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ON BOUNDED SOLUTIONS FOR ELLIPTIC EQUATIONS
WITH COEFFICIENTS SINGULAR AT THE BOUNDARY
IN AN UNBOUNDED DOMAIN

Akio OGATA
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1. Introduction.

In [1], M. Schechter has established in an original way unique solvability
for the Dirichlet problem of the second order linear elliptic partial differential
equation defined in a bounded domain
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0x,0x;

(1. 1) Lu Eiélai‘,-(x) + lé a;(x) + a(®u = f(x),

where a.;(x), a:(x), a(x) and f(x) are permitted to become infinity at a
portion of the boundary. In this paper we shall deal with bounded solutions
of the Dirichlet problem for the equation (1.1) defined in an unbounded
domain, where a;;(x), @(x), a(x) and f(x) are permitted to possess the
singularities of the hypotheses similar to those in [1].

In the Euclidean #-space of variables x = (%1, %2, *** , ¥») we shall now
consider an unbounded domain £ with a suitably smooth boundary 2 (cf.
Section 2) such that (i) £ lies in the half-space E={x: x,=>0}, (ii) 8NE is a
nonempty, bounded region of (#—1)-dimension, and (iii) for an arbitrarily
small >0 and a sufficiently large R>0, the set 2N {x: x,<r)N{x:|x|=R} is
empty. Furthermore, for convenience’s sake we shall assume that the points
of £ of singularities of the coefficients a@w(x), @(x), a(x) and f(x) in (L.1)
are contained in the hyperplane x,=0.

Then we consider the Dirichlet problem for the equation (1.1) with the

boundary condition
a.2) u=¢q on &,

where ¢ is a continuous function prescribed on Q.

Here we also consider the functions p(f) and ¢(#) satisfying the fol-
lowing conditions:
(1.3) (=0 and p(¢) are continuous in 0<¢#< e and bounded at infinity.
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a.4 exp {Swp(s)ds} and S Cexp {—S p()ds)q(2)] dz exist,
0 0 z
and for an arbitrary # >0, the function

s =l e (P@de+ | rexp (P@) | exp (—Pw)gwrdwl a2

20

is defined in 0<¢<#,, where P(t)ES ?p(s)ds and u is a positive constant.
4

By virtue of these functions p(#) and ¢(#), we shall assume the following
conditions on (1.1):

a.6 |5 |, |a:(x)], |a(®)]|, |f(x)]|<q(xs) in 2, a.(x)<p(x.) in 2,

where we have normalized the equation (1.1) by assuming @..(x)=1. Under
the above conditions we shall consider the existence and uniqueness of bounded
solution of the problem (1.1)-(1.2).

The author wishes to express his hearty thanks to Professors M. Inaba
and N. Ikebe for their kind advices and constant encouragements.

2. Statement of the theorems.
In order to state our theorems, we should provide the followings.

ASSUMPTIONS (A). In addition to the preceding assumptions (1.6), we
shall assume:
(2.1) the functions a;;(x), a(x), a(x) and f(x) are a-Holder continuous in
any compact subset of £=R2U# which does not meet the hyperplane x,=0;
2.2) ay(x)=a;(x), and the operator L is uniformly elliptic in £, that is,
there exists a positive constant A such that

2 21 & < 3 a(0)&k;
= Jg=1

for any x€ 2 and for any real vector £é=(&,, &, -, &,);
(2.3) a(x)<—c*<0, ¢ being a constant;
(2.4) the boundary £ belongs to class C?*%, where 0<a<l.

ANTI-BARRIER AT INFINITY. In order to consider the treatment of
bounded solutions defined in an unbounded domain, we have to introduce the
concept of anti-barrier at infinity for the operator L. For each number R>0,
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we shall denote by Xz the subdomain 2N\ {x:|x| >R} of 2.

DEFINITION: A function V(x) defined in Sz will be called an anti-
barrier at infinity for the operator L, if (i) V() is positive and tends to
4o as |x|—o, and (ii) V(x) is of class C2(Zz) ‘and satisfies LV(x)<0 in Sz
(cf. 2.

For example, since p(#) and ¢(#) are bounded at infinity, the function
V(x):fl cosh kx; defined in Sr is an anti-barrier at infinity for the operator
Ls Wh(;ré k>0 is a suitable small number.

We shall now state our theorems.

THEOREM 1. Let the assumptions (1.6) and (A) be fulfilled. Then there
exists a bounded solution of the problem (1.1)-(1.2) which belongs to class
C*(DNC (D).

THEOREM 2. Let the assumptions (1.6) and (A) be fulfilled. Then there
exists at most one solution of the problem (1.1)-(1.2) which is bounded and
belongs to class C+**(2)N\C(2).

3. The proof of Theorem 1.

In proving Theorem 1, we shall use the results of Schauder [3] and
Schechter [1], which we restate as lemmas of the form most suitable for
our purpose.

