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§1. Introduction.

In this paper we consider an n-period, one-commodity dynamic inventory
model with non-stationary stochastic demands, and with £ (constant) period-lag
delivery of regular orders, and with % “emergency” orders, characterized by
delivery lags #,=0, #,=1, ..., #;=k—1. Each ordering cost is composed of a
unit cost plus a reorder cost. Let m}, ., (i=1,2,....,m; 7=L2 ..,n;r=0,1,...,
k—1for n=k; r=0,1, ..., n—1 for n<k) denote the emergency quantity of the
time lag r for the period J> at the beginning of which the demand density is given
by ¢; and let m}, ,_;., (n=k) denote the regular quantity. The cumlative demand
in each period is non-negative random variable whose distribution may change
from period to period by a Markov transition law with matrix P= lpsill G, j=1, 2,

.-+, m) where p;;=0 and > pi;=1 for each i. It is assumed that the demand den-
i=1

sity does not change during one period. In other words, when the demand density
is ¢; duning a period, one of the following period change to ¢; with probability Pis
G, j=1,2, ..., m). '

The inventory period I, I, ..., I, are numbered from left to right. At the
beginning of the jth period (j=1,2, ..., n) two action have to be taken (i) placing
k “emergency” orders, i.e., ones for immediate delivery and to be delivered at the
end of j+7—1 period (1=1,2, ..., k—1), (ii) issuing a regular order to be delivered
at the end of the j+%—1 period. The delivery lag 1=F% is constant throughout
the rest of the paper. In[87]and [9], we discussed the several properties of the
optimal policy in the above méntioned dynamic model under an assumption that
the ordering costs are linear. In trhi'é paper it is shown that if the suitable con-
ditions on the costs are given, then the optimal policy in each purchasing period
is always of the (S, s) type. We shall impose the following conditions on the
model.

(1. 1) The interval in ordering is k-period (£=>1).
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(1. 2) There is backlogging of excess demand.

(1. 8) The known distribution function of demand is absolutely continuous with
respect to the Lebesgue measure. The density will be denote by ¢:(§) (i=
1,2 .. m)

(1. 4) The holding cost function i(7) and the penalty cost function p(y) are twice
differentiable, positive convex function for positive arguments. We assume
that A(0)=p(0)=0.

(1. 5) There is credit function v(y) defined by

vy 7=0,

v(n)=
7<0.

The reduced penalty cost, that is, the net penalty cost, is defined in the
following way. If at the beginning of any one period the order of size z
to be delivered at the end of the period, has been known and a demand ¢
occures, then the net penalty cost for this period is

p(E—y)—v[min (z, §—»)]
where y is the starting stock level of that period.
(1. 6) There is a concave, twice differentiable salvage gain function w(y) that is
increasing for >0, and is zero for 7<C0.
(1.-7) The ordering cost function c,(7) for regular orders to be delivered & period
later is given by
e+ Ki(n) 7>0, K, >0,
cx(m)= Ki(n)=
7=0 7=0.
The ordering cost function c;() for emergency orders to be delivered j
»period later is given by
e+ Ki(n) 7>0,
cilm)=
7=0,

Kj 77>0
Ki(n)=

0 %<0

with ¢o>e1> ... > ¢, >0, Ki>K > >K, >0  j=0,1, ..., k—1.
L8 @ o limwp=a lim|wi-He@d<e<a
7 —o0 n—vee

) w0)<v j=1,2, ..,k i=12 ..., m.

1.9 (@ limIL(, ¢)+co—e1t+0v<0, (b) lim L'(y, ¢;)—c lim w'()>0
oo 7o paee :

=1, 2, -5 m-

{(1.10) There is a discount factor «, 0<a<1.
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111  L(z; (01')—118;](77—5)(0}(5):16 is convex.

where L(y, ¢;), the expected one-period loss arising from penalty and hold-

ing cost, is given by

[ir—eie)de+ | pe—np@ds  2>0
(112) I e=1
hop(é—v)%@)dé | 7=<0 i=1,2, ..., m.

We shall assume that all integrals occuring in this paper exist and are finite,
and that integration and differentiation where needed can be interchanged. This
impose certain restrictions on the class of demand densities.

§2. Optimal Policy.

