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A general Lie triple system is a tangent algebraic system of the reductive
homogeneous space, which was studied by Nomizu in [6], also refer Ragevskii [7].
This algebraic system is studied by Sagle in [8, 9, 11, 13, also see 10, 12, 147]. . In
this paper, it is considered the cohomology groups associated with a weak repre-
sentation or a representation of general Lie triple system T and will be given an
interpretation of the pair of first and second cohomology groups associated with
weak representation of T and of the pair of second and third cohomology groups
associated with representation of 7. Throughout this paper, we assume that the
characteristic of the base field @ is zero and the vector spaces are finite dimen-

sional.

1. Introduction.

A general Lie triple system (general L. t.s. simply) is an algebraic system T with
bilinear composition xy and trilinear composition [x yz] satisfying the following
relations [16]:

(1.1) %2 =0,

(1.2) [xxy]=0,

(1.3) Cxyz]+ [yzx]+[zxy]+ (xy)z+ (yz)x + (22) y=0,
(1.4) [(x y) 2] + [(y2) 2w] + [(z%) yw] =0,

(15) [xy(zw)] =[x yzJw+ zLx yw],

(1.6) [ yLzow]] =[x yzJow] + (e[ yoJul +[zola yw]]

. A linear mapping D of T is a derivation of T if D(xy)=(Dx)y+ x(Dy) and
D([xyz])=[(Dx) yz]+ [ (Dy)z]+ [xy(Dz)]. Then (1.5) and (1.6) say a_ linear
mapping D(x, y): z—[xyz] is a derivation of T, which will be called inner. In
the general L.t.s. T, if every ternary product [ x yz] vanishes, then aque axioms

/35



136 Kiyosi YAMAGUTI

reduce to that of Lie algebras. If all binary products xy vanish, then above
axioms reduce to that of Lie triple system (L.t.s. simply), that is, (1.2), (1.6), and

1.3y Cxyz]+[yzx ]+ [z2y]=0.

A subspace U of general L.t.s. T is called a subsystem if U is closed under both
compositions UU and [UUU], this condition is equivalent to that xye U and
[xyyle Uforall x, y€ U if the characteristic of ¢ is different from 3. A subspace
Uof Tisanidealif UT < U and [UTT]C U, in this case it follows [TTU]C< U.
Hence the ideal is invariant under the inner derivations. Let f be a linear mapp-
ing of a general L. t.s. T into a general L.t.s. U, f is called a homomorphism of T
into U if f(xy)=f(x) f(p-and fCxyz)=[f(2)f () f(2)] (or again equivalently
Flxy)=Ff)f(y and fCxyyD) = Cf@) f(nf(y] if the characteristic of @=~3)
for all &, y, z € T. The definition of isomorphism is also clear. Let # be a kernel
of homomorphism of T onto U, then W is an ideal of T and a quotient system
T/W is defined naturally and T/W is isomorphic with U. An ideal W of T is
called abelian in T if WW =(0) and [TWW]=(0). If an ideal ¥ is abelian inT
then [WWT]=(0).

The following proposition shows that the standard enveloping Lie algebra of an
ideal of general L.t.s. T is a subinvariant subalgebra of the standard enveloping
Lie algebra of T in the sense of E. Schenkman.

Proposition. Let U be an ideal of a general L.t.s. T, then the standard envelop-
ing Lie algebra U+D(U, U) of U is an ideal of U+D(U, T) and U+D(U, T) is an
ideal of the Lie algebra T+D(T, T).

2. Examples.

Sagle showed the constructions of remarkable examples of general L.t.s. [117].
In this section we shall concern a two dimensional general L. t.s. over C.

(1) -Liet M be a Malcev algebra with product xy. Then M becomes a general
L.t.s.D relative to x y and [»yz]=x(y2)— y(xz) +(x )z [177.

(2) There are five different types of two demensional general L. t.s.

