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0. Introduction

In seeking accurate approximate solutions to fourth order partial dif-
ferential equations, one meets a special difficulty due to fourth order deriva-
tives appearing in the equations.

The methods employed usually for these equations can be classified into
two classes. The methods in one class are based on variational principles
and those in other class are based on finite differences.

A typical method in the former class is, as well known, a method of
Ritz-Galerkin. In this method one chooses a suitable system of functions
satisfying the given boundary conditions-which is called a basis or a coordinate
system-and seeks an approximate solution in the form of a linear combination
of a finite number of functions of the basis.

A weak point of this method is the difficulty of the construction of a
basis, in particular, for a domain with a complicate boundary. This weak
point, however, seems to have been overcome by the use of finite element
method which is based on the same principle. Finite element method, however,
has yielded another difficulty, that is, the difficulty due to the explosive
increase of unknown parameters to be determined. This difficulty may be
avoided by the use of “‘non-conforming basis’”, but by the use of it the
accuracy of the approximate solution obtained is decreased in general (see
L6D.

The difficulty of the treatment of boundary conditions appears also in
finite difference methods. Moreover, finite difference methods seem to be
inferior considerably to finite element methods in the efficiency when these
methods are practised on a computer.

In the présent paper we propose a new finite element method for fourth
order equations. Though our method may be regarded as a new mixed finite
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element method, our motivation comes from the coupled equation approach to
biharmonic equation. In-our method the smoothness of the basis is not
required since the fourth order equation is reduced to a system of second
order equations. Moreover numerical experiments show that the accuracy of
the approximate solutions obtained is acceptable in proportion to the number
of unknown parameters employed. It should be noted that in a certain case
our method can be regarded as a generalized finite difference method for
fourth order equations.

Although only biharmonic equations are treated in the present paper,
our method can be applied to more general fourth order equations without
difficulty.

Chapter (I) is concerned with a static problem for biharmonic operator.
Our algorithm is proposed and the solvability of an approximate linear system
and the convergence of the solution of this linear system are proved. Chapter
(II) is devoted to a dynamic problem. By giving some stability criteria and
convergence proof, it is shown that our algorithm for static problems can be
extended to dynamic problems in a natural way. The first half of this chapter.
is motivated by the work [2] of H. Fujii. The appendix shows the results of

some numerical experiments.
Chapter (I). Static problems

1. A weak representation of the biharmonic boundary value problem.

Let £ be a bounded domain in (&, *.)-plane with sufficiently smooth

boundary I'. Consider the biharmonic equation

a.n Au=A4(41) =0111,%~+ 2011202+ O2200%

=f(x1,%2) in 2 (0111,=0%/0x2x,%.% etc.),

under the following mixed boundary condition.

.2 u ] =0 % n=0,
1.3) “|m=0 M@ | =0,
1.9 M@ |r=0 V@ |r=0

where
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1.5) M) =vdu+ (1—v) (01 cos*(n, %)

+20;,% cos(n, x1) cos(n, x5) +0au cos?(n, %5)),

1.6) V(iw=>0—v) dis L(81146—0531) cos(,, x,) cos(#n, x2)
— 0121 (cos® (n, %) — cos? (#,%,)]— Tjﬁ Au

In the above expressions v denotes a positive constant less than unity and
cos(n, x;) denotes the directional cosine of outward normal » to I'. d/ds denotes
the differentiation along the boundary I'. I; (i=1,2,3) denotes a portion of
I" such that I’=§®I’L—. Through the present paper we assume, for brevity,

that the length of I'; is positive.

To derive our method we shall rewrite this boudary value problem in a
more ‘‘weak’” form. We use the notation (#,v) for the inner product of
functions # and v in L?*(#)—space. Let # be the exact solution of the present
problem. It is evident that

@ @)+ [, M 92 a5t [ V@) o ds=(f,0)

for any smooth function ¢ satisfying ¢|r,.=0 (I'.;=I:PDI;). This equality
can be written by Green’s theorem also as follows.

— (11, 0,0) — Bt 020> + [ M) 22 g5 1+ L Qs

= —(0,[01124+ 02017, 0:)
— (A=) (0,012%, 0>¢) + (0,014, 0:¢0) ]

— (0,Lv0 1+ 022061, 0200)
de dy
+ 0o, M S ds— | Qe 52 ds
= (f, ¢,
where

Q20) =(1—1)[(01,6—020u) cos(#, x,) cos(#, x,)

— 0121 (cos?(n, x,) —cos?(n, x5))].

