ON DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE EIGHT

By

Minoru Kanazawa

Department of Mathematics, Faculty of Science, Kumamoto University (Received September 30, 1968)

Introduction:

B. Huppert, in his paper [2], studied on primitive, solvable permutation groups of degree p+1 or of degree p, where p is a prime number. However the determination of the doubly transitive groups of a given degree is open to the question. In this paper we shall prove the following theorem:

Theorem Let G be a doubly transitive permutation group of degree 8. Then G is isomorphic to one of the following groups;

- (i) Frobenius group of order 56 with an elementary abelian group of order 8 as a Frobenius kernel, PSL(2,7), $\Gamma(2^3)$ or PGL(2,7),
- (ii) Holomorph of N; Hol(N), where N is an elementary abelian group of order 8,
- (iii) the symmetric group S_8 of degree 8 or the alternating group A_8 of degree 8.

These groups can be, of course, represented as doubly transitive groups of degree 8.

Now, we use the following notation. For a finite set Ω we denote the symmetric group on Ω by S^2 . The points of Ω are denoted by α , β ,... and the elements of a group are denoted by σ , τ , When a permutation group G on Ω is either symmetric or alternating, G is called an AS-group. For a permutation group G on Ω , the stabilizer of α in Ω is denoted by G_{α} . For a subset Δ of Ω we denote the intersection of all G_{α} s for α in Δ by G_{Δ} .

§1. Lemmas on transitive groups of prime degree

We shall show the several lemmas.

LEMMA 1. Let G be a transitive group on Ω consisting of p elements, where p is a prime number. Then G is solvable if and only if $G_{\alpha,\beta}=1$ for every pair α , β of Ω with $\alpha \neq \beta$.

Proof: If G is solvable, then a minimal normal subgroup N of G is a regular

subgroup of order p. Therefore the stabilizer G_{α} of α in Ω can be regarded as a subgroup of the group of automorphisms of N, and so G_{α} is semi-regular on $\Omega - \{\alpha\}$, i.e. $G_{\alpha,\beta} = 1$ for any β in $\Omega - \{\alpha\}$.

Conversely for every pair α , β in $\Omega(\alpha \neq \beta)$ we assume $G_{\alpha,\beta} = 1$. Since the order of G is divisible by p and is not larger than p(p-1), a Sylow p-subgroup P of G is a cyclic normal subgroup of order p. Hence P is a self-centralizing subgroup of G. Therefore the factor group G/P is isomorphic to a subgroup of the group of automorphisms of P which is a cyclic group of order p-1. Thus G is solvable.

The next lemma which is due to Bochert is useful to the determination of the order of G.

Lemma 2. Let G be a primitive group on the set Ω of n elements, If G is not an AS-group of degree n, then the following inequality holds;

$$\lceil S_n:G \rceil \geq \left\lceil \frac{n+1}{2} \right\rceil!$$

where [m] denotes the maximal integer that does not exceed m.

Proof: Let Δ be a subset consisting of m elements of Ω , and let S^{Δ} be the subgroup of S^{Ω} the permutations of which permute the elements of Δ arbitrarily but fix the set $\Gamma = \Omega - \Delta$ elementwise. Now we choose the set Δ satisfying the following two conditions:

- (i) $S^{\Delta} \cap G = 1$,
- (ii) m is as large an integer as possible.

(In this case we have $1 \leq m$.)

Then $\left\lceil \frac{n+1}{2} \right\rceil \leq m$ holds. If $\left\lceil n+1/2 \right\rceil \leq m$ does not hold, we have m < n/2. Since Γ consists of n-m elemnts, by the choice of Δ there is an element $\sigma(\neq 1)$ in $S^{\Gamma} \cap G$ which moves some element α of Γ .

Of course σ is containted in G_{Δ} . Likewise, we have an element $\tau(\neq 1)$ in $S^{\Delta \cup \{\alpha\}} \cap G$ because of the maximality of m. Then it is easily verified that α is the only element of Ω that is moved by σ and τ . Therefore G contains a 3-cycle $[\sigma,\tau]$, the commutator of σ and τ , which is contrary to the assumption that G is not an AS-group of degree n. Hence $[n+1/2] \leq m$ holds. By $S^{\Delta} \cap G = 1$, none of cosets of S^{Ω} by G contain two elements of S^{Δ} . Thus we have

$$[S^a:G] \ge m! \ge [n+1/2]!$$

Now it is well-known that a non-abelian simple group of order pqr^m , where p, q, r, are distinct prime numbers, is isomorphic to the alternating group A_5 of degree 5 or to PSL(2, 7).

