Z] or if one is in & and the other
in [Z27]. We will call this algebra the a-twist of & with respect to S, and
denote it by (8, S, a).

In the sequel we shall be concerned with semi-simple ¥. In this case any
imbedding of < in an enveloping algebra & such that 8 =3I @H[II] is equivalent
to a standard imbedding, namely the semidirect sum of & and its algebra J(Z) of
inner derivations. This amounts to the assertion that for a, b € T, [ab]]— Day
defines an isomorphism of [TZ] and J(Z). For such imbeddings & is semi-simple
and universal for . Conversely if S is a reflection of a semi-simple algebra £ and
T=28_,(S), then £=ITH[ITL], the imbedding of T in ¢ is standard and £ is
semi-simple. We will denote by 2, (%) the standard enveloping algebra of <.

Tueorem 2. If T is semi-simple then T is semi-simple and £ (%%) is the a-
twist of £,(T) with respect to the reflection S of ¥ such that T =2_,(S). Con-
versely if 8 is semi-simple, S is a reflection of & and T = 8_,(S), then (g, S, a) =
L(Z).

Proor. That ¥ semi-simple implies T* semi-simple follows from part b) of
theorem 1. If we take £,(T) =T P I(T), the semidirect sum, then £,(T*)=TPHI
() =ZTPDJI(Z) as a vector space. The product rules are: i) <ab>= D op> = Dorasy
=aDipy=ala,b] in L,(T) for a, b€ . ii) <aD>=aD=[aD]forac T, D€ 4(2).
iii) <D1D,> = D,D; — D,D, =[D,D;]. This shows that £,(%) is an a-twist of
2,(%). Conversely if  and S are given and I is the associated a-twist, I has
the vector space decomposition M=TH <ITT> and < <ab>c>=a <[ab]c>
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= a[[ab]c]. Thus the product in MM induces the structure = on <. Consequently
Mt is semi-simple and W = £, (T*).

Assume that 8 is semi-simple with reflection S, and that £ = 2_,(S). Since &
and (8, S, «) are universal for £ and I respectively, any isomorphism 4 of &
onto £* uniquely extends to an isomorphism A4 of € and (8, S, ). The restriction
of 4 to [TT] is an automorphism of [TT] (and of <TT>). The following im-
mediate consequences of theorems 1 and 2 will be useful.

Turorem 3. Let & be semi-simple. If a field 2 2 @ («!'?) then (2, S, ), = Q. If

O is the real field then any twist of £ is isomorphic either to & or to a twist
@&, S,—1.
2. The isomorphism of £ and T* in the general case. The observations of the
preceding section imply that the study of the variants of a semi-simple < reduces
to the case ¥ simple. For a Lie algebra & let G(2) denote the Lie triple system
with product [abc]=[[ab]c], and call 0(8) the Lie triple system of 2. The simple
Lie triple systems fall into two disjoint classes:

1) those with simple universal Lie algebras,

1i) those with a universal Lie algebra of the form £, %, where the &; are
isomorphic ideals. A necessary and sufficient condition that (ii) hold for ¥ is that
T=DR).

With respect to the question of the isomorphism of € and S the elements of
class (ii) behave quite simply, as we shall establish in theorem 4. To specify the
situation exactly it is convenient to develop the notion of centrality for Lie triple '
systems and to classify the central simple systems, a result of possibly broader
interest.

The centroid of a Lie triple system ¥ is the centralizer in Hom &(Z, ¥) of the
space of multiplications x —>3[xa;b;] in . In case this centralizer is trivial, call

T central.
" Lewua. If T is simple its centroid is a field.

Proor. Let I" be the centroid of € and 6 € /. From the identity [x yz]=
— [ yxz] and the Jacobi identity we infer the identity
(1) [xy210=[(20) yz] =[x (y6)z]= [ y(:0)]

For 0, ¢ € I' this implies [x yz16¢ = [(x06) y(2¢)] and hence [x yz](6¢ — ¢6)= 0.
Now if £ is simple [$TT]= T and  is irreducible with respect to its multipli-
cations, and so /" is a commutative division ring.

