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§1. Introduction.

The researches for linear partial differential equations which are not of single
type have been made by many authors (cf. Bers [1], Mikhlin [4] and references
quoted there). The most original researches for such equations concern elliptic-
hyperbolic or mixed equations, which are of partly elliptic and partly hyperbolic
types in the domain under consideration. The Tricomi equation and its general-

‘ized ones are their examples. The investigations for these equations are made

individually and the results are derived by various methods [17, [4].

On his treatment of this mixed equations, Friedrichs [3] constructed his theory
through the energy principles regardless of the usual notion of types of partial
differential equations. This method is the treatment as symmetric positive linear
differential equations (cf. also [6]). This class of equations contains many other
elliptic, hyperbolic and parabolic ones with various problem forms (systems of equa-
tions, equations of higher order or equations with initial or boundary data imposed).

Another unified theory for linear equations is Fichera’s discussion which is
related to the second order linear equation of the form
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with the condition a”&;&;=>0[2]. Elliptic, parabolic, elliptic-parabolic and first
order equations are included in this class of equations. He proved the maximum
principles and the uniqueness of the classical solution, and the existence of the
generalized solution. Oleinik [5] established conditions for the uniqueness and
the smoothness of the generalized solution.

The present paper reports about the finite difference approximation to the gen-

. eralized solution of this Fichera problem. The main result is the weak conver-

genece of the generalized solution of the difference problem to the one of the

* original problem. For the strongly elliptic equations the similar results are
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proved by Stummel [7]. Our discussions are not related to all equations concern-
ing to the Fichera problem, but to the ones with some additional restrictions (85).

§2. Fichera Problem.

Suppose 2 is a bounded domain in R™ with the boundary 2. Let the functions
ai(x) € CH(R), b(x) € YD), c(x) € C°(D) GG, j=1, .-, m) be given. Let di(x)=a’"(x)
and

@ a(x)€:6; =0,

for all real vectors £=(&y, ---, £») and each x in 2. We consider the second order

linear equation

0 ( i 0u i Ou o
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Henceforth we abide by the convention for double indices in the differential
geometry. The boundary & is divided into three portions in the following way.
Let 3 be a part of = such that

3 a”(#)ni(x)n;(x) =0,

where n;(x) (i=1, ..., m) are compornents of inner normal vector on each point x

on the boundary. Let us define

) b(x)=b'(x)ni(x)
on 5 and denote by 3 the part of 3 where b(x)>0. Let 3,=3\3, and Z3=23\J5.
For the equation (2), the imposed condition is

5) u=g(x) on J;+ 23,

where g(x) is a given function on 3+ Zs.

We shall now proceed to the definition of the generalized solution of the Fichera
problem. As preliminalies, we shall define some function spaces. Let Hy be Lx(£2)
and its inner product and norm be (u, v)o and ||zlo, respectively.. The inner
product (z, v); and the norm |jull, are defined by

(u, v)lzg a’ Ou_ Du dx +S uvdx—l—g buvdo
(6) 2 6x,- 6x,— 2 L
“qu:*/(ua uh ,

where I' is 3., d« is the volume element in £ and do is the surface element on I'.
We also define the inner product and the norm on the boundary :
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(u, v)§ =Sruvdo‘, [|lu]|lfF =4 (u, )} .

Let the class C~ be the set of functions from the intersection of €~(2) and C°(R)
which vanish on X, + 33 and the spaces I;TO and Iifl are defined as the completions
of the class C* by the norms ||-||o and ||-|};, respectively. Moreover H; is defined as
the completion of the class C*(2)N\C%Q) by the norm ||-||;. Let the function g(x)
which is defined on X, + 33 be extendable on the whole domain 2 such as the
extended function which is again written g(x) belongs to the space Hi.
DeriNiTION.  Let f(x) € Hy and g(x) € Hi. The function u(x) € H is called the
generalized solution of the Fichera problem (2), (5) if u(x)— g(x) € H, and

(M B(u, 9)=(f, )
is satisfied for all ¢ € é“”, where the bilinear form B(u, ¢) is defined by

- ij ou 6(0 _S 0 i
B(u, ¢) SQG T dx o, B*p)udx

®
+S anipdsn —g o
2 r

An easy calculation gives that if the function u(x) is a classical solution, it is
also the generalized one in the sense of the above definition.

§3. Difference Problem Corresponding to Fichera Problem.