Lemma 3. Let p, q and r be distinct prime numbers and G be a transitive group of degree p, of order pqr^m , where m is a positive integer. If G does not contain a non-abelian simple group, then G is solvable.

Proof: We prove this lemma by the induction on the number of prime factors dividing the order of G. If m=1, G is clearly solvable. Suppose m>1. By the assumption, G is not a simple group, and so G has a proper normal subgroup N such that $|N|=pq^ar^b$ with a=0 or 1, $0 \le b \le m$ and $(a,b)\ne (1,m)$. Then by Burnside's theorem the factor group G/N is solvable, while N is a transitive group of degree p and the number of prime factors of |N| is less than that of |G|. Hence by the inductive hypothesis N is solvable. Since both G/N and N are solvable, G is also solvable.

The next lemma is well-known as the lemma on transitive extension of a simple group.

Lemma 4. Let G be a primitive permutation group containing no regular normal subgroup. If the stabilizer G_{α} of α is simple, then G is also simple.

Proof: Let N be a non-trivial normal subgroup of G. Since N is not regular, N has a non-trivial intersection to G_{α} . Since G_{α} is simple and $G_{\alpha} \cap N$ is normal in G_{α} , N contains G_{α} . By the primitivity of G, G_{α} is a maximal subgroup of G and N is a transitive group. Therefore N=G. Hence G is simple.

§2. The proof of theorem

By putting p=7 in lemmas of §1, we shall prove our theorem. Let G be a doubly transitive group of degree 8. Since the stabilizer G_{α} of α in Ω is a transitive group of degree 7, by lemma 1 G_{α} is solvable if and only if G is a Zassenhaus group. In this case $|G|=8\cdot7\cdot a$, a=1, 3 or 6. (i) a=1; it is clear that G is a Frobenius group with an elementary abelian group of order 8 as a Frobenius kernel. (ii) a=3; since $|G|=2^3\cdot3\cdot7$, G is simple or solvable. If G is simple, G is isomorphic to PSL(2,7). If G is solvable, then by G is Huppert G is a subgroup of the group G is a subgroup of G is a subgroup

Next, we assume that G_{α} is not solvable. Then by Burnside's theorem G_{α} is a doubly transitive group. Therefore $|G_{\alpha}|$ is divisible by 7.6. On the other hand, if G is not an AS-group, then by lemma 2 we have the following inequalities:

$$[S_8:G] \ge [8+1/2]! = 4!$$

i. e. $|G| \le 8 \cdot 7 \cdot 6 \cdot 5$.

Hence we can put $|G_{\alpha}| = 7 \cdot 6 \cdot a$, a = 1,2,3,4 or 5.

Since G_{α} is not solvable, by lemma 3 $a \neq 1,2,3$. If a = 5, by $|G_{\alpha}| = 7 \cdot 6 \cdot 5$ G_{α} contains a proper normal subgroup N of order divisible by 7. In this case G/N and N are solvable, and so G_{α} is solvable, which is contrary to the nonsolvability of G_{α} . Hence a = 4 i.e. $|G_{\alpha}| = 7 \cdot 6 \cdot 4$. Again by using lemma 3 it follows that G_{α} is simple i.e. $G_{\alpha} \cong PSL(2,7)$. Since $|G| = 8 \cdot 7 \cdot 6 \cdot 4$, G is not simple. Therefore by lemma 4, G must contain an elementary abelian regular normal subgroup N of order 8. By the following relation;

$$G_{\alpha} \cong G/N < Aut(N) \cong PSL(3,2) \cong PSL(2,7),$$

we have that G is isomorphic to the Holomorph of N. Hence the proof is completed.

Moreover, since we can prove that every primitive group of degree 8 is doubly transitive, in the assumption of our theorem a doubly transitive group G is to be replaced by a primitive group G (see [5]).

References

- [1] W. Burnside. Theory of groups of finite order. Second edition, Cambridge University press, Cambridge. (1911).
- [2] B. Huppert. Primitive, auflösbare Permutationsgruppen. Arch. Math. 6, (1955) 303-310.
- [3] B. Huppert. Zweifach transitive, auflösbare Permutationsgruppen. Math. Z. 68 (1957) 126-150.
- [4] W.R. Scott. Group Theory. Englewood Cliffs, New Jersey: Prentice-Hall (1964).
- [5] H. Wielandt. Finita Permutation Groups. New York: Academic Press (1964).
- [6] H. Zassenhaus. Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen. Abhandl. Math. Sem. Univ. Hamburg 11 (1934) 17-40.