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A Lie triple system is a tangent algebra of the symmetric space. In
[4], Lister defined a representation of Lie triple system 7' as a triple
homomorphism of 7T into a Lie triple system of linear transformations. In
[5], we defined a representation according the method of Eilenberg. In
this paper, we shall introduce a more generalized notion of representation,
which will be called a weak representation. This corresponds to the weak
representation of Malcev algebra in [6].

The cohomology theory of Lie triple systems was studied in [2] and
[5]. In §2, we consider the cohomology groups associated with a weak
representation, following the method of Chevalley and Eilenberg [1]. In
§3, it is shown that there exists a one-to-one correspondence between the
equivalence classes of extensions of a weak representation module V by a
weak representation module W and the elements of two dimensional coho-
mology group H*(T, & (V,W)), according the method of Hochschild in [3].
This result corresponds to the fact that the one dimensional cohomology
groups H'(L,V) associated with a representation (o, V) of Lie algebra L
is explained in relation with extensions of representation modules.

Prof. W. G. Lister obtained the interpretation of the second cohomology
group as module extension classes independently, in which he called our
weak 7-module a pseudo 7-module. .

Throughout this paper, we assume that a characteristic of the base field
is zero and the vector spaces are finite dimensional.

1. Weak representations. A Lie triple system (simply L.t s) is a
vector space T over a field ¢ with a trilinear composition [xyz] satisfying
the following relations:

(1.1 [xxy] =0,

1.2 [xyz] + [yzx] + [22y] =0,
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1.3 [y [zwv]] = [ [xyz]ww] + [z[xyw]v] + [zw[xyv]].
A derivation of a L.t.s. T is a linear mapping D of T such that D ([xyz])
= [(Dx)yz] + [x(Dy)z] + [xy(Dz)] for all x, ¥, 2 in T. From (1.3) it follows
that Z‘, D(x;,y:): 2— Z [x.y:z] is a derivation, which is called an inner
der1vat1on

Let o be a linear mapping of a L. t.s. T into an associative algebra
(V) of linear transformations of a vector space V. If pis aL.t.s. homo-
morphism of 7T into €(V), i.e. o([xyz]) =[[p(0), o(»)]1e(2)] for all x,v,2€T,
then p is called a representation of T into V [4], here we shall call a
representation of this type a special representation.

DEFINITION,. A weak representation of a L.t.s. T into a vector space |4
is a pair (D, 6) of bilinear mappings of T into E(V) satisfying

(1.4)  D(x»)=0(, )—0(xy) ‘
and '

1.5 [D(x,3), 6(z, w)]1=0([xyz], w) +6(z, [xyw])
for all x,v,z,w in T. If a weak representation satisfies the following rela-
tion, then it is called a representation.

(1.6) 6(z, w)0(x, y)—0(y, w)o(x,2)—0(x%, [yzw]) +D(y, z)ﬁ(x, w)=0.

From (1.4) we may say a (weak) representation (D, ) a (weak) repre-
sentation 6 simply. We call a (weak) representation space V a (weak) T-
module. A special representation o of a L.t.s. T induces a representation
0 of T by putting 6(x,y)=p(»p(x). For x,y in T, let D(x,y) and 6(x,y) be
linear mappings z—[xy2] and z—[2zxy] of T into itself respectively, then (D, #)
is a representation of T with T as a representation space, which will be
called a regular representation of T, and D(x,y) becomes an inner deriva-
tion of 7. In an algebraic system with a trilinear composition [xyz], a
pair (D, 6) of regular mappings satisfying (1.4) and (1.5) characterizes a
Lie triple system.

Let 6, 6, be weak representations of T with representation spaces V,
W respectively. Let 8(V,W) be a vector space spanned by a linear map-
pings of V into W. For x,y€T define a linear mapping 6:(x, ¥) of LV, W)
into itself by

(LT (% f=0.(ef—f6.(%9)  fEIWV, W),

(1.8) Dy, =00y, %) —0:,(%9),
then (D, 6,) is a weak representation of 7 with representation space LV,
W), and Dy(x, 3)f=D:(x,3)f—fDi(%, ).
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From (1.4) and (1.5), for the weak representation (D, 8) we have

1.9 [D(x, ), D(z, w)]=D([xyz], w) +D(z, [xyw]).

Therefore, the vector space D(T,T) spanned by 3)D(%;,y.) forms a sub-
algebra of gl(V). ' .