Suppose A is a positive number. Let @, be the set of all points whose coordi-
nates have the form x;=nh, where i=1, ..., m and n is any integer. 2, is the set
2N0, and 2, is the set of all points of 2, whose neighboring points are all in 2,,
where neighboring points of x» mean the points x = he;, ¢;=(0, -, 1, ..., 0)( j=
1, ..., m). Let ¥, be 2,\2;. Let the class of functions on &, which vanish on
@,\2; be denoted by I7,(2,) or simply II;. Any element of II; is written as un(%).
As for the restriction to 2, of a function u defined on 2, we shall write R,u € I,
and it is often abbreviated as original » unless there arises any confusion. The
translation operators T%; are mappings of ux(x) € II5 to ux(x % he;) € Iy, (j=1, ...,
m). The forward and backward difference quotient operators D and D ;, respec-
tively, are defined as '

Diuy(x) = ——(Thuy(®) — us(),
® i
D! juy(x)= T(u,,(x) — T* juy(%)).

For the difference quotient operators there hold the following formulae :
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(10) D!l_kj(uh(x)vh(x)) = (Dhijuh(x>) (Téjvh(x)) + uh(x) (Déjvh(x)):
1D BE IDE (T uw)] [T ()]

— B LD I DT o+ LT upG D LT (]~ L) Thonl)]

for any uy, vy € II, and 1<<j<m. The formula (11) is often said “summation by
parts.” :

For the simplicity of the sequent discussions the Fichera problem is restricted
in the following form. Various modifications are listed in §5. The domain £ is
bounded by a bounded region P, on the hyperplane x,=0, a bounded region P; on
xn=k>0 and the surface S connecting 9P, and 0P, where the tangential plane at
every point of the surface S is not parallel to the hyperplane x,=0 except at the
points on 8P, and 8P;. We consider the equation (2) with the conditions a™(%)=0
and 5™(x)<0 on Py+ P;. Then by the assumptions (1), (4) we have a™(x)=a™(x)=0
on Po+ Py, b(x)=—b"(x)>0 on P; and b(x)=>b"(x)<0 on Py, and the boundary %
of 2 consists of three parts 3,=1"=P;, 3s="Po, 25= S\UdP,\JOP,. We also assume
a”(x)é‘,-é,-gd:g & for x in &.

For a positive number ho, I(k : ko) denotes the set of positive numbers ~ of the
form k/I, where [ is a positive integer such as 0<k/I<ho. For k€ I(k:ho) s 22,
and 3, signify I'UZy, 22N2% and I,\(I"s+ Z2,4), respectively.

" Similarly to the continuous case the following inner products and norms can

be defined for functions uy, vy of I, :

a2 (i vdoa=h" T} ur(2) (),
(@ V)10 = h’”xz_]g ati(x) (D% ;uy(x)) (D ;v4(x))
{18) + hmxéhuh(x) v,,h(x) ‘i h’”'leZ;hu,,(x)v,,(x),
s DA P HNONON
15) Nuallos=vGm w0 Maallon=vGans w0 Nunllf.a= G w5

and also the bilinear form B, (u,, v,) can be defined as
B (us, vi)

=—h" 3 a'/(Dtu,) (DL jvp) ——;—h’” ¥ us LD (biv,) + D2, (T16%)v4)]
(16) 2n Qn

1
+ hm QZ cuhvh—l———z h””lrz b [(T",up) vy + u, (Tt v, ]
h h
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Then for any pair u, v € C* the convergencies

(ua U)o,h —> (u: 7’)0; (u3 U),l,lz = (u, 1))1,

(us U)S,h =¥ (u: 1))5‘, Bh(ua ‘U)—* B(“’; U)

an

as h—0, h € I(k:hy), are valid.

For the functions of IT,, we shall denote the Hilbert spaces defined by the norms
[|*lo,» and ||+||1,» by Ho » and Hi,, respectively. Let ﬁ[ol,, and I%l,h be subspaces of
H, , and H, ,, respectively, whose elements vanish on X; ; and 35 ;.

The operator S, on H, ; into Hy is defined as follows :

18) : Spup(x) = up(xo)
for wo;—h/2< x;<xo;i+h/2, where i=1, ...,m, x=(x1, ---, %) € 2 and xo=(x1, -,

%om) € 2. Then we have for uy, v; € Hy

(uh, Uh)o,h = hmeZ‘:Z uh(x)vh(x)
(19) '

_ SQ(S,,u;, (%)) (Ssva(x)) dx ——%hgr(Shuh(x)) (Syoa(x)) do.

DeriniTioN. Let f € Hyn, gn€ Hipo The function w,(x)e€ Hy, is called the
generalized solution of the difference problem corresponding to the Fichera
problem, if u,— gx € Hy  and there holds the identity

(20) By (un on) = (f1, @1do,n

for all @r € ﬁl,h-
Since B, (un, ¢r) can be rewritten by using summation by parts in the form

@) ByGup 0) = (DI@IDE ) + 5 b Dyt L (T8 Dy + ey 94 o

the generalized solution u, of the difference problem satisfies the equation and
the boundary condition :

- Ly(uy) = D@t/ Dt u,) + b Dh +%—(T{!b")D’,-‘u,,+cu,,:f,, in 2,

u,=g, on 2p,+ 23,

and conversely the solution of (22) is a generalized solution.