Let fu(x; ¢;) denote the total discount expected loss for an n-period inventory
model, where the demand density in the first period is ¢;, » is the initial stock
level, and an optimal ordering policy is used at each purchasing opportunity.
From the principle of optimalty, we obtain for n>>k

So(x; ¢)= min
0

my=

(5
1=05150es

k
{Eo(cfmf +K;(m;))
k
k-1 j i+l j
+ j§0[Lj(x =+ Eomz; @)+ Vi(x+ Eomz; @)= Vi{z+ Igomz; ®i)]

k
+ fu—p,x(x+ Eomz; )}

=min{co(uo—x)+Ko(uo—x)+L(uo; @) — V(uo; ¢:)

weZx

+min{ei(u1—uo)+ Ki(u1 —uo)+ Li(ui; ¢:)— Vl(‘ul; @)+ V(ug; ¢)

1=,

t+min{...4+ min {ci1(up_1—us_2)+ Kp_1(up_1—1us_s)

Uy ZuUy Uk —1ZUK_2
+ Liea(ue-1; )= Vio1(up-1; @)+ Vi_o(us_1; 02)

+ min {cp(ur—up-1)+ Ke(ur—up-1)+ Vic1(ur; 0)+ frop o(ue; )} -}

UpZU)_ -

=min{— cox + Ko(uo— x)+ Go,(uo; ¢:)}

U= x
where

Graug; ¢i>¥ckuk+ Viei(urs @)+ faop a(usi ¢i), n=k
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Gin(us; 00)=cju;+ Li(u;; 0)— Vilus; @)+ Via(ui; 9+ gin(uis ¢1)
i=0,1, .oy k—1
gin(ui; 9= min {—c;u;+Kj (e —u)+Gjun(ujs ¢}

njir1Zuj s
j= -1,0,1,...,k—1
g—1,n(u—1; ¢i>=fn(x; @), U_1=2%

iv=1, x+mo=ug, x+mo+mi=uy, -, x+metmi+ .. Fmp=1u

Lyx; “’f):“.zlpffgo Li1(x—t; ppet)de,
2 ,

V;(x, (0,') = Z 1}7,‘,‘80 V,_l(x —1, (oj)go,-(t)dt, l>1,
7= =
Wix; @) ——a.Zvlpijgo Wii(x—t; op)elt)de,
i=

fn—k,l(x; (ﬂi):ajg:lpijg:fn——k,l—l(x—t; o) (t)de
Sfo-r,0(x; @)= fu-s(x; @)
V_i(x; 9)=0, Vo(x; 0)=V(x; 0:), Lo(x; ¢)=L(x; ¢:)
folx; @)= —Wolx; @)= —w(x)

[—vx—i—vS:(x—t)go,-(t)dt x>0
Vix; pi)= 1

—vx %<0

It is noticed that foi(x, ¢:)=— Wi(x, ¢;) for x>0. From the method as in the
n=k, we have

2. 3) fn(x: ¢i)=£n_:i£1{co(uo—x)+Ko(uo—x)+L(uo; @i)— V(uo; ¢1)

+min{ci(u1— o)+ Ki(ur—uo)+ Li(ur; 0)— V(ur; @)+ Vilui; @)

Uy =ty

+ mln{ .+ min {cn—l(un—l - un—2)+Kn—1(un—1 - un—Z)

U2ZU) Up—_1—=Un—2

A+ Ly s(uno1; @)= Vac1(@no1;00)+ Vaeo(un-1; ¢2)

+ min {c,(up—un1)+Kun—us1)+ Vi1(tn; @)

— Watn; 0} )

=min{— cox + Ko(wo— %)+ Goal(uo; ¢} n<k

UgZ X
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where G;,(u;; ¢;) in (2.8) are given by
Grntn; @) =catint Vaos(tn; 02)— Waltn; @)
@. 49 Guluy; e)=cjuj+ Liu;; 0)— Viu;; ¢+ Vioa(uss 0+ gin(uss ¢:)
n<k; j=0,1,...,n—1

gty )= min { &0+ Kpyaltizeg — ) -+ 6ot 9}

ujy1Zu;5
g—l(u~1;¢i>:fn(x;(0i) n<k>]=_1: O: 1> "':n’—l'
We cite the known results in [10] that will be needed in the analysis that

follows.

Definition. Let K=>0, and let f(x) be a differentiable function. We say that
f(=) is K-convex if

2. 5) K+ flx+a)—f(x)—af'(x) =0 for all >0 and all x.

If differentiability is not assumed, the appropriate definition of K-convexity ‘is
@. 6) K+f(x+a)— f<x)—a[-ff(_’c)_f—x_b)—Jgo

for all >0, all 5>0, and all x.

It is readily verified that K-convexity has the following properties [10, p. 1997:

(i) O-convex is equivalent to ordinary convexity.

(ii) If f(x) is K-convex, then f(x+4) is K-convex for all A.

@iii) If f and gare K-convex and M-convex, respectively, then af+pBg is (aK+
BM)-convex when « and B are positive. This property may be extend to
denumerable sum and integrals whenever the interchange of limits is permis-
sible.