Define
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(1. 8) Uijzaijzl (Z’ j= 1_7 2);
and

1
a9 Kif(p, ) =5 {0, 054D+ (00, 0:0)

— SPZ‘S(OW cos(n, %)+ 00 cos(n, %:))¢ds)
(7,j=1,2)

for sufficiently smooth ¢ and ¢.

Then the left side of the equality (1.7) can be expressed as
—(0,L U1 +vUs], 0:¢)
—(1=»)L(0,U12, 05¢) + (0:U12, 0190 ]

—@LvUy1+ Uzd, 02¢0)

dy \ dy
I‘z.aM(U) % ds—.\FgQ(U) E ds

=—K (¢, Ui +vUs) —2(1—v) Ki2(o, Uiz) — Ko (o, vU + Uzz)-,

+

where M(U) and Q(U) denote M(u(U)) and Q(u(U)) respectively. Therefore
if we denote the right side of the above equality by —K(g,U), then the exact

solution {u#, U} satisfies the following equation.

{ Kij(u, ) + Uiy ) =0 for any ¢ (4,7=1,2),
(1.10)

Ko, U)+(f,9)=0 for any ¢;¢lr,,=0.
This representation of the solution # is very convenient for the finite element
approximation since in this expression only the first derivatives are employed.
Our method proposed in this paper is a Galerkin-type appoximation method
for this system of equations.
We use the following bi-linear form as the “energy form’’ of the present

problem.

(1.1 EWU, V)= S SQ[U11V11+ U,V ot V(U11V22+ U,V 1)
+2(1—v) U,V 1, 1dx,dx%,,

where U= (Ui, Ups, Usz) and V=V, V15, V3s) are vectors defined by (1.8) and
consisting of the second derivatives of » and ». Note that if v satisfies the
boundary condition (1.2), then since K,;(v,¢)=—Vy; ¢) it holds that

1.12) K, W)+EWV,W)=0 for any W.

2o nibllE i s
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2. Approximations of consistent and lumped mass type

In what follows we assume, for brevity, that 2 is a polygon.

DEFINITION 1. We say a sequence of triangulations 2, of 2 is regular as ~2—0
(or briefly, triangulation 2. is regular) if,

(@) ‘each end point of I'; is a vertex of a certain triangle of £2,,

() the smallest angle 6(£2:) of all the triangles of £, is bounded below by a
positive constant 6, as ~—0.

Hereafter we assume that 2, denotes always a regular decomposition of
2. Let p be a vertex in 2: and A, (k=1,2,...,Kp) be the set of all the
triangles in 2, with vertex p. Let the three vertexes of Apr be denoted by
D,q and 7 and the center of gravity by ¢. Let us denote by [y, the quadri-
lateral with four vertexes (p, centers of tq and pr, c). Let

Tp= kkJAm:

szkkﬂjpk-

DEFINITION 2. {gp(¥1,%2)} (p moves all the vertexes of 2,) is a system of
linearly independent functions such that (i) linear in each triangle and
continuous on £ (ii) ¢,=0 on £+—T, and =1 at p. {xp(x1,%2)} (p moves all
the vertexes of £2,) is a system of the characteristic function of Sips

REMARK. We can, of course, use more ‘‘accurate’ .bu'.t little complicated
basis (see, for example [7]). Though the following discussion is wvalid for
such cases we restrict the basis to the so called “‘piecewise linear’’ basis (See
the last remark of Chapter (ID)).

We shall number the vertexes in £, as follows. The first # vertexes
(denoted by Ny) is in £2,—082:,. The next #n, vertexes (denoted by N,) is on
I'.. The third », vertexes (denoted by N,) is on I,—I', and the last s
vertexes (denoted by N;) is in the interior of I's.