§4. Lemmas and Theorems.

LemMma 1. There exists a positive constant Cy such that the inequality
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(23) IBh(uha Uh)[é ClH”h“l,h[{;I]’D?vh”mh-*_ “vh”o,h+ thHg,h_{_ H T’—‘m”hHg,h]

holds for all kb€ I(k:ho) and for uy € Hy s, vy € Hi s If the function D¥b*(x)—2c (x)
18 bounded away from zero on @, for any h € I(k:hy), there exists a constant C; such
that the inequality

(24) | B (v, v;)| zczllvhll%,h

holds for all b in I(k:he) and for any vs € Hy
Proor. Suppose (¢7) is a positive semi-definite matrix, then there holds the
inequality

(25) (q7em)? < (¢7&:85) (g7 n:m;)

for all real vectors (&1, ---, &») and (71, ---, 7). Consequently by using the Cauchy
inequality and (10) there holds for any pair us, vs € Hy s with

| B, (up, v)| < (a7 D% uy, D2 vy)o, s

- %Kuh, (T46%) Dtv, 4 b' D% 0,)0 4] + | (s (DB 0,)o,4]

1 0080t | (Tt 570050+ s 57 Ty )
< (a# D" uy, D u) (9D 0, DE o5
+ L luallo LTI Divylo s + 167D% 4]
12l LDl 17+ lewallo,]
T a1 18705 5+ 5l 16" Tl
< Cllually LS 1D 8illoa+ oallo + loall5 o+ | T2oillF 4

Thus we have the first inequality. As to the second assertion we have from (16),
(1), (10) and (11)
| By (v4y v4)| = R™ QZ a' (D" ;v,) (D’ijvh)

+ " E 0, [Dibio,) + DL, (T1)vy)]

—hm Y cvi — AL o (T v vy
LQn '
= hm Z aij(D}ii'Uh) (D’.’.]‘U},)
Qp

4L DR — 20702 — AP S B ( T 0, v
2 Qn 2 T'n
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Therefore from the positivity of D*»¢—2c and —b™ there exists a positive con-
stant C; such that the inequality (24) holds for all k€ I(k: ho).

“Liemma 2. Let f, € Hy ;. If the function D*bi(x)—2c(x) is bounded away from zero
on 24 for any h € I(k: hy), then the generalized solution u, of the difference problem
with homogeneous boundary condition satisfies the inequality

1
(26) ||uh|ll,h§‘a-‘2‘“fh”0,h:

where h € I(k: ho) and C; is a constant as in Lemma 1.
Proor. Since the solution u, belongs to ﬁl,h, by the definition of the general-
ized solution and (24) we obtain

Collualltn = | Bauns w1 =1(Fas wndon ] = M falloalluallon < Nl fallo,allzallsn

From this the assertion is valid.

Tueorem 1. Let f4 be in Hy s and let the function D'bi(x)— 2c(x) be bounded
away from zero on 2, for he I(k:hy). Then for such h the generalized solution of
the difference problem and therefore the solution of the problem (22) exist and are
unique.

Proor. From Lemma 2 the generalized solution of difference problem is unique.

This solution is identical with the solution of (22) by virtue of the remark after-

Definition in §3. Then the solution of (22) is unique, which implies the existence
of the solutions of these problems.

Tueorem 2. Let fe€ Hy, g€ Hy and let ||Ryfllos||Ragllis and ZHD"RthO » be
bounded independently of h in I(k:ho). Then the sequence being composed of the
generalized solution u, € Hy, of the difference problem weakly converges to the one
of the original problem as h— 0, b € I(k:ho).

Proor. Suppose vy=u;—R;g on 2, then v, € Ijl_,, and

27) Bi(vs, @4) =(fs ¢n)o,n — Br(g, o1)
for ¢, € .F.ofl,,,. ) Therefore by virtue of Lemma 1 we obtain
Collvall}n < 1 Bi(oss vi) | S |(fs vidos| + 1 Bi(g, v4)l
= IlfIlo.hllvhllo,;ﬁrCl[é1 D% gllo.s+ 11 8llo.s+ 1 gll5.a+ 1 T2, 8115 a3 104l 1,
= Cyllvally,
for all he I(k:ho). Hence ||v4)l1,s<Cs/C;=Cs. Then the sequence {Spvs} 1is
bounded in Hy :

@) |, ISwal?ds = 11SwilB = lolg + --hGloyli5. < i+ 1
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for any h € I(k:hy) and some Ay, and there exist a subsequence {Sx,vs} and a func-
tion v in H, such that for all ¢ € ¢