Treorem 2.1.  If conditions of (1.1)~(1.11) are satisfied, then

(i) there exists a unique pair* (S;.(¢:), sin(9)) such that  S;(e)>si(0),
Gin(Sinp); i) s the minimum value of Gix; ), and Gi(sin(e:); 0:)=
Gin(Sinlp); 0)+K;

j=0,1, ..., n for n<k; j=0,1, ..., k for n>k, i=1,2, ..., m.

(i1)  fulx, @i) 18 Ko-convex, decreasing for x small enough, increasing for x large
enough.

Proof (by induction). There are two possibilities requiring separate treat-
ment n<k and n>k+1. '

*  If S;.(¢;) and s;,(p;) are not a unique, we choose the smallest such value. By the term “unique pair
(Sn(91)s sin(9:))” we mean the pair of the smallest value of S;,(¢;) and s;,(¢;). Similar remarks will
be apply whenever we speak about the unique pair.
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Case (a) n<<k. Suppose first that n=1. Then we have

2.7 1lim G (u; @) =c1—a limw'(u)>0 by (1.8a) and (2.4)
and
2.8 Gt p)=ci—u<0 for t<<0 by (1.8a) and (2.4)

Hence, eachequation Gi,(u; ¢;)=0 possesses a uniqué root or single closed interval
of zeros. Let Su(go,‘)>0' denote the smallest root. For definiteness, henceforth,
Wheneverlwe speak of the root of such an equation we shall mean the smallest
root. Since Gui(u; ;) is strictly decreasing for u < Su(g), and K; >0, there exists
a unique finite s11(¢;) such that s;(p)< Sule:) and Gulsule); 0)=611(Su(e); v:)+
K,. Based on this result we obtain from (2.4)

—c1uo+ K1+ Gu(Sule); i) uo<sule:i)

2.9 . go1(uo; (ﬂi):{
—c1uo+G1i(uo; @) uo=s11(9:)

From Scarf [10], it follows that goi(u; ¢:) is Ki-convex. We have from (2.4), (1.
a, b), (2.7), and (2.9)

(2.10) hrn Gor(u; 9; )—co—c1+11m L'(u; go,)-!—hm Gi.(u; 0:)>0
and -
(2.11) lim G4, (u; p)=co—c1+v+ lim L'(u; ¢:) <0

M ==

Since cou+ Lu; 9;)— V(u; @) is convex, and gn(u;¢;) is Ki-convex, Goi(u, @) is Ky
‘convex by the properties (i), (ii), and (iii) above and therefore Ko-convex. Hene:
‘there exists a unique pair (So(g:), soi(¢:)) such that So1(@3) > 501(95), Gor(Sor(w); @i
is the minimum value of Go:1(u1; @2, and Gm(sm((p,) 9:)=Go1(Sor(¢:); 9:)+ Ko. Hence
we have from above result and (2.4)"

) —Cox+Ko+Go1(501((ﬂi)5 »:) % < s01(@1),
(2.12) : Silx; 0= ’
—cox+ Gm(x j §0£) xZSm((ﬂi)a
(2.13) filx; @)=
—cot+Go(x; ¢0) % > s01(@4)-

It is easily seen that fi(x;¢:) is Ko-convex by the same method as Scarf [107, th
another part of (ii) is immediate from (2.13). Assuming that the theorem 2.
hold the integer n—1 and that '

Vi(u; pi)=—0a'v for all ©<0.
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(2.14) lim (Lj(u; 0,)— Vi(u; ;) > a1 lim w'(u)
EEIEG(LKW ) —Vi(u; (/7i))<0
lim W, (u; ¢,)=a'*! lim w'(w)
1=0,1,...,n—2; i=1,2, ..., m.

then we have

(2.15) lim G, (u;9)=c,+a _i:lpij limSO(V;—z(u —t;0)— Wy1(u—t;9)p;()ds
u—oo i= u—oo

=c,—a” limw'(u)>0 . : by (1.8a)

y—>co

and

(2.16) Gl ¢i>zcn+ailpijgo(V7/:—2(u —t50)— Wi (u—t;90,))0;@)ds
=
=c,—a" w<0 for u<<0 by (1.82)

Hence, there exists a unique positive S,,(¢;)>0 such that G,(S,,(¢,); 9;)=0. The
function G,,(u; ¢;) is strictly decreasing for u < S,.(¢;) and K,>0. Hence for each
i there exists a unique finite s,.(¢;) such that s,,(¢:)< Suu(@:), and G,.(s.(); ¢:)=
Gun(Sua(@:); ¢:))+K,. Based on this result we obtain from (2.4)
—cCplin1+ K, + Gnn(Snn<¢z>> (oi) Up-1 <3nn(¢i)

(217) &n-1,n(Un-15 i) = .