Now let

@.1) 22, %)= 31 1y 0p(%1,%,),
No, N3

@.2) A%y, %)= 33 0y Xp(%1,%,),
No, N3
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2.3 (71'.7'(371, xz)-’-‘ZQh Uzi:j (%1, %2,
@4 Usj(%1, %)= Eﬂn U;iaj 1o(%1, %2),

where {u#,), (U¥) are the unknown coefficients.
Algorithm (C): In this procedure these unknowns are determined by solving

the following system of linear equations.
(2 5) { K’ij(ﬁy (pp)_l'_(ﬁijy (Pp)":o p E "Qh (i,j=1, 2)
' K(en, D)+ (f,42)=0 € No, Ns,

where Uz(Un; 012, Uzz)
Algorithm (L): In this procedure the equation to be solved is

Kij(, 0p)+ Uiy xp)=0 pEL (4,7=1,2)
(2.6) {

K(("p;U)‘f’(ﬁ%:):O PENo,Na-

REMARK. In algorithm (C) U.; is given in a implicit form, but in algorithm (L)
explicitly, since xpx,=0 if p=qg. Note that in a certain triangulation, for
example, see Friedrichs-Keller [1], the system (2.6) is essentially equivalent

to a finite difference approximation.
Through the present paper we put the following assumption.

ASSUMPTION: Let U;;(U:;) be determined by the equation (2.5) ((2.6)).
Then holds the following inequality.

@7 l2l<C ZITwll (€ SNTlD,
where C is a positive constant independent of 2 as h——)(_).‘*’

If I's= ¢ this inequality can be easily shown, that is, we have the

following more strong inequality.

LEMMA 2.1. Let I's= ¢ then holds

(2.8 llowl<C iZjHUu'!\ c ?j\lUu\D-

(*) In what follows we use C as generic constants which are not nocessarily the same.
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where

(182 = (8, 326) = (S (Bare, B:u)) F.

PROOF. By the equality (2.5) we have
Kij(a, 2+ Uiz, 2)=0.
But, since I';= ¢, # vanishes on I" and hence
Ky(a, )= (0:0,0;4) (7,7=1,2),

so follows the inequality (2.8) by Poincare’s inequality. (The second inequality
follows from the fact that the quantities ||Uy|| and ||U:,|l are of the same order).

If I's==¢, though it is not clear whether the inequality (2.7) holds or
not, but in a certain situation we can easily prove it. For example, suppose
that I's can be represented by a function of one variable, for example, by

2o=8(%1), Siy < %1 < 5.

Let pi=(s;, g(s:)) (i=io~ir) be the vertex points on I's. If the intersection of
£, and the lines x;=s;(i=7,~iz) is represented by a union of the sides of
some triangles in £, and if the strip (si, Si) X%, does not contain I',, then
holds the inequality (2.7). To show this let vs define a function <lAf(x1, %;) by

0 xlgsio
G(x,x)= 12|1~3 Siy S X1 X Si
0 S X3

Clearly ¢ (%1, %2) is continuous in the whole plane and can be represented by
{¢p) in the form

ﬂ?’ (x1, %) =2p]§2 (P)ep(ar, x5)

Since 8,¢ =0 we have by (2.5)
(2.9 — (0211, 0,0) = (U, 21— ).

On the other hand it is easy to prove that
IglP=C | (@ds<C|_ @) dndx,,

and also the inequality
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4] Cl, 2.
Therefore (2.9) implies
2 CNTl.

Which is the desired inequality.
Under this assumption we have

THEOREM I-1. Both in algorithm (C) and in algorithm (L) the unknowns are
uniquely determined.

PROOF. Let us first consider the algorithm (C). Let (f,¢p)=0 for p€ Ny+N:.
Multiplying the second equality of (2.5) by #p and summing up on p we have

(2.10) K(#, 0)=0.

On the other hand as an analogue of (1.12) we have

K(a, D+ EU, U)=0.
Therefore (2.10) implies U;;=0 (i,7=1,2) and this implies #=0 by the ine-
quality (2.7). Therefore the unknowns are uniquely determined. The unique
solvability in algorithm (L) can be proved by the same way.

The system (2.5) or (2.6) is, in a certain sense, a Galerkin-type
abproximation of the original problem. As well known Galerkin’s method
coincides with Rayleigh-Ritz’s method in many cases. The following theorem
shows that the our method can be understood as a conditional Rayleigh-Ritz’s
method.

THEOREM I-2.
(A) Algorithm(C) is equivalent to the following algolithms.
(i) Seek the minimizing function of the functional

(2.1D Fy(#)=E,)—2(f, )
when @ and U are connected by the following equations.