We recall that the derived system 7% of L. t. s. T is defined by T®=
[TTT] and T®=[TT* P T%] k=23, ---, and T is called solvable (in T)
if there exists a positive integer # such that 7®=(0) [4]. Then a result
by Lister [4] is slightly generalized to a weak representation.

ProOPOSITION. Let (D, 6) be a weak repreéentation of a L.t.s. T and let
D(T,T) be the Lie algzbra generated by all > D(x, 5., %, 9. €T. Denote T®
and D(T,T)® the derived subsystem of order ® of T and the derived subalgebra
of order k of D(T,T) respectively. Then :

D(T, TY® S 3} DT, T®-),

=0

(1.10)
D(T, T>(2k+1) - é D(T(i), T(2k+1—i)).

Hence if T is a solvable L.t.s., then D(T, T) is a solvable Lie algebra. If (D, 6)
s a weak representation of a solvable L.t.s. T into a vector space over an alge-
braically closed field, then there is a one dimensional D-invariant subspace of V.

We give an example of a weak representation which is not a represen-
tation. Let 7 be a 3-dimensional L. t. s. over @ with basis X,, X,, X,, in
which a multiplication is defined by : ;

[X.X.X,]=—-2X, [XX.X,]=2X, [X.X.X,]=X, [X.X.X,]=0,

[X. X, X, ]=X,, (X, X, X.]=0, [X. X, X,]=0, [X, X, X,]=0,

[X. X, X,]=0, (XXX ]=—[X,X.X.].

Then a vector subspace V spanned by X, X, is a subsystem of 7 and a
vector subspace W spanned by X, is an ideal of 7.

Let 6, and 6, be weak representations of V into V and V into W, re-
spectively, induced by regular mappings of 7', and L(V, W) ke a vector space
spanned by linear mappings of V into W. By the definitions (1.7) and
1.8) (D, f; L(V,W)) is a weak representation of L.t.s. V. Define f in
LWV, W) by fOX +puX,)=G+p X, then for x=y=X, z=w=X, v=2X,
(0:(2z, w) 6,(x, 3) —0:,(y, w) 0,(x, 2) — 0,(x, [yzw]) + Dy(y, 2) 6.(x, w)) f (V)= — 4X,,
hence 6, is not a representation.
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2. Cohomology groups associated with a weak representation .
Let (D,6) be a weak representation of a L. t.s. T into a vector space V
and let f be a 2p-linear mapping of T X+ < T (2p times) into V satisfying

. £y %y s Taics s Koty s Fapo1y Kep) =0
for %-1= % 8 =1,2,-, b — 1. Then f is called a 2p-V-cochain. c»(T,V)
denotes a vector spaée spanned by 2p-V-cochains, where we define C(T,
VH=V.

A coboundary operator o is a linear mapping of C*(T, V) into:
C»+*(T, V) defined as follows:

) () =0(x,f for FEC(T,V),

(6f) (xly ny Yy x2p+2>
= (_1)p+10<x2p+1; x2p+2> [fCx, s - xﬂp) —f (%, +**) Xap-s) Xops pr—J]
P
(2- 1) +k2-1 (_1)k+lD(x27¢—1: ka)f(xly Tty ﬁzk—n ﬁzk: Yy x2p+2>

p+2

P 3 .
+k2_1 j-EZkH <_1)kf(x1; ] -7221:—&: -"%zk: "':A[xzk—1 Kok xj]; ) x2p+2)
for fEC?(T,V),p=12, -,