Turorem. Any two dimensional general L.t.s. T over the complex field C can be
reduced to one of the following:

ab=0 ab=0 ab=0 ( ab=a ab=a

()i[abb]=0, (ii)i[abb]=a, (iii){[abbl=a, (iv){Labb]=0, V){[abb]=aa, a=0.
[baa]=0 [baa]=0 [(baa]=b ‘._[baa:]=0 [baa]=0

1) In [5], Loos proved that any Malcev algebra has a structure of L.t.s. relative to the composition
[xyz] =x (yz)—y (%2)+2(xy) 2.
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Proof. Let a, b be a basis of 2-dimensional general L.t.s. T over C. If we put
[abb]=aa + Bb, [baa]=0a+ 1b, ab=Aa + ub, , B, 1,0, A, n€C, then we have
the relations (x) g =0 and (xx) 18 =ay, ir = Bﬂ. Indeed, from (1.6) we obtain
(Cxyylxyl+[[yxx]yy]=0 and [[xyylsx]+[[yxx]yx]=0 for all x, ye T,
hence for the basis a, b of T (3—08)[abb]= 0 and (3—0)[baa]= 0, from which we
obtain (x). Next, [ab(ab)]=[aba]b+a[abb]=>b(Ba+7b)+a(aa+ b)=0 by (*),
on the other hand [ab(ad)]=(au—AiB)a+(Bu—Ar)b, hence we have (xx).

If 2=4=0, then T is a 2-dimensional L.t.s. with respect to [x yz], therefore T
can be reduced to one of (i), (ii), (iii) from [15]. In the case, one of 2, x is not
zero, we may assume A==0. By the basis transformation o'=2a-+ ub, 8'=(1/2)b,
we obtain o't =d', [a'b'b']=a'a’, [b'a’'a’]=0 from (xx). It is easy to show the

existence of general L. t.s. of the types (i), ---, (V).

3. Weak representations.

DeriniTioN. Let o be a linear mapping of a general L.t.s. T into the algebra
E(F of linear endomorphisms of a vector space ¥ and D and 6 be the bilinear
mappings of T into E(¥). (o, D, 0), or (p, 6) simply, is called a weak representation
of T into V if

(3.1 D (%, y)+0(x, ) — 0(y, x)="[0(x), 0(»]—0(x ),
(3.2) [D(x, ), o(2)]= 0z yz D),
(3.3) [D(x, 3, 0(z, w)Y]= 0= yz], w)+ 0(z, [xyw]).

The weak representation space ¥ is called a weak GT-module.

Let (o, D, 6;7) be a weak representation of general L. t.s. T such that every
composition [ x yz_] vanishes. If D=6=0, then (p;/") is an usual representation of
Lie algebra T relative to the product x y, that is, p is a Lie algebra homomorphism
of T into gl(¥). If o is a representation of Lie algebra L with product x y, then
by putting D(x, y)=0(xy), 0(x, )=0(y)o(x) (0, D, 6; V') is a weak representa-
tion of general L.t.s. associated with L. If (p;¥) is a weak representation of
Malcev algebra M [18], then putting D(x, y)=[0o(x), 0(») 1+ 0(xy), 0(x, y)=
o(x)o(N+o(ye(x)—o(xy), (0,D,0; V) is a weak representation of general L.t.s.
associated with M. Let (o, D, 6; V) be a weak representation of general L.t.s.
T such that every product x y vanishes. If p=0, then (3.1), (3.2), and (3.3) reduce
to-the definition of weak representation of L.t.s. relative to the product [x yz]
[197].

In a general L.t.s. T, put D(x, y): z—=>[xyz], 0(x, y): z—>[zxy], p(x): y—>=x,
then (p, D, 6) is a weak representation of T into itself, we call this representation
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to be regular.

We have
(3.4) [D(x, %), D(z, wy]=D({xyzJ, w) + D(z, Lxyw]).
Hence, if (p, D, 0) is a weak representation of general L.t.s. into.a vector.space V,
then a linear space spanned by X D (% ¥:) is a Lie subalgebra of gl(¥).