(2.12) Kii(it, ¢p)+ (Ui, 0p) =0 PEL
(5,7=1,2)
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(ii) Seek the stationary function of the Junctional
(2.13) B[4, Ul=2K(4, 0)+EU, U)+2(f, %).

(B) Algorithm (L) is equivalent to the Jfollowing algorithms.

(1) Seek the minimizing function of the Junctional
(2.14) Fy()=EU, U)—2(f, %)
when 4 and U are connected by the following equation.

(2.15) Kii(8, 05) + Uiy, 25) =0 DELn
(7,7=1,2)

(ii) Seek the stationary function of the Junctional

(2.16) B[4, Ul=2K(2, 0)+EU, U)+2(F, 4).
PROOF. (A): First we see that

2 @, 0y=280, -2 0y

01, ’ ? Ouy

On the other hand, since

Kii(¢o, (71:1)‘*“(“6% O, Un)=0 (& 1=1,2)
4
(i7 j=1! 2)
we have
Ko, D)+EW, -2 0=,
4
and hence

0

Z

EWU, U)=—2K(¢,, U).

Therefore the stationary condition of Fy(4%) is nothing else but the equation
(2.5). This proves (i) of (A). The second assertion is almost evident. (B)

can be also proved by the same way.

REMARK. This theorem shows that our algorithms are regarded as a kind

of mixed method in finite element method. See the survey paper of Pian [5].
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3 Convergence of approximate solutions

DEFINITION 2. Let & be the length of the largest sides of the triangles in
2,. We say the sequence {£:) is a nearly consistent triangulation of £ (or
briefly, decomposition 2 is nearly consistent) if decomposition 2 is regular
and there exists a sequence of subdomains 2% of 24 such that

(i) there is a definite constant C such that (the number of vertexes in
20— 2)ZCh™. .

(ii) for any sufficiently smooth function w satisfying the boundary condition
(1.2) holds

. —dwlp - (L) +Ch if pE 2L

G.D K, ¢p) = _,
Cn? if pEL—20

where # is the interpolating function of w represented by using the basis

{4010} .

We remark that there are some triangulations having the above proper-
ties. For example, see [1]. We further remark that, if £, is a nearly

consistent triangulation, we can assume the following equalities.

—Biwlp - (L ¢)+Ch if pEizn,
3.2 Ki(op)=1 1 ) .
—2-~5F {<a¢w cos (n, x;)+0w; cos (7, x:)¢p
2,3
— (Dspp cos (1, x5)+0,9p cOS (1, xi))ua} ds

+Ch? ifpel.

Now we shall prepare some lemmas necessary for the following discus-
sion.

LEMMA I-1. Let 4 be a linear function on a triangle ~ in 24 Then holds
the following inequality.

(3.3) ' Max| 4 <Ch Yl s

PROOF. Since £, is regular triangulation we can assume without loss of
generality that A is the triangle with vertexes (0,0),(0,%) and (4,0). Then
by a direct calculation we have

SUSCRESATES SRR T TN
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2
@0 e =2 {CaC0, 00+ 50, 1)+ ah, 0O
+22(0, 0)+4%(0, b)+#(h, 0)},
which proves (3. 3).
LEMMA 1I-2 Let 4 be a function represented by {¢p). Then holds the following
inequality.

(3.5) vV 2 wthr < Cllall.
pPEQ)

PROOF. Let A be a triangle in £, and p,q and » be the three vertexes of A.
Then by the Lemma I-1 we have

(3.6) |8lA=ChMax| 4|72 Che 5 (st a-+ a2,
a

Summing up this inequality for all triangles in 2, we obtain the desired
inequality.

The finite element method using conforming basis (the classical Ritz-
Galerkin’s method) can be regarded as a least square method in energy norm.
Therefore we can use the results of approximation theory directly to prove
the convergence of approximate solutions. But this property does not exist
in our case, since the functional F(#) is minimized under an additional
condition. The next theorem is basic for our convergence proof. Let {u, U}
be the exact solution of the present problem, and (} and (j be the interpolations
of U represented by {¢p} and {x») respectively.

THEOREM I-3. Fi(4d) and F(#) can be represenied also as follows.

3.7 Fy(2)=EWU-U,U~0)—EU, U)—2EWU—0, U=
B R T,

(3.8) Fy(#)=EU—-U,U-0)—EU, U)—2E(U—-U, U= 1)
—2K(u—1a, U—~U)—2ECU, U—1D).