where the sign A over a letter indicates that this letter is to be omitted.
If FECAT,V), then (88/) (%, %, %o, %)
=00, £ [(BF) (% %) — (8F) (%, 21+ D%, ) (3F) (%, x) — (8f) ([xmx.%],%0)
— (1) (%, [ma2%:1) ' :
(00, 2 (O 1) — 0%, £)) + D5, )0 (%, %) —6([5%:5], £
—0(%, [xlxzx,,])}f
— ([D(x, %), 0%, 2)]—0([m55], £) —0(%, [#56010}f
=0, by (1.5). Similarly ssf=0 for every fE€ C (I, V).
For %,y €T, «(x,¥) is a linear mapping of C?(T, V) into itself defined
by
x(x, N f=D(x, S for fEC'(T,V),
2.2)
8 3 (o B s T =D& IS G, ) = 23 F s o0, LVEY, - )
for fECH(T,V),p=1,2,3, -
¢«(x,y) is a linear mapping of C*(T,;V) into C**(T,V) defined by
«(x,9)f=0 for FEC'(T,V),
2.3) :
(2, D)) (B Xy -y Kapos) =S (5,9, %1, Koy == Fopa)
for fEC?(T,V),p=1,2, 3,
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Then, by direct calculations we have :
2.4 e(x, )of+6c(x, M) f=r(x, ) f for FE CZ”(T V) $=2,34,-
2.5 [e(x ), czw)]f=(layz], W) f+e(z, [yw]) S ,
for fEC*(T, V), p=2,3,4, -
Next, we have
(2.6) [k(x, ), (2, w) 1 f=r([xyz], W) f+xz, [ywDf
for f€C*(T, V) »=0.1,2, -
For p=0,1 this is proved by a direct calcu\latlon, so that we assume (2.6)
holds for every fEC?(T,V) and let fEC?**(T, V).
Then for arbitrary #,v in T,
e(u, v) ([(x, 9), k(2 w) 1 f—w([292], W) f—xc (2, [2yw]) f)
= ([(x, ¥), c(z, w) ] —x([xyz], w) —x(z, [tyw]))(x, v>f+e([ZW[xyu]] ) f
+e([[xyz]wu], ) f+([z[xyw]lu], V) f
—e([xy[zwn]], v) f+(u, [[xy2z]wo]) f+e(u, [z[xyw]v]D f
+ e, [zw[y0] D f—e (e, [xy [2w0]]) f=0
by the induction assumption and (1.3). Hence (2.6) follows. Similarly
by induction on p we have

2.7 x(%,9)0f=bk(x,9)f for fEC*(T,V),»=0,1,2, -
Using these relations and by induction on p we have
(2.8) o66f=0 for fEC?(T,V), p 0 1,2,-

Let Z*»(T,V) be a subspace spanned by elements f€C*(T,V) such that
6f=0, i.e., f is 2p-V—cocycle, and let B?(T,V) a subspace spanned by ele-
ments of C?(T,V) of the form &f, fEC?*(T,V). By (2.8) B*(T,V) is a
subspace of Z??(T,V). The 2p-th cohomology group H*(T,V) of T relative
to the weak representation 6 is the factor space Z**(T,V)/B**?(T,V), where
we define B°(T,V)=0. »

H(T,V) is the subspace of V spanned by the invariant elements under the
weak representation of T.

In particular, if 6 is a regular representatlon then H°(T,V) is an ideal
of T. In the next section, we consider the meanning of H*(T, V).

3. Extensions of weak T-modules.

DEFINITION. Let (6,,V) and (6, W) be weak 7-modules. (65, V*) is
called an extension of V by W if V* is a weak T-module with W as sub-

module, and there is a T-homomorphism = of ¥V* onto V' such that Ker ()
=W..
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Let (6, V¥) is an extension of (4, V) by (A, W) and let ! be a linear
mapping of V into V* such that zI=1 on V. For x,y €7, define an element
g(x,9) in &V,V*) by
_ g(x,3) () =0,(x, I — lﬁ (x,3) (@) vEV.

Then g(x,y) €V, W) since zg(x,y) @) =0.

For %9y € T and f € 8(V,W), if we define a linear mapping 6 (x,5) of
LV, W) by

(%, ) f (W) =6,(x, ) (@) —f60,(x, ) ) ~BEVs

D(x,y)=60(y,x)—0(x,5),

(D, 6 is a weak representation of T with representation space LV, W) and
gECHT,(V,W)). Furthermore, g€Z*(T,8(V,W)), because
(68) (%1, %z, %, %) (V) A
=0(%,, %) (g%, %) — g (%, %)) (@) + D(x,, %) 8 (%, %) @) —&([0:24%:], %) (V)
—g (%, [%:2%:2,]) (@)
= 0,(%,, %) (g(%, %) — 8 (%, %)) () — (& (%, %) —& (%, %)) 6, (%, %) (V)
+ D, (x, %) 8 (%, %) ) —& (%, £) Dy (%, %) @) —g([%:%:%], ) @)
—g (%, [2:%:%,]) (@)

= —ﬁ (%, %) Dy (1, 2)L(@) + Dy (2, %) 652, )1 (W) — O, ([x,%:%,], x,,)l(v)

—0,(%,, [xx.) (@) —ID, (%, %,) 60, (%5, %) (@) 16, (%0, £) Dy (%1, %) (V)
+16,([%,56:%], %) @) +16,(x,, [£,:%:.2,]) @) ’

=0 by (1.5).