For the general L.ts. T, put T®=7T, TO=[TT¢VT¢V], i=1,2, - If (o, D,
0 ; ¥) is & weak representation of 7 and D(7, TY® is a kth derived subalgebra of
Lie algebra D(T, T) generated by all 2. D (s, ), then, following Lister [4] by
using (8.4), T¢+Vc T™ and the induction on &, we have the following

Proposition. Let (o, D, 0; V) be a weak representation of general L.t.s. T and
D(T, T)® be a kth derived subalgebra of Lie algebra D(T,T), then it holds

D(T, T)*» c ZkZD(T("), T @iy,
i=0

D(T, T)(2k+1) c iD(T(i), T(2k+1—i))_
i=0

Hence, for T suth that T™=(0) for some integer n, the Lie algebra D(T, T) s
solvable, and in this case, under the assumption the base field of V s algebraically

closed, there is a one dimensional D-invariant subspace of V.

4. Cohomology groups associated with a weak representation.

Let (o, D, 6) be a weak representation of a general L.t.s. T into a vector space V.
‘We shall define the cohomology groups associated with (o, D, 6). A (2p+1)-linear
mapping f of T into ¥ is called a (2p+1)- V-cochain if

f(xb coey X2i-1y X265 v X2ps X2ps1) = 0
for xp1= %2, i=1,2, -, p. Similarly, a (2p + 2)-V-cochain is a (2p + 2)-linear
mapping f of T into V satisfying

f(xl, ceey X215 X205ttty X241 x2p+z)= 0

if xgs1= x5, i=1,2, ..., p. Denote C"(T, V), n= 0,1,2, ..., a vector space over
0 spanned by n-V-cochains, where we identify C°(T, V') with V.

 We shall introduce a notion of coboundary operation for the product space of
cochain groups. For a pair (f, f) of the same element f in C°(T, V') define

(4.1) ©O1f) (x)=0(x)f>
For each (f, g € C* (T, V)x C*(T, V') we define a mapping 0: o(f, ©=001f,0ng)
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of C¥*-Y(T, V)xC*(T, V) into C***}(T, V) x C***(T, V') by the following formulas :
O1f) (%1, %2y -5 F2p1)
=(—1Y0(%2p:1) Lg(®1, -++» F2p-2, X2py B2p-1) — (&1, -5 X2p)
+ 0(%2p-1) f (%1, -5 Fap-2, %25) — 0(229) [ (%15 -5 X2p-1)
4.3) — f (%1, ey X2po2y T2p-1%25)]

»
+}§1(—1)k+1D(x2k-1, %or) f (%1, --vy Bono1, Raky ooy X2pe1)

b 2p+1
+kZ Z (_l)kf(xh covy Ropo1y Roky ooy [ka—lxzkxj:], feny x2p+1),

S1j=2k+1
(Ong) (%1, %2, -5 X2p42)
=(—1)°0(x2p+1, %2p22) [8(%1, -5 Xap_2y F2py X2p1) — g1, -5 X2p)
+ 0(x2p-1) f (%1, -5 Fap-2, F2p) — 0(52) f (51, -5 H2p-1)
(44) ' —f(®1, o X2poz, X2p_1%2p) ]

»
+k2.1(—1)k+1D(x2k—1, %ox) 8(%1, -5 Ror-1, Ra2ks --+5 X2ps2)

b 2b+2 ’
+kZ:1 : zzl-ej+1(\—1)kg(xls () &Zk—h &Zka AR Eka—lekxf:]a Tty x2ﬁ+2):
=1j=

where the sign A over a letter indicates that this letter is to be omitted.
For example, if (f, g) € C*(T, V)x C*(T, V)

©O1f) (%, 3, 2) = —0(2)Lg(y, ) — glx, Y+ o) fF(N— 0N fx)— flxy)]
+ D (%, Nf(z)— fLxyzD,
Oug) (%, ¥, z, w)= —0(z, w)[g(y, %) — g(x, y) + 0(x) f(9) = 0() f () = f(x )]
+ D(x, y) g(z, w) — gLz yz], w) — gz, Lxyw]).
We shall prove for any (f, g) 090(f, g9 =0or
(4.5) 0101f =0,
(4.6) ondrg = 0.