Lemma. If 81is a simple Lie algebra with centroid 7'y and € = 0(8) has centroid
I, then I =T,.

Proor. If 6¢ I then (1) shows [[xy]z]60 =[x y](z6)], which implies that 6
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commutes with all algebra multiplications ad u, u € [88]. Since [88]=2L, 6 € .
The converse is immediate.

We suppose that € is simple, M = £,(¥), and we investigate the relation bet-
ween the centroids 7" and Iy of £ and I respectively. First we observe that I”
can be naturally regarded as a subfield of I"y. For 6 €I there is at most one
linear transformation § of M such that §| T=4¢ and

[2y]0=[(x0) y]=[x(y0)] for x, y e T.
To see that § exists suppose that >3[ x; 5% ]= 0. Then since 6 € I',

D x: yiz )= 0="0[(:0) y:2]=[x:(9:6) z].

But because I is standard for <,

2[(%:60) yi 1= 0= (30)]
A direct verification shows that § € I'y and that 6 —8 is a monomorphism. This
map will be used to identify I” with a subfield of 7.

If @ is algebraically closed then either 7'g = I" (I simple) or I'y=T' I (M=,
P &2). Thus in the general case (I: 1) <2 and I, is commutative. If € is not the
triple system of an algebra, then I'y is a field which is at most quadratic over I
A precise description of the relation between I" and I, is provided by the follow-
ing theorem, which for simplicity is stated for ¥ central simple. The general
result follows by considering a simple T with centroid /" as a I" -triple system.

TreoreM 4. Let ¥ be central simple and suppose that It = Z,(%) has centroid
I'y. Then i) I'o = @ if and only if £ is not a variant of a triple system of an algebra,
ii) I'y = 0 (a*'?) for some as®? if and only if  is the non-isomorphic a-variant of
a triple system of an algebra, iii) 'y = 0@ @ if and only if I is the triple system
of an algebra.

Proor. If T = Z{ where I; = 0(R), then T, (Z,), for £ the algebraic closure
of @, and so (I'y: @) = 2. Suppose now that (Iy: @) = 2. Choose a generator ¢, of
I'y. Since the elements of @ are preciseiy those elements of Iy for which  is
invariant, and since Z¢, is an ideal of 0 (M), it follows that TP I ¢y = M. Let (E_,
E,) be the pair of projections associated with the decomposition It =T P[ITI],
and let ¢_ = QoE_, ¢, = ¢oE,. Define a linear map ¢ in M by setting

P|E=19,, ¢|[TT]=¢_.
That ¢ € I'y follows readily from the basic formulas

[xy]d-=[(x¢.) ¥, [x y1¢. =[(x¢-) ¥]
which hold for », y € %, and result from a comparison of [x y]¢, with [(x¢,) ¥l
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Because $¢ € [T and ¢ € Iy, P2, consequently ¢? € @. Since ¢ is a mono-
morphism on £ and since in no case does I’y have nilpotent elements other than
zero, ¢* = a 0. In particular ¢ is non singular and maps € onto [£Z]. Observe
also that

() (yd) (z9)] =[x y21¢° = a[x yz]¢.

This amounts to the assertion that ¢ is an isomorphism of % and O (). Of
course O([(TT]) =D (Y). We have proved therefore that (I"y: @) =2 if and only if
% is a variant of the triple system of an algebra.

To distinguish cases ii) and iii) note that I'y=®&[¢] and that I, is a field in
precisely the situation ¢? ¢ 0% If ¢* € (0*)? then T* =~ I =~ T(Q), M = &, P L, where
&; is an ideal isomorphic to &, and I'y =0 P d.