PROOF. Proof of (3.7). We observe that
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K(u, U)=—EU,U),
K(u, U)=—EU, ),
K, U=—E, ),
Ko, U)=—(f, ).

Using these representations of “K’’, the right side of (3.7) becomes
EWU,—2(f, %)

which proves (3.7).
Equality (3.8) can be also proved by the same way.

Let us determine ZA]” and Z—]w by the following equations respectively.

(3.9 Kii(l 02)+ (Ui 0p)=0  pE 24,
(.10 KisCl 09)+ Uiy 1) =0 DE Ln,
G,j=1,2)

where # is the interpolation of the exact solution #“®.

LEMMA I-4. Let {4,U)} be the approximate solution. Then
(3.11) lu—al<ChF+EWU-U0,U-0)%)

in algorithm(C), and

(3.12) lu—a|<Ch*+EWU-T,U-0)%)

in algorithm(L).

PROOF. (algorithm(C)). Since
KusCi—1, ¢p)+ (Uis— Uiz, ) =0 PELs,
we have
i~ <CHNTis—Dil,

by inequality (2.7), and hence

%) We assume that the solution # is sufficiently smooth in 2.

FRETEIE VLR, S vy
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(3.13) =l <~ + CONUis— Uil + | U= T
The second term of the right side can be estimated as follows. First we see

Kif(u—1t, op)+ (Usj— f]i.i, wp)=0,
where
i Ch®  pep;
K“J(u_ur <0P) = -
Ch? D ERn—2h.

Therefore by Lemma I-2
(Ui.i_f]i.i, ﬁm‘—ffﬁ)
=CLh® 3 (Uis(p) T )

ped),

it S (i)~ Tig(p))]

PE Q}z—ﬁh
<Ch||U:~Tl,
that is,
|Uis— ij'{.i“éCh%.

In the above calculation we used a well known interpolation theorem. This
proves (3.11). (3.12) can be proved by the same way.

THEOREM I-4. Let U and U be the approzimate solutions obtained by algorithm
(C) and algorithm(L) respectively. Then

(3.14) EWU-U,U-0)%, EU-0, U~y <cnt

as h—0.

PROOF. By Theorem I-2 we know Fi(2)XF.(&), therefore Theorem I-3 implies

EWU-0,U-0)—EU,U)—2E{U—~T,U—1)
(3.15) —2K(u—2, U~1)
<EW-U,U-U)—EW, U)—2EWU—0, U~Ty+ Che.

The fourth term of the left side is bounded by Ch? plus, by (3.2),
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12K (it—1, U=~ <C S W3 a(p)—a(p)|

peﬁ;l
+C 2 Rla(p)—a(p]
PEQR-T,

SCvht VL@ —u( )R

(3.16)
+CvV/h? V2 (a(p)—a(p))*h?
<Cn¥||i—a|<ChE(Ju—a|+|u—al)
<Ch+h*EWU-U,U-0)%) (by Lemma I-4).
Now define

A=EWU-0,U-*, p=EU-0,U-00%.
Then (3.15), (3.16) imply '
£+ 2CH p+2Ch ¥ 1+ Ch.
Since uéCh“k is shown in the proof of Lemma I-4, the above inequality implies

the first inequality of the present theorem. The second one is also proved by

the same way.

From Lemma I-4 and Theorem I-4 follows the next theorem, which is

the conclusion of this chapter.

THEOREM I-5. Let 2 be a polygon and the triangulation is nearly consistent.
If the exact solutoin {u, U} is sufficiently smooth in 9, then the approximate
solutions converge to ithe exact solution both in algorithm(C) and (L), and the
order of convergence is given by

lu—a|, ECU-U, U-=U)=0(h?%) (in algorithm(C)),

lu—4wl, ECU-U, U-0)=0(h*) (n algorithm(L)).

REMARK. The term (f,¢p) in (2.6) can be replaced by (f, %p). Really, let
the approximate solution obtained by this replacement be {#%,U} and let
2=4—20% and Z=U—-U%. If f is sufficiently smooth then holds

( Kid(é, ¢P>+<Z’t}ir ZP)ZO

1 K(¢p, Z)+Cph®*=0,
where Cp is a constant bounded by the maximum value of the first derivatives

of f. Therefore we have
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E(Z, 2)XCCoh3| 2,
v
<Chllz||,

and hence holds

l2l<CECZ, Z)* <Ch.