For fe C°(T, V), (45) follows from (3.1), (3.2) and (4.6) follows from (3.1), (3.3).
To prove the general casé we define the following operations.

Let (f, g) € C¥*~XT, V)x C*(T, V), p=2,8, ..., then £(x, y) is a linear mapping
of C*~YT, V) x C*(T, V) into itself defined by

(47) (’C(x> y)f) (xla ) x2p—1):D(xa y)f(xl, Tty x2p—1>
20-1

- j§1f(xh Tty I:xyxf:)a Ry xzp—l)'
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¢(x, ) is a linear mapping of C**~Y(T, V) x C*(T, V) into C*~%(T, V) C*YT, V)
defined by

(48) (6(.%, y)f) (xl, Tty xzﬁ—3):f(x= Ys X1y -0y x21>—3)'

The same definitions are applied also for g. By direct calculations we have

(4.9) (2, 90+ 0¢(x, y)=£k(x, ),

(4.10) [k(xy ) (2, w))=cCayzd, w)+ ¢(z, Lxywl
By the induction on p we obtain

(411) [k (xs 3), £(z, w)]=£{xyz], w) + £z Lxyw]),
(4.12) K(x, )0 = 0k(x, 7).

Assume 0101 f=0n0ng=0 for all (f, g) € C*~X(T, V)x C*(T, V), then for (f, g) €
CHY(T, VYx C**¥ (T, V) ¢(x, y)0101f = (£(x, y)— 01 (x, Y)Lf =0101t(x, y)f =0,
hence 6101 f=0 for all f. Similarly dydng=0 for all g. Thus we have proved (4.5)
and (4.6).

Let Z%*~Y(T, V) be the set of f € C*~'(T, V') such that 1 f=0, then the (2p—1)-th
cohomology group H*-(T, V) is the factor group Z*~(T, V)/01C**~*(T, V).
Similarly the 2pth cohomology group H*(T, V) is defined as Z**(T,V)/ ouC?*~¥T,V)
and we have the product of cohomology groups H*~X(T,V)x H*(T,V), p=1,2, ...
We define H°(T, V) as the set of f in C°(T, V) such that d1f=0 and onf =0.
Then from (4.1) and (4.2)

HY(T, V) is a subspace of V spamned by the invariant elements under the wealk

representation of T.

5. Extensions of weak GT-modules.

The purpose of this section is to give an interpretation of the pair of first and
second cohomology groups following the method of [ 3].

DeFINITION.  Let (o1, Dy, 61; V) and (oz, D, 625 W) be weak GT-modules. An
extension of (o1, D1, 61 ; V) by (03, D, 02 ; W) is a weak GT-module (o*, D*, 6*; V'*)
and two GT-homomorphisms ¢: W—F* and = : V*—V such that

3 T

0 w V* V 0

is an exact sequence.

’
7

Two extensions : O—aW—‘—»V*—”% V——0 and 0 /74 : > P V- 0

of V by W are equivalent if the diagram
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0 w y* V 0
b e s
0 w | |4 0

is commutative.

Now, suppose that (p*, D*,6% ; V*) is an extension of (01,D1,0;1; ) by (02, Ds,02 ;
W). Let [ be a linear mapping of ¥ into ¥* such that zi=1on V. For x, y€ T,
f(x) and g{x, y) are the elements of Hom(V, V" *) defined as follows : '

J (@) () = 0*(x) [(v) — lo1(x) (v),
glx, 1) (0) = 0*(x, ) 1(v) — 16:(x, y) (v) vev.