The following isomorphism theorem for central simple triple systems € = G(®)
is an immediate consequence of theorem 4 since if $*~ I = 0(L) then iii) holds,
and so « € (0%)>2.

Taeorem 5. Let £ be a central simple Lie algebra and let $ = 0(2). A necessary
and sufficient condition that T*~F is that « € (0*)%. If a¢ (0*)® then M = L,(T)
is a simple Lie algebra with centroid I'y = & (*'?). ,

It remains to investigate what can be said about the isomorphisms of $ and
Z* in the general case of an arbitrary field (always of characteristic 0), and a
simple ¥ which is not the triple system of a Lie algebra. In this case £, (%) is
simple and is central if & is central.

Recall that if £,(T)=8=ITP[ITT], the subalgebra [TT] acts on T and may
be identified thereby with the derivation algebra of $. In [5] it was shown that
either ¥ is irreducible with respect to (the action of) [TZ] or else T =T, P Is,
where ¥; is [TX] -irreducible, (T;: 0) = (T;: 0), and [,Z;]=0. Our first result
concerns the latter case.

Tareorem 6. If ¥ is a simple Lie triple system which is reducible with respect
to its derivation algebra, then $*~ % for every « € 0%,

Proor. Let £ =Z,P I, be the decomposition of T cited above. Let 4 be the
linear map of ¥ defined by

x1A=ax;, x1€Z; and x,4 = x2, x5 €I, Let < > denote the $* product in
the space £. For each x € T let x; be the ¥; component of x. Then

<zyz>=<xyn>+ <xyz>=al[xyzn]+a[xyz]
and <zyz> A=z yn ]+ alxyz]= alxzy(z4)].
On the other hand

]
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[(x4) (yA4) (zA)] = [(ax1+ x2) (@ + y2)(24)]
= [(ax1) 2 (z4) ]+ [x2(@ y) (z4)]
=alxy(z4)].

There is at least one other condition which implies the isomorphism of ¥ and
%* and which is independent of the structure of @. To formulate this condition
in strict Lie triple system theoretic terms requirés a detailed investigation of
suitably defined “split” systems. Such a digression can be avoided by appealing
to the structure theory for 8= 4, () =T P[ITT].

Let € be a simple, split Lie algebra and let {e,, f», by}, 2 € 7, be canonical
generators for { associated with a splitting Cartan subalgebra © and the fund-
amental system of roots 7 ([5] p. 121). Let S bea reflection of & and let £ =8_1(S).
Suppose further that S is a canonical inner automorphism of & with respect to 7
in the sense that:

1) HCL(S) and ii) exS= + e
In these circumstances I will be called split.

Tueorem 7. If % is a simple, split Lie triple system then T~ for every
« € OF,

Proor. Let &= £,(%), let © and S be the Cartan subalgebra and reflection of
Q associated with . Since AS=~h for h€ 9, fr S=—f» if and only if e, S=—ex.
Now consider 0t = £,(T%). Clearly Mt is a split simple Lie algebra with splitting
Cartan subalgebra ©, fundamental root system 7, and a generating system {e,,
frs I}, 2 € m. Note that adeh = admh for h e O and hence that the Killing forms of
@ and It have the same restriction to . This implies that the Cartan matrices
associated with (8, , 7) and (M, D, 7) coincide. Set el = ey, AL = hy and set fi=
fr if fr €[22, fr=a'fs if freZ. The system {es, f3, ki), 2 €m, canonically
generates M; for in M <ei fi> =[esfil=efol=m=nhi if fL€ZT, and in all
other cases products of generators in £ automatically coincide with the corres-
ponding products in M.

In these circumstances it follows ((5] p. 127) that the map e, —ei, fr—>f%, Ia—
k. has a unique extension to an isomorphism of £ and 0. Since the space T is
invariant under this map, it induces an isomorphism of £ and Z“.

Theorems 6 and 7 give sufficient conditions for the isomorphism of ¥ and T*
A strengthening of the converse to theorem 6 provides useful sufficient conditions
for non-isomorphisfn.