Let © be a bounded domain. Then we define the norm of #EC™(D) by

lul; = 33 max|DFu(x)],
JkiSm z€D

where D*= on ot . ot and |k| =k +k+ - +k. We define the
oxf - Dxke Oxn 1 s

norm of #€C™+* (D) (0<a<l) by

el =]l + max max | D'u(x)—D*u(»)|/|x—y|®

where |x—y| denotes the distsnce of the points x and y.

LEMMA 1 (Schauder). Let the assumpiions (A) be fulfilled, and assume
that a2, lla: (|2, lla@x)|3 and | f(*)||3 are bounded by a positive constant
k. If u is a function of class C***(D) satisfying the equation

Lu=f in D,

we have for any subdomain M such that MCD the following interior estimate
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GB.D o elete KR+ D),
where K is a constant depending only on a, 2, ky, M and D.
Furthermore, in case ®E C** we consider the problem;
Lu=f in 2,
u=¢ on D
where ¢ is a prescribed function belonging to class C*** on D. If M is any
subdomain of D such that M'ND is not void, then we have the following boundary
estimate
3.2 , | el e <K CUFIS + 6lR + ol

where K' is a constant depending only on a, 2, ky, M' and D.
We denote by G, the half-space x»=>7>0. Then we consider a bounded
domain D such that (2—G,)CDC4&, and hereafter we assume so.

LEMMA 2 (Schechter). Under the assumptions (1.6) and (A), consider the
Dirichlet problem (cf. problem (1.1)-(1.2))
Lu=f in D,

3.3 .
u=¢ on D.

Then there exists a solution u of class C*+*(D)N\C(D).

Moreover, we consider an interval [0, Z] such that the strip 0<x,.<t
contains the domain D, and recall the function 2(#) defined by (1.4) in the
interval [0, {,J]. Then we have

LEMMA 3 (Schechter). Let u be a solution of the problem (3.3). Then the
following estimate holds

3.4 |(x) | <h(xn) in D.

Now we are ready to prove Theorem 1 by using the above Lemmas.

PROOF OF THEOREM 1. Without loss of generality, we may consider
that it is sufficient to prove Theorem 1 in the case ¢=0, that is, the

problem:
@3.5) Lu=f in &,
3.6) u=0 on .

We first take a domain £, such that (G,N2) CL2,.C (G.NL) and
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£,E€C**, where >0 is an arbitrarily small number. Then we consider a
sequence of domains {Dn} such that, for every integer m=1, D, is bounded,
(2—82.)CDuwC8, DnCDmsr, Dm tends to 2 as m—o, and Dn€C®*% By
Lemma 2 we can solve the following problem in each Dn:

@7 Ltt=f in Dy,
3.8 #n=0 on D

Therefore we obtain a sequence of functions #.(x) of class C***(D,)N
(D) vielded by the above problem (3.7)-(3.8). Then we can select a
convergent subsequence {%m,) of {#.} whose limit function satisfies the
problem (3.5)-(3.6) and moreover is bounded in £. Indeed, let M and B be
any subdomains of £ such that BCM, M is compact and contained in 2. Then
there exists a number N such that D,DOM for m=N. By the assumptions
(A) and the properties of #. given by Lemma 2, we can apply the Schauder’s
interior estimate (3.1) in Lemma 1 to each functions #., for m=>N:

@1 otz o < KIS+ lmlls),

where K does not depend on m. Using the estimate (3.4) in Lemma 3, it
follows that for m=N the sequence {un} is equicontinuous and uniformly
bounded on B. Hence we can extract a subsequence {#m,} of {#.) which
converges uniformly on B together with the derivatives up to second order.
Since M and B are subdomains of £, we obtain the limit function # which
satisfies Lu=f in £ and belongs to class C2+%(Q).

Next, we shall observe that the function # also satisfies the boundary
condition (3.6). We consider any bounded subdomain B’ of £, such that
B'N(2,N2) is not void. Then we can select a number N’ such that D, DB’
for each m'>=N'. Let M'=DsxN\2, For m'>=N' we denote by ¢m the
restriction of #',, on the (#—1)-dimensional hypersurface M'N2. Then um
(m'>=N") satisfies the following relations:

Lum’=f il’l Ml’
Ums =0 on M'N2, =¢mw on M'NR2,

where we may consider that #m € C***(M") and M' € C*** (see [4]). Therefore,
by the assumptions (A) and the above properties of #., we can apply the
Schauder’s boundary estimate (3.2) in Lemma 1 to each functions @, (m'>=N"):

ot 180 KK AN + ot 137 + om0,
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where K’ does not depend on »'. Consequently, we can obtain a subsequencé
{#ms,} Of {#m) converging uniformly in the neighborhood of M'N2 in 2 to a
function which agrees with the limit function x# obtained above. Since: #,(x)
=0 on £ for every m=>1 and » can be chosen arbitrarily small, it follows that
u(x)=0 on the part of 2 which is not on the hyperplane x,=0 and # is
continuous on 2 except the part on x,=0.