Then f(x), g(x, y) € Hom(¥V, W) since nf(x)(v)=ng(x, y)(v)=0. The vector
space Hom(¥, W) becomes a weak GT-module by defining (o, D, 6) as (o(x)f) (v)=
0x(x)f @)= f (o)), (0Cx, 2)F)®)= B, Y)f (0)—f (s, H(@)), and (D (x, 9)f) ()
=Dy(x, P f (w)—f(Ds(x, )(@)), v € ¥, f € Hom(V, ). Then (f, g) € C{(T, Hom(V, %))
x C*(T,Hom (¥, W)). Furthermore it follows (f, g) € Z}(T, Hom(V, W) x Z*(T,
Hom (¥, #)). In fact, by using (8.1) and (3.2) (61f) (%, ¥, 2) (v)=—0(z) [ g(y, %)
— g(x, )+ 0@ f (D) — 0(DF ) — f@PT@) + D(x, P F ) @) — FCxy5D) @)
= A{LD*(x, ), 0*(2)]— 0*[x yz )} L (v) — L {LD1(x, ), 0:2(z)] — 01 (= yz )} () = 0.
Hence f € Z'(T, Hom(¥, W)). Similarly ge¢ Z*(T, Hom (¥, W)) follows from (3.1)
and (8.3).

Let [; and /, be two linear mappings of 7 into V* such that zl, =7nl,=1on V.
If we put f:(x) (0)=0* (&) Li(v)— Loy () (0), &%, ) (W) =0*(x, P L) — 1,03 (%, ) (),
veV,i=1,2, then fi(x)—fo(x)=0(x)I=(01)(x) and gi(x, y)— g2(=, )=0(x, )1
=(0nl)(x, y), where [=1;—1,. Therefore to each extension of ¥ by W corresponds
uniquely an element of H'(T, Hom(V, W))x H*(T, Hom(V, W)). It is clear that two
equivalent extensions of ¥ by W determine the same element of H (T, Hom{V,W))
x H*(T, Hom(V, W)).

Conversely, given (f, g) € Z'(T, Hom(V, W)) x Z*(T, Hom(¥V, W)) and put V*=
V'@ W (vector space direct sum). The linear mappings o*(x), 6*(x, y), D*(x, )
of V'* are defined as follows :

0*(®) (v, w) = (p1(x) (), f () (V) + 02(x) (W),
6*(96) )’) (1}: ’Ll)) == (01(.’/\7, }’) (U)> g(x’ y) ('U) + 0.2(963 y) <w>)>
D*(x, y) = 0*(y, %) — 6*(x, )+ [o*(x), 0* ()] — 0*(x »),

(v, w) € V*, then by a strightforward calculation it follows that (p*, D*, 6%; V*)
is a weak representation of 7. If we put ¢(w)=(0, w) and 7 (v, w)=v, then 7
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is a GT-homomorphism and 0 — W : V* - 7V —— 0 is an exact sequence.
Define a linear mapping [ of ¥ into 7* by 1(v)=(v, 0), then nwl=1on V. (o*(x)I
—1p1(x)) @)= (0, f () (v)) implies Fx)=p0*(x) 1 —lo1(x) and similarly g(x, )
= 0*(x, y)I — 101(x, ¥), hence [ defines a given 1-cocycle f and 2-cocycle g. Thus
we obtain an extension V* of ¥V by W. , ,

Suppose that 0———>W—‘> V*L+ V—-0 and 0—+W—;> V*’—”——> y——0 are
two extensions of ¥ by W correspond to the same element of HY(T, Hom(V, w))
x H*(T, Hom (¥, W)). Then we have relations f(x)=f(x)+ (01h) (x) and g(x, )
= g'(x, )+ (0nh) (x, ), h € Hom(¥7, W), hence p*(x)l — lp:1(x) = ¥ (x)l'—U'p:1(x)
+ 02(x) h — hp1(x) and H*I(x, NL—10:1(x, y)= 0% (x, y) I — 101 (%, y) + 02(x, ¥)h
— k61 (x, 7). So that, we obtain

) Vo1(x) — 101(x) + ho1 (%) = 0¥ (x) I — 0*(x) 1 + 02(x)h,
)