Tueorem 8. Let ¥ be a simple Lie triple system. If (i) T is absolutely irre-
ducible with respect to its derivation algebra D(%) and (ii) every automorphism




On Variants of Lie Triple Systems and Their Lie Algebras 79

of D () is induced by an automorphism of &, then $*~ < if and only if « € (0%)>2.

Proor. By (i) & is central and the centralizer of D (%) is the set of scalar
multiplications. Suppose that A4, is an isomorphism of £ and £ Then 4, extends
uniquely to an isomorphism A4, of D () and D (T*). Since the latter coincide 4,
is the automorphism of D(T) given by

DJO == Ao_lDAO

By (ii) there is an automorphism A4 of € which also induces 4, on D(Z). Thus
AyA7" is in the centralizer of D(Z). But then A,=7 A for some 7 € 0%, and
multiplication by 7 is an isomorphism of 7T and T¢ It follows directly that 7%=
at

Since theorem 5 can be obtained from theorem 8, the hypotheses of the latter
are realizable. That their scope is broader is seen by the following typical appli-
cation.

Let & be the Lie algebra of skew symmetric matrices in @, for n sufficiently

large. Let € be the Lie triple system of symmetric matrices of trace 0. Then ¥ is
simple, & is the derivation algebra of ¥ and @,=3@S is the universal Lie
algebra of %. The automorphisms of ¥ and & are those induced by the (inner)
automorphisms of @, ([5, page 3087]), hence in both cases are those induced by
matrices commuting with transposition. This implies condition (ii). Condition (i)
follows from the observation that ¥ is irreducible with respect to & in case @ is
algebraically closed.
3. The isomorphism of twists: classification problems. Suppose again that ¥ is
simple. The isomorphism of € and ¢ entails that of Z,(%) and £,(T*) but the
converse is false. It will be convenient to consider ¥ over its centroid, and there-
fore to suppose that ¥ is central. In case ¥ = 0(8) for some central simple Lie
algebra &, it follows from the structure of /(%) that the simple Lie triple
systems with universal algebra Z,(2) are all isomorphic to €. The situation is
different for ¢, however, and this is a point of considerable interest.

Tueorem 9. If i) 8 is central simple, ii) aE0? 2 = 0(¢) where ¢* = «, iii) T =
0(R), M= L,(T), and iv) M= L,(To); then either a) the reflection S, of M
associated with T, commutes with ¢ and 2 is the centroid of ¥, or b) S, anti-
commutes with ¢, $o = (0(L,))* for some central simple Lie algebra £, with ().
~Mover 2=, and every such £, arises in this way.

Proor. By theorem 5 $*3#% and £ is the centroid of M. If S, commutes with
(multiplication by) ¢ then £_,(S,) = ¥, is invariant with respect to ¢ so that ¢ is
in the centroid of &,, which is therefore £. On the other hand since (S, ¢ Sp~1)?

i
i
|
i

bt b
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= «, if S, does not commute with ¢ it anti-commutes with ¢. In this case ¢ is not
in the centroid of o, which is therefore @. By theorem 4 £, = (0(8))% and since
%, is central so is €. It may now be readily verified that for x and y in either 8

Or&)
2+ yp->2R1+ y®¢

defines a unique 2-isomorphism of 9t onto L.

Finally, if (%)=~ M over 2 then we may regard ; as a @-subalgebra of It for
which £, &;¢ = M. But then &¢ = (0(&))* and M = L, (2,90).

Theorem 9 implies that if M is a simple L-algebra and £ = @ (¢) where ¢* =«
is in @, then the @-algebras 2, of type I, ie., Lo=M, all occur as the spaces
M, (So) where S, is a @-reflection in I which anti-commutes with ¢. We wish to
discover under what circumstances any two algebras of type 9t are a-twists of
one another.