Furthermore, we have to estimate the function # in a neighborhood of
the part of 2 which is on the hyperplane x,=0. By Lemma 3, we have for

each Unm
3.9 |4m(%) | <h(%n)  in Do

Since by the definition (1.5) A(#) is continuous for all £=0 and converges
monotonically to zero as {—0, {#,(x)} converges to zero uniformly as x,—0
in (3.9) in any small neighborhood of the part of £ which lies on the
hyperplane x,=0. On the other hand, #»(x)=0 on 2 for every m=>1.
Therefore, the limit function which necessarily agrees with # is continuous
in any neighborhood of the part of £ which lies on the hyperplane x,=0,
and vanishes on the part of yel lying on the hyperplane x,=0. Thus, the
function # satisfies the problem (3.5)-(3.6) and belongs to class C2**(£2)N
CD.

Finally, we shall observe that the function # obtained above is bounded
in 2. Now, we choose a domain 2, suitably and fix it. And we divide the
domain D, into the two domains such that Dn,—£, and DnN\&%,. Then we
shall try to estimate the boundedness of #. in each domain.

First, from the estimate (3.9), we can observe the uniform boundedness

for #» in the domain D,—£,:
(3.10) |4m(x) | <h(r) in Dm—8, for all m=1.

Next, let #n be the trace of #m on DnN\%2, Then we consider the
following boundary value problems in the domain Dm/\2-:
Lum=f in Dmngn

3.11D) . _ ~
Um="Tm ON Dm\Ly, =0 on Da(\2-.

Here, since from the condition (1.3) a (%), a:(x), a(x) and f(x) are bounded
in @,, we can apply the ordinary maximum principle (cf. [6]) to this problem
(3.11) and obtain the following estimate for #. in the domain DnN\&,:
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3.12) lu,.,(x)l<max{ sup lf]/ 1nf |a| sup lu,,.(x)l}

DGy

<max { sup |f|/ inf |a], h(r)} in D.N&, for all m=>1,
Q, | Q,

because #»,=0 on D,N2, and |#.(x)|<h() in D.N£2, for all m>1. Hence,
from the estimates (3.10) and (3.12), we can obviously observe that #. is
uniformly bounded for all m=1. Consequently, it follows that the function

% is bounded in 2. We complete the proof of Theorem 1.

4. The proof of Theorem 2.

In order to prove Theorem 2, we shall first prepare the extended
maximum principle, which is the extended from of the maximum principle
in [5], for the following homogeneous case of the boundary value problem

1. 1D-A.2):
CHY Lu=0 in &,
“.2) u=0 on £.
LEMMA 4. Let the assumptions (A) be fulfilled. Then every bounded

solution u of the problem (4.1)—(4.2) belonging to class C2**(2)NC(R) satisfies
the extended maximum principle:

(4.3) max[u(x) [max [u(x)],
z€X zEER

where R is sufficiently large (cf. Section 2).

PROOF. Since, from the example in Section 2, there exists an anti-
barrier at infinity for the operator L in Y&, we denote by V(x) an anti-

barrier in Sz Then, consider the following function in Zr
v(x)=u(x)—eV(x)—M,

where M—max |#(x)| and e is an arbitrary positive number. Since R is

sufficiently large, by the definition of anti-barrier at infinity and conditions
(4.1)-(4.2), we have

4. 4) Lv=Lu—eLV —aM=0 in Xz,
(4.5) . v=u—eV-M=<O0 on 3z

It follows that »<<0 in Xz In fact, let us suppose that there is a point
%, in e such that v(x,)>0. Since v——o as |x]|—c, v must attain its
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positive maximum at some bounded point x* in = Then by this fact and the
relation (4.4), it follows that, from E. Hopf’s strong maximum principle,
v(x)=v(x*)=const in Jr This is obviously absurd. Thus we obtain

(4.6) u<M in Iz,
since ¢ is arbitrary. Also replacing # by —u, we have in the same way
“.7 u>—M in 2

Thus, by (4.6) and (4.7) we obtain the result (4.3).
Now we are ready to prove Theorem 2.

PROOF OF THEOREM 2. Let #; and u, are two solutions of the problem
1. 1)-(1.2). And set w=i¢1—u2. Then, in order to prove Theorem 2, it is
sufficient to show w=0 in £2. .

First, we can easily observe that w satisfies the homogeneous boundary
value problem (4.1)-(4.2). Next, let us assume that there is a point %, in £
such that w(x,)20. Then, by the continuity of w in 2 and the extended
maximum principle for w obtained by Lemma 4, we may consider that,
without loss of generality, w must attain its positive maximum at some
bounded point x* in £. Take R sufficiently large that x* is contained within
the domain 2r=2—3r. Furthermore, consider any bounded subdomain B of
.QR such that it contains x* in its interior and does not meet the hyperplane
x,=0. Then, by the fact that Lw=0 in B and w(x*) is a positive maximum
in B, it follows that, from E. Hopf’s strong maximum principle, w(x)=w(x*)
=const. in B. Since B is arbitrary, we have w=0 in !33, because w is
continuous on B and vanishes on 2. Moreover, since we can apply Lemma 4

to w in the domain Sz, we obtain the following:
wx)=0 in 2.

Thus, the bounded solution of the boundary value problem (1.1)-(1.2)
is unique. We complete the proof of Theorem 2.
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