1'6:(x, y) — 10:(2, )+ RO, (x,y) = 6% (%, NI —0*(x, y)I+ 02(x, y)h.
A linear mapping £ of 7* into V*' is defined as
g (v*) = U'm (v¥) + v* — Ix (0¥) + b7 (v¥®) v¥ € V*,

then it is shown that 7’k == and £ is a GT-homomorphism of 7* into V* by
making use of t,he relat}ion (x), therefore two extensions 0— W—‘—> V*-”—+ V—->0
and - 0—— W‘—> V*l”——> V——0 are equivalent.

Thus we have the following theorem.

Tarorem. Let V and W be the weak GT-modules of general L.t.s. T. Then,
there is a one-to-one correspondence between the equivalence classes of extenstons of
V by W and the elements of H'(T, Hom(V, W) x H*(T, Hom(V, w)).

6. Cohomology groups associated with a representation.

First we recall a definition of representation? of general L. t.s. [19].

DermniTiON.  Let o be a linear mapping of a general L.t.s. T into the algebra
E(V) of linear endomorphisms of a vector space ¥ and D and 0 be the bilinear
mappings of T into E(¥). (0, D, 65 V) is called a representation of T if o, D and 0
satisfy the following relations :

(6.1) D(x, y)+0(x, »)—0(y, ©)=Lo() 0(n]— o(x y),
(6.2) 0(x, yz)— (90 (x, 2) + 0()0(x, »)=0,

1) This definition of representation is an application to general L.t.s. of the definition by Eilenberg in [2].
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6.4)  6(z, w)0(x, ) — 6y, W)0(x, 2)— 6y [yzwj>+n<y, 0, ) =0,
(6.5) [D(x, 3, 0()]=0Cxyz]), :
(6.6) (D 9), 00, w)]=0(xyzT, w)+ 0(z, Exywj>.

According (6.1) we shall sometimes denote by (o, 6) the representation (p, D, 6)
simply. From (6.1), (6.2), (6.3), and (6.5) we have

6.7) D(xy, z) + D(yz, x)+ D(zx, y)=0.
The regular mapping (o, D, 6) of T is a representation of T into itself and an ideal
of T is a subspace of 7 invariant under this representation. If p is a representa-
tion of Malcev algebra M, by putting 0(x, y)=0(x)o(y) + 0(ye(x) — e(xy), (0, )
becomes a representation of a general L. t.s. associated with M [19].
Let (o, D, 6 ; V) be a representation of general L.t.s. T. Let (f, g be a pair of

2p- and (2p+1)-linear mappings of T into V" such that

f(xl, cery X241y X2iy tcy xzp):O
and

g(x1, cery X2i-1y X245 vy x2p+1)=0

if wg;_1=295 i=1,2, ..., p. We denote by C*(T, V), n =1, a vector space spanned
by such linear mappings. For each element (f, g) of the product space C®(T, V)
x C***1(T, V) a coboundary operator 6 : (f, g)—~>(01f, 0ng) is a mapping of C*(T, V)
x C2#+Y(T, V) into C#**(T, V) x C**3(T, V) defined by the following formulas:

O1f) (%1, %25 -++5 X2pr2)
= (—1)P[0(x2p41). 8(%1, -5 Faps Taps2) — 0(H2p42) (%1, -5 F2p41)
- g(xl, crry X2py (x2p+1x21>+2)):|
+k§1( l)kHD(ka_l, %28) f(®1y oy K2no1, Roks o5 X2pi2)