Let I, and I, be two linear mappings of V into V* such that =l,=al,=1. If
we put

&%, 9)=0,(x, 1, —16,(x,5),

(%, 9) =0,(x, ), —1,6,(%,5),
then (g.(x,%) — g&(x,9)) @)= 6,(x,NI@)—16:(x,y) @), v €V, where I=l —1
Since 7l (v)=0, 1€V, W), hence (& (%,¥) —g.(x,3)) @) =0(x, NI@w) = (D) (x,9)
(v), i.e., &i—&,=6l. Hence, an extension of V by W determines uniquely an
element of H*(T,8(V,W)).

Conversely, given an element g €Z*(T,% (V,W)). Denote V* a vector
space direct sum V@W, and for %,y €T put

0:(x, ) (v, w) = (6, (%, ) V), &(x,3) @) +6:(x,3) (W),
D,(x,y)=0,(y, x) —0:,(x,5), (v, w) EVEIV.
Then 2
([Dy(%,3), 6:(2, ¥)] —0:([xy2], u) —b,(2, [2yu])) (v, w)
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0.(z,u) (g(%,9) —g, %)) ()
— (&) —gW, 2))6:(z,u) (v)
+D,(x,y)g(z,u) W) —g(z,u) D, (x,y) (v)
—g([xyz], u) () —g(z, [xyu]) (v)
_ ( 0, 0(z,u)(g(x%,3)—&(, %)) @) +D(x,y)g(z,%) (v)>
—g([xyz], w) () —g(z, [xyu]) (W)
= (0, G&&y2zu) @)
=(0,0).
Hence V* is a weak 7-module. Put «(w) = (0,w), =(v,w) = v, then = is a
T-homomorphism of V* onto V with kernel W. We identify W with its
image «((W) in V* and if we put I@)=®,0) for vEV, =l =1. (b,(x,y)I—16,
(x,9)) @) =(0, g(x,») (@), hence g(x,¥) =0,(x,9)[—16,(x,%), so that [ defines
a given 2-cocycle g. V* is an extension of V by ‘W.
Now, suppose (¢, V*) and (), V*) be two extensions of V by W with
same element of H*(T,8(V,W)), i.e. g(x,y)=g"(x,3) + (60) (x,3), p €IV, W),
and let = and =’ be 7-homomorphisms of V* onto V and V* onto V, respec-

#

tively.
From the assumption we have .
0,(x, y)I—160,(x,v) =06, (2, )" =1'6,(x, ) + 6,/ (x,¥) 0—p0.(x,%),
hence
3. D U6,(x, ) —16,(x%,9) +00,(x,y) =86, (x, I —0,(x, y)[+6,(x, ) p.
Define a linear mapping ¢ of V* into V* by '
c(W®) =1'z(0*) + W*—Iz(v*)) + oz (V%) vFEVH,
Then #'s=n. By using (3.1) we have
05 (%, )0 (*) =6y (x, ) {I'r(@*) + @*— Iz (¥*)) + pz(v*) }
=1'6,(x, )7 (0*) +6,(x, ) W*) =10, (%, y) = (@*) + 06, (x, y) 7 (v*)
=1'70,(x, ) @*) +6,(x, y) W*) —Inb,(x, y) %) + oz, (x, y) (%)
=a(6,(x,5) (v*)),
hence 6;'(%,9) 6 =06,(%,%), i.e., o is a T-homomorphism of V* into V*. If
a(@*)=0 then =(¥*)=7x'c 0*)=0, v*€EKer (x)=W, Ker(o) W, but ¢=1 on W,

s

hence ¢ is an isomorphism of V* into V*. Moreover « is surjective, since
for v¥ €V¥* if we put v*¥=1I1z'(v*) + v* =107 @W*) — o7’ @*"), then v*EV* and

o(@*)=v*., Therefore, there exists a 7-isomorphism ¢ of V* onto V¥ such

PR AR S Sy

that e=1 on W and #'o=rn, i.e., two extensions V* and V* are equivalent.
.;" Two equivalent extensions of V by W determine the same element of
e H(T, &V, W)).

Summaring above results we have the following theorem.
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THEOREM. There is a oneto-one correspondence ‘between the equivalence classes
of extensions of V by W and the elements of H*(T,%(V,W)).
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