In section 4 it will develop that in case @ is the real field the work on the clas-
sification of real simple Lie algebras does not appear to provide a ready answer.
The following theorem delineates the general problem in terms of reflections.

Tarorem 10. In the setting of theorem 9 suppose that S, is a reflection of It
anti-commuting with ¢, and that &, = 9% (So). Then &, is isomorphic to an a-twist
of L if and only if S, is conjugate in the automorphism group of (I over £2) to a
reflection commuting with S, where £ = 0t (S).

Proor. In general two simple Lie triple systems & and €, imbedded in a com-
mon universal algebra 9t are isomorphic if and only if the associated reflections
are conjugate in the automorphism group #4 (M) of M. From this and the hypo-
theses of theorem 9 it follows that 9% (So) = (S) if and only if Sand S, are
conjugate in A4 (MN).

Suppose first that €, is isomorphic to a twist (&, B, a) of & Let U=28_,(B).
Then the map whose restriction to U is ¢ and to [UU] is the identity is an
isomorphism of (&, B, ) and U H[UN]) = Lo, where 2=~ &,. Now LoP Lo =M =
0,[B(R)*] and if L =I,(S,) then®, is S invariant. Thus S, S= S5, Finally,
M (So) = Lo Lo = M1 (Sy) so that S, and S, are conjugate in A(M). It is readily
seen that the conjugating element can be taken to commute with ¢.

To establish the convérse suppose that S, is conjugate in Z(IM) to So, a reflection
commuting with S. It is sufficient to show that 2o =, (S,) is isomorphic to a
twist of ©. Since S, induces a reflection in £ and ¢ exchanges M _,(S,) and M1 (Sy),
L=U@[U] and L¢=UoH[UN]¢Y, where [UU]= PN (Se) N R and Ug =M, (Sy)
N&¢. Therefore M (Sp) = Up G U], which we have already shown is isomorphie
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to a twist of L.

In the remaining case, T central simple and & = £, (%) central simple, examples

show that T and & generally have non-isomorphic universal algebras if $*Fg.
An exception will be exhibited in the proof of theorem 13.
4. The real field. In this case since only (—1) —variants and twists need be
considered they will be called simply variants and twists, and the denotation of
a twist will be abbreviated to (€, S). In terms of theorem 9 2 =0 ((—1)'/?) is the
complex fleld and so x¢ identifies with ix. The classical results in the classification
of simple real Lie algebras can be stated in terms of the present discussion. The
only preliminaries required concern the signature 0 () of the Killing form of a
Lie algebra Q.

Let 8 be central simple, S a reflection of £, and L=ITPH[IIZ] the associated
decomposition. The following are easily verified.

1) % and [EZ] are orthogonal complements with respect to the Killing form.

i) If 0(Z) denotes the signature of the restriction of the Killing form to g,
then 0 (8, S)=0(8) — 20 ().

The first result goes back to Weyl (see [57] p. 147 or [7]). A sketch of a modified
- proof is included because the twist point of view suggests a more transparent
argument.

Tueorem 11, If Q is a split simple real Lie algebra then there is a twist of 2
which is compact.

Proor. Let {e,, fr, b} be a canonical set of generators for € associated with
the Cartan subalgebra © and fundamental root system 7. Let (%, ) denote the
Killing form of £. This form is positive definite on- 9. Otherwise pairs of gener-
ators are orthogonal with respect to the form except for the relation (ex, fr) <O0.

Let 8 = (&, S) and let («, y), denote the Killing form of ,. Then (%, 2)o = (=x,
xS) so that &, is compact if and only if S is negative definite with respect to the
Killing form on £. On the other hand since {f» e, =M}, A €7, is a canonical set
of generators, there is a unique automorphism S of  such that

e;‘_S :f)‘, fo = €y, h)_S = hx.

Clearly S is negative definite on the space with basis {ex, [ I}, A €m, and it is
readily verified by induction on the degree of the monomials in a canonical basis
determined by the generators that S is negative definite.