»
+ 2 ( )Ff(m1y -y B2r-1, Rzny -y (X2 1%28%5 ] oo F2ps2)s

k=1 j=2k+1
(61!8') (xla X2y *vvy x2p+3)
= (—1)1’[6(962“2, xzp+3) g(xl, sising x2p+1)'— 0(x2p+1, x2p+s) g(xl, ceey X2py x2p+2)]

p+1
'y Z(~1)k+1D(x2k—'1, w25) §(%1y ooy Rzho1, Boks -5 X2p13)

iJ+1 20+3 &
+ Zl %ﬂ( 1 g1, vy R2b-1, Bars -y [X26-1225%5 5 -+, X2p+3)
7

for (f, g) € C¥(T, V) x C¥* (T, V), p=1,2,8, ...
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In the case n =1, we shall only consider a subspace spanned by the diagonal ele-
ments (f, f) € CY(T, V) x C*(T, V) and 6 (f, f) = (01f, 0uf) is an element of
C3(T, V) x C3(T, V) defined by

01 ()= 0(x) f () — 0(y) f (%) = f(x ),
@uf) (%, 3, 2)=0(y, 2) f(2) — 0(x, 2) f(9) + D(x, 1) f(z) = fLxyz]).

Further, for each (f, g) € C*(T, V) x C*(T, V) another coboundary operation
O*=(0%, 0%) of C2(T, V) x C3(T, V) into C*(T, V) x C*(T, V) is defined by

OFF) (=, 3, 2)= — 0(x) f (3, 2) — 0(N f (2, ) — 0(2) f (=, 7)
+ f(xy, 2)+ f(yz, 2) + f(zx, ¥)
+ glx, 3, )+ g(y, 2 %) + g(z, %, ).

0f 8 (%, ¥, z, w)=0(x, w) f (3, 2) + 0(y, w) f(z, %) + 0(z, w) f (%, y)
+ glxy, z, w) + glyz, x, w) + glzx, y, w).

For each fe C'(T, V) a direct calculation shows that 0101/ =0701f=0 and
Ondnf=0%0nf=0. In generally, by the same way as §4, for each (f, g) € C**(T, V',
x C***Y(T, V) it is shown that 0101 f=0 and dudug =0, or 06(f, g)=0. For the
case p =2, Z*(T, V)x Z**(T, V) is a subspace of C**(T, V)x C*+Y(T, V') spannec
by (f, g) such that 0(f, g)=0. The cohomology group H*(T, V) x H***(T, V'’
of T associated with representation (o, D, 6) is defined as the factor space
(Z(T, V)x Z#*(T, V))/(B*(T, V) x B**(T, V), where B*(T, V')x B¥*X(T, V'
=0(C# YT, V)x C* T, V). HYWT,V)={feC (T, V); 01f=0,0nf=0} by
definition. In the case p=1, let Z*(T, V") be a subspace of C*(T, V) spanned by ;
such that 6; f=07f=0 and Z*(T, V') be a subspace of C*(T, V) spanned by g suck
that Opg=0%g=0, then H*(T, V)x H*(T, V) is defined as the factor space
(ZX(T, V) x ZXT, V) /(BX(T, ¥)x BT, V), where BT, V')x BT, V)=1{0(f, f)
f€C(T, V)}. Letf bea linear mapping of T into a representation space V7, f is
called a derivation of T into ¥ if f(xy) =0(x)f(» —0(»f(x) and f(xyz]
=0(y, 2) f(x)— 0(x, 2) f(3) + D(x, ) f(2). If (o, 6) is the regular representatior
of T, then f is a derivation of 7. Then, by the definition of H YT, V)

H'(T, V) is the vector space spanned by derivations of T into V.

7. Extensions of general L. t.s.

In this section it will be given an iﬁférpretation of H 2T, V)x H3T, V) in the
relation with an extension of general L. t. s. following the method of [1].
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DEFINITIbN. Let T, T*, U be the general L.t.s. over @. An extension of T by U

is an exact sequence 0——U—-— T T 0 of general L.t.s. Two extensions

’

T

0—U- T* T——0 and 0 U- T+ T——0 are equivalent if there
is a homomorphism £ such that the diagram

L T

0 U T* T 0

e ]

0 U T+ T 0

is commutative.