(29) SQ(S;,j'uhj—v)qodx—»0

as j—>oo, h; € I(k:hy). From the assumed relation a?7€,;6; = C’gjllé%, we can deduce
(30) | Dw4llo,1 = Cellvalli = Cr
for i=1, ..., m—1. Thgn by using summation by parts the linear functional
Lin(o)= h”‘g"; v, (D) =—h" %(D?vh)¢
is bounded :

Ili,h(§0)l = |(D}vyy (0)0,111gHDi!vhHO,h“¢HO,h§C7H¢”0,h'
On the other hand by (29)

li,hj((ﬂ) = SQ(Shj’Uhj) (SthILjigﬁ) dx —‘;—hjgr<5h,ﬂh,~) (Sth’iji(o) do

(8D ~| 022 dx=1(o)

7

llello,n;— llello

as j—>oo. Then we obtain the inequality

L) = § p-0-dx| < Clllls

Therefore there exists v; € IOIO such that

(32) L(o)=| -2 duw=—{ vipds
2 0x; 2

forall g€ . When the coefficient a™"(x) is not identically equal zero, we have
from the boundedness of v, in the norm ||+[[1,x

(@™D" v, Dz,,,mo,,,gz’:‘glﬂ (@ D" s D% 0)oa] + C.
By the positive semi-deﬁnitenesé of ¥ there exists a positive constant Co such that
Jam()] S Ca™(@), (=1, m—1)
in 2, then by using the inequality ab < ea?+(1/4¢)b* and by (30) we obtain
|[ya™™ D 0,113 5 ZellNa™ D ll3, 4+ Cro-
Setting e=1/2, we have

(33) ”'\/WD’imvhHO,h_S_ Ciy-




On the Finite Difference Approximation to the Generalized Solution of the Fichera Problem 127

Then the linear functional
L (0)= BT 0,DE (@) = =k T (Dho) e
is bounded :

llm,h(§0)| = I(ammD;‘nUm (ﬂ)o,hlécmlNWDZ”};HO,;JWHO,;;§C13H¢’Ho,h-

From the relation

@)= (Sio2) (1, D@ ) d

Q

1

(34) - ——h; r(S 3,08, (S 3, Dii(a™™@)) do

—)S V P dx = ln(90),
2 0%m
we have

| 1:(¢)| < Cusll@llo-
Therefore there exists v, € ﬁ[c such that

(35) )= S 2 2" g, — —g 9 dx
2 0%m 2

forall p € ¢=. The relations (31), (32), (34) and (35) mean that the function v has
generalized derivatives v; with respect to the variables x; (i=1, ..., m) and

(36) [ (SDbw) (Si9)dx = | vigdn (=1, oy m=1)
37 [ (S1am (5, Di0,) (Sy0) ds = | o™ d

as j>oco forall g € ¢=. Thus the bilinear form (16)
By(oi 9)= —{ (Sia") (SiD2i0,) (S,D%,0) d
—L{ (S (5u02,(T18) ¢ + DG ) dx + § (5100 (Sion) (S0

+ —]é_g F[(Shb’”) (SpT",vy) (Spe) + (S;0™) (Spvp) (S, T ,0)]do+ 0(h)

tends to the one (8) as j—>oo, where we set h=h;. And also by easy computation
we have

Bi(g, ¢)— B(g ¢)
(fs ©)on = (fs X
as h—0. Consequently the function v € H, satisfies the equation
B(v, 9)=(f, ¢)o— B(g; ¢)-

e e R S 3 R T e A B o e b a0
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Thus the function u =v+ g€ H, satisfies the equation (7), which is what we required
to prove.

§5. Modifications.

We shall now mention some modifications of the equation and the domain which
are restricted in the previous arguments.

i) Case of elliptic equations. If we set a”(x)&;€;>0 for all x € 2, the domain £
for the equation (2) has the boundary ;=23 and 2;,=J3,=¢. Hence the restrictions
for the domain are removed and the domain may be considered as more general
one. The results of this case coincide with the one of Stummel [77]. It is remark-
able that the convergence of the sequence of the generalized solution of differ-
ence problem in this case is strong one by using the analogous theorem to Rellich’s
(ct. 8.

ii) Case of elliptic-parabolic and parabolic equations. The equation in the
previous discussions is of elliptic-parabolic or parabolie type. If 5™(x)>0 in the
previous assumptions, we exchange X; for 3, and then the discussions are valid.
So the same results hold, if b”'(xj has indefinite sign,' for example, u,,+sinxu,=
f(x). For the elliptic equations which degenerate into parabolic type only on the
boundary our discussions hold.
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