The second result, due to Cartan and often called the Cartan decomposition
theorem, concerns twists of compact algebras. According to theorem 9 the clas-
sification of all central simple real Lie algebras with isomorphic complexifications
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(I over 2) reduces to the determination of the conjugacy classes of those re-
flections of 9 (over @) which are semi-linear as (It over £2) mappings and have
complex conjugation as associated automorphism of 2. Call such reflections c-
reflections in 9.

Now let €, be compact and suppose 2o (L) = (I over £). Then there are
c-reflections S and S, such that L= (S) and = M;(S,). By theorem 10 € is a
twist of &, if and only if S is conjugate in #( over L) to a c-reflection commut-
ing with S,. Cartan’s theorem translates to the following:

Tueorem 12. If N is a complex simple Lie algebra, if S, is a c-reflection in N
such that 9%,(So) = &, is compact, and if S is any c-reflection in 9, then S is
conjugate in A(N) to a c-reflection commuting with S,.

CororrLary. Every central simple real Lie algebra is a twist of a compact
algebra.

Discussions of this theorem may be found in [17, [7], and in chapter III of [5].

Considerations of Killing form signature shaw that no twist of a compact
algebra is isomorphic to it and that no variant of a compact Lie triple system is
isomorphic to it. Thus compact and split Lie triple systems are extremes in this
respect. An immediate question raised by the corollary to theorem 12 is the follo-
wing: is every central simple real Lie algebra a twist of every other algebra with
an isomorphic complexification? In particular can every algebra be so obtained
from the split algebra?

On this point our conclusions are limited. Gantmacher [2] has found canonical
representatives of the conjugacy classes of c-reflections for all simple complex
algebras. It is an easy consequence of theorem 10 that if a commutative set of
representatives exist then our first question has an affirmative answer. Further-
more it is implicit in their definition that Gantmacher’s canonical inner auto-
morphisms all commute. In the case of & these canonical inner automorphisms
can be adjusted to commute with the canonical outer automorphism. For A, and
®, this cannot be done. Our final result asserts the favorable general cases and
cites a specific exceptional case.

TueoreMm 13. With the possible exception of algebras of types 2,(n odd, n >1)
and ®,, any two central simple real Lie algebras with isomorphic complexifications
are twists of one another. The algebras of type 2; with signatures —5 and —3
are not twists of one another.

Proor. Let D, be the algebra of 2 by 2 matrices over the quaternion division
algebra ®. The derived Lie algebra ®; is of type %; and has signature —5. The
automorphisms of ®} are explicitly described by Jacobson in [4]. It turns out
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that the reflections of ©; divide into four conjugacy classes represented by:
Si: X— PXP~! where P= <$ _(D

Sy: X—QXQ ' where Q =il.
S3: X—— X where x — % denotes quarternionic conjugation.
S;: X—>—PX'P
< et X QX0
Denote by ; the triple system of S;, let &;=[2;Z;], and let (n;, m;) be the re-
spective dimensions in the i** decomposition of ®;. Computation reveals that

n1=8=ny n3=5=rny, ns=9.

Moreover {S;} is a commutative set and the S; -twist is the compact form of 9.
Thus the signatures of possible twists of ®; may be computed by considering the
possible 3N\ T; dimensions. It turns out that this technique leads to the complete
identification of the S; -twists, as follows:

The S, twist has signature —5 (and is therefore ®})

The S, twist has signature 3.

The S; twist has signature —15.

The S, twist has signature 1.

The Ss; twist has signature 1.
To illustrate the method consider the S case. Possible twist signatures are 1 and
— 3. But if the twist had signature — 3 then 8; would have a reflection S* with
- an associated 5 dimensional triple system. However 2; is an algebra of type &,
and these algebras have only (4, 6) and (6, 4) dimensional triple system decom-

positions.
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