Chapter (II) Dynamic problems

1. Approximations of consistent and lumped mass type

In this chapter we consider the following initial-boundary value problem.

(1.1 s+ Llu=f in 2x(0,7),
a.2 Uli-0=a, Ostt| s=0=0,

© #|r,=0, du | =0,
.3 (i) %), =0, M) | ,=0,

(i) M@ |p,=0, V() | r,=0.

Also for this problem we can apply the same algorithms as before. Let
At=T/N(N;positive integer) and a4, 7, U,ﬁ';", U¢ be denoted the values at
t=mai of the functions defined like (2.1)~(2.4) in chapter(D).
Algolithm(C'): Solve the following system for m=1, 2,0, N—1.

Kiy(4™, 0p)+ (U, 0p)=0 PEL
1.4 ,7=1,2)
(D:Dzii™, @p)*K(Wp, 0(m))=(f(m)’ ®p) . (p €Ny, N3)

under the initial condition

(1.5) A0=d, D,a©®=p,

where D, and D; are, respectively, the forward and backward difference
operators on f£.
Algorithm(L'): Solve the following system for m=1,2,..., N—1.

Kis(8, 0,)+ (U 8P, 2,)=0 DPE L
1.6) (,7=1,2)
(D:Der™, 1) —K(p, U™)=(f",0,)  (p €N, Ny
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under the initial condition
an #(0)=a, D.i(0)=b.
REMARK: We can take other various approximations of 8x#%. See [2].

THEOREM II-1. Let W™ be of the same form as 4™,
). Algorithm(C') is equivalent to the following algorithm:

Determine U0 and w™*0 by solving

(Dth?), ¢p) + Kis(0™, ¢p) =0 DELs
.8) G, 7= 1,2)
{ (D™, @p) — K(pp, U ™+D)=(f+, pp)
' (P € No, N3)

Jor m=0,1,2,...,N—1 and define 2.o»+» by

D=0+ (13=0,1,2,..., N—2).

Here the initial condition is

A

A®=4, D,a®=5, 9O =4,
Kis(3®, o)+ (U D, 02)=0 b€ @

\ (,7=1,2)
(ii). Algorithm(L") is equivalent to the following algorithm:

@:9

Determine l_7§3‘+1) and W™+ by solving

(DU, 1)+ Kig(™, 0)=0 DPED
(1.10) (D™, yp) — K(pp, U ™+0)=(f"+D, )
(P €Ny, N3)
for m=0,1,2,...,N—1 and define 4™+? by
Dt@_(m+1)=z)(m+1) (m=0: 1y 2, Tty N_z)y

where

A

Q(O)zafy Dti(O)zgy @_(0)=b,
(1.1D) Ki(5®, )+ U9, 2»)=0 PE D
(1,7=1,2)

PROOF. We show that 4a™=4¢ and UP=U% (m=0,1,2,...,N, and i,j=1,

ks it il
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2).
(i) Clearly a®=4® for k=0,1 and U®=U . On the other hand, since

D™ =™ (m=0,1,2,...,N—1),

we see that

D:D:™+V=D,0™ (m=0,1,2,...,N—2).
Substituting this into the second equation of (1.8) we get

1.12) (D:D:a™+0, @) — K(¢p, U ™+2)=(f+D, ) pEN,, Ns.
(m=0,1,2,..., N—2)

Since
D.0;u™ =04 (almost every where),
substituting this into the first equation of (1.8) we get

(DU, 0p) + Kis(Dia™, 9) =0 PELn

By the initial condition this equation implies
113 &P, 0p)+ Kig(3™, 0)=0 pELn
(m=0,1,2,...,N)

Equations (1.12) and (1.13) are identical to the equations for # and U. Since
the initial conditions are the same for the both systems, we see that the two

algorithms are equivalent. The proof of (ii) is the same for (i).

REMARK. This theorem shows that the approximation of the system
Cigu=Uj
Cort+ 2305 Vsg=1
is equivalent to the approximation of the system
Cru=w, Ciys=Uy
C:U;5—Cijw=0
Cow+220:5Us=1,

in our method.
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2. Emnergy inegualities

In this section we derive some energy inequalities for the approximating
schemes presented in the preceding section. We employ the method used by
Fujii [2] for second order equations. The main tool in [2] is the following
lemma. Let £ be the length of the minimum perpendicular of £:;. In this
section we do not assume the regularity of the triangulation.