- —Cplly_1+ Gnn(un—l; ¢z‘) un—lzsnn«”i)
From Scarf [107], it follows that g,_1.(u;¢;) is K,-convex. Assume that part (i)
of the theorem is true for the integer r (0<r<{n), and that lim G,,(u;¢;)>0 for

r (0<r<n), and that g,_1.(u;¢;) is K,-convex, and that
' —‘Crur—1+Kr+Grn(Srn((0i)§ (oi) ur—1<57n(¢i)

(218} gr—l,n(ur—l; (91): .
_Crur—1+crn(uf—1; (01) ur—lZé‘m(@)

Then we get from (2.4)

@19) Hm 6y ,(us 0)=(c,1—e)+a 5 piy | (Lot )= Vroslu—t; )
u—o0 i= U

+Vi-s(u—t; 9))p;@)dt +1im G, (u; ¢,)

>(c,_1—c,)+a’ lim w/(w)+1im G2, (u; ¢;)>0




8 Masarori Kopama

and

u——oo

(220)  lm Gy, (u;0)=c,1—c,+1m (L7 1(u; )= V] -1(u; 00+ V;-o(u; 1)

<(ep—a ) —c, <0

Since g, 1,..(u;¢:) is K,-convex and (c,_1u+L,_1(u; 0:)— V,_1(u; @)+ V,_o(u; @5) i
convex, it is easily seen that G,_; ,(u; @) is K,-convex, therefore G,_; ,(u;¢;) i
K,_;-convex. Hence there exists a unique pair (S,_1,.(¢), s,-1,,(¢:)) such tha
Sy 1,0 > 571,000, Gr_1.4(Sr-1,(¢2); ¢;) is the minimum value of G, ; .(u; ¢:), anc
Gro1,1(5r-1,0(00); 0)=Cr_1,(Sr-1,0(90); 9:)+ K,_1.  Hence we get from (2.4)

- Cr—lur—2+Kr—1+ G?‘—l)"(s’—lﬂ’((oi}; ¢’) u,_2<3r—1,n<¢i>
221)  gr_za(ur—2;0)=

_—cr—lur—z_’_Gr—l,n(uf—Z; ¢i) ur—ZZSr—l,n((ﬁi)
=20 4. ur—2<sr—1,n(¢i)

(222) g;——Z»;(ur—Z; @z):
l —cr—1+G;—1,n(ur—2; (0,) ur—2>37—1,n(¢i)

Since G,_1,,(u; ¢;) is K,_;-convex, it follows that g,_» .(u; ¢:) is K,_i-convex by the
same method as Scarf [10]. The another part of (ii) is immedite from (2.22)
Using results in the case n<k, we can prove inductively the case n>k by the
similar method to that above, except that — W,(x; ¢;) is replaced by fu_z(x;@:)
and, therefore, we will omit it. Moreover we obtain from the argument in The
orem 2.1 the following theorems.

. ‘Tueorem 2.2. If conditions of Theorem 2.1 are satisfied, then the optima
order mi¥ (j=0,1, ...,k for n>k; j=0,1, ..., n for n<k) in the first period are o,
the following form.

(i) nZk
' . Sonl@i) — % % <s0u(@i)
m(x)=
xZSOn((”i)
. S1al@:) — o uo<s1a(:)
min(u)= i=1,2,...,m.
: wo=s1,(¢:)
. Sun(@i)— a1 Un-1 <_Szm(¢7i)
m;t:f(un—l)z
un—lzsnn((ﬂi)
(ii) n>k
) Son(@:) — x <s0n(@:)
mii(x)=
x_zS(m((ﬂi)




The Optimality of (S, s) Policies in the Dynamic Inventory Problem

with Emergency and Non-stationary Stochastic Demands 9
. Suali) —uo uo<s1a(@:) )
miz(uo)= i=1,2 ...m
: Uo=514(9:)

o Seal@i)—up_1 Up_1<skal@i)
mif(u,_)=
uk-125kn(¢i)
whese
up=x+miy(x), uy=uo+mif(ue)=x+mi¥(x)+mif(x+mi¥()),
...... L;=U;_4 =+ m;::‘(uj_l)

7=2,8, .-, n—1 for n<k; j=2,...,k—1 for n>k.

Treorzm 2.8.  Let conditions of Theorem 3.1 hold except (1.8b) and (1.9). If
there exists a unique pair (S;(¢)), sin(@:)) such that the properties (i) of the theorem
2.1 hold, then the optimal ordering policy in the first period is of the (S, s) type, i.e.
the form of Theorem 2.2.

Remark.  The Ko-convexity of f.(x, ¢;) may be proved under less strigent con-
ditions, i.e., ones of (1.1)~(1.11) except (1.8b) and (1.9).
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