We shall consider the case ¢(U) is abelian in 7*. Let T* be an extension of T
with an abelian kernel ¢(U). Identifying U with its image ¢(U) by the injection
mapping ¢, we have for a=x+p, b=y+gq in T*, p,q in U, 0(a) (v)=(x+p) (v)=xv,
0(a, b)(v)="[v, x+p, y+qg]=[vxy], ve U. Letlbe a linear mapping of T into
T* such that z7l=1on 7. For x, y¢ T define linear mappings of U into itself by
0(x) () =1(x) (v), 6 (%, y) () =[vl(x)1(y)], and D(x, y) () =[Il(x)I(y)v], then
o(x), 0(x, ¥), and D(x, ) do not depend on the selection of I. Since 7 is a
homomorphism of T* onto T, [(x)I(y) — l(xy) and [1(x)I(y)1(z)]— I([xyz]) are
in the kernel U, by using the assumption U is abelian in 7*, it is shown that
(0, D, 0) is a representation of T with U as the representation space. Put

e, P=1(x)1(y)— l(xy),
&z, v, 2)=[1(x)L(NI(z)]— ([ % yz]),

then (f, g) € C*(T, U) x C°(T, U). We shall further show that (f, g) € Z*(T, U)
x Z3(T, U). For this purpose we see some relations followed from the axioms of
general L.t.s. for T*. From (1.3): [1(x) ()1 (z)]+[1{(» ()1 (x)]+[1(2)I(x)I(y)]
+ (L)) + (DI I(x) + (1(2)1(x))I(y) =0 we have OFf) (%, y, 2)=0.
Similarly, from (1.4), (1.5), (1.6) we have (0t g) (x, y, z, w) =0, (O1f) (=, ¥, z, w) =0,
(Oug) (%, v, z, v, w) =0 respectively. Therefore (f, g) € ZXT,U)x Z (T, U). If V'
is another linear mapping of 7 into 7 such that zl'(x)=x for each x ¢ T, then
h(x)=10(x)—1(x) is in U, h is a 1-U-cochain. Let (f', g") be the pair of factor
sets corresponding to I, that is f'(x, ) =0U'(x)l'(y) —U'(xy) and g'(x, ¥, 2)
=[U()V(nl'(2)]—U'(Cx yz]), then it follows f'=f+01h and g'= g+ Onh, therefore
the cohomology class of f and the cohomology class of g do not depend on the
choice of section /, hence the extension of 7T by abelian U determines uniquely an
element of H*(T, U)x H(T, U). Two equivalent extensions define the same
element of H(T, U) x H3(T, U).

Conversely, let (o, D, 0) be a representation of a general L.t.s. 7 into a vector
space U and (f, g)€ Z*(T, U)x Z*(T, U). Put T*= T@ U (vector space direct
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sum) and define two compositions in T* by
(x, ) (3, v) = (23, 0(x)v —0(Pu + fx, y),

[(x, u)(y, v)(z, w)]= (Cxyz], 6(y, 2)u—0(x, z)v+ D(x, yw+ gz, v, z)),
then we have the-relations (1.1), (1.2), ..., (1.6) with respect-to these compositions
and T* becomes a general L.t.s. We have an exact sequence 0— UL—> T*—”—+
T——0, where ¢(z)=(0, u) and 7%, u)==. If we define a linear mapping I of . T
into T* by I(x)=(x, 0), then 7l=1on T. Since 1(x)I1()—1(x)=(0, (=, ¥)) and
[ (NI —=1CxyzD) =(0, g(x, v, 2)), (f; g 1is one of the pairs of cocycles
defined by the extension. Therefore, to each (f, g)€ Z (T, U)x Z3(T, U) cor-
responds an extension of T by U.

Thus, we have the following theorem.

Turorem. To each equivalent class of extensions T* of a general L.t.s. T by
abelian ideal U in T* corresponds an element of H(T, U)x H T, U). Let (o, D,0)
be a representation of a general L.t.s. T into a vector space U. If (f, g is a pair

“of cocycles belonging to the element of H 2(T, U)x H(T, U), then there is an
extension T* of T by U such that U s abelian im T*.
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