LEMMA 1I-1. For any 4. hold the following inequalities.

@1 Joale< 4 [ale (ur=48),

@2 03 1°< 5 Jal? (u=12).
For the proof, see [2].

The following lemma is easily proved by taking a pollor coordinate.

LEMMA II-2. Take a triangle A of vertexes p,q,r and assume that the smallest
angle of 2 is . Then

| wassanoal + 2 alz,
ar ho
where hi=Max(pg, pr)/sinb, h,=Min(pq, pr)/sind.

As a corollary of this lemma we have

LEMMA II-3. Suppose that at most 2 sides of any triangles in 2 is on I'ys.
Then for any 4 hold

.3 (., a°ds <amloal:+ -l
T3 0
~9 12 24 —|l2
@0 (.. @ ds<amloale+ 24 als,
T, 3 0
where

hi=(length of the. largest side of £2;)/sinb,,
o=(length of the smallest side of 2:)/sind,.

;
3
: |
g
)
3
4
§
i
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LEMMA II-4. For any @ and U hold

2.5) | K3, 0)1 < ﬁf &l al2+E, 0,

2.6) | K, )|

= (zl*+ED, T,

where

=l {23 u>+\/ (2?5 i>) li&}’
- <4h+ h)

1 24x2?
1—y <4h1+ ﬂgho)

PROOF. By the definition of K(#,U) and by the Lemma II-3, We have for
any positive e

0y =

| K, 01 <108+ 5 { 1001+ Q=100 d+00

+e\  (Fa)ds+— Sr LU+ A=) U2+ U,,20ds
2,3

T2.3

lI/\

Lojape

+/11

K2

1 & oA
(20 5+ ) E, D).
By choosing ¢ as

41 5
I+ e=gq—pyt=>

we have the estimate (2.5). The other estimate can be also proved by the
same way.

REMARK. If I';;=¢ then, for example, we have

| K D) <25 (lale+ gty BCO, 09,

Therefore in this case we can take



106 Tetsuhiko MIYOSHI

Now let {4®)} and (U®} be the approximate solutions obtained by the
algorithm(C’).

LEMMA 11-5. The following inequality holds for 2<k<M.

@ (1~ Z&L ) Dol BO®, 00

2 ’ -
;<1+ ‘1“)clle<°>||2+E<U<°>, )

'EZ
k . k
+ S At f™)2+ 2 ad| D),
m=1 m=1
where A= V& .

PROOF. By (1.4) we see that
k-
2.8 31 (D:D74™, Dy +Dia®™) At
3 N
k- PN
S K(Dea™+ D™, U™ At
4
k-1
=3 (f™, D™+ Dra™) At
1
Since D:Din (Dt + D) =D;(Dzia™)? the first term of the left side
becomes .
IDeu®jj2— | Des® .
On the other hand, since
Kii(Dets™, U )+ (DU, U ) =0
it holds that
K(D:#™, 0 ™)+ E(D,0 ™, U ™)=0,
and hence
k-1 _
KD a™ 4+ Din™, U ™) At
1
k-1 ™ % =
=—NEDU™ 4+ DU U™t
1
=—EU®, 0 +EU©® 00 +EU®, D:U®) At
+E{U®, DiU M) At.
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Therefore equality (2.8) can be represented as follows.
|Dsa®|24+ EQO®, T®)
—|Dea®|2+BQ®, )+ 5 (™, D+ Dea™) at
+EU®, Dia®) st +EWU @, DU @) AL

2.9

On the other hand by Lemma II-4 we have
EU®, DiU®) at=—K(Das®, T ®) At
2 i >y
<5 A\ D]+ EO®, T®))

Since similar inequality holds for E(U®, D,U ) A¢, substituting these inequal-
ities into (2.9) we obtain (2.7).

LEMMA I1-6. The following inequality holds for 2<k<M.
(1—p)||Dra®]|?

x- N N
2.10) g<1+ ﬁ) e+ ADIDACIP+cET @, U)

M
+ 2 atlf )P} + At Dia®|?,
1
where p=2A*At/k?, c=1+p.
PROOF. For k=2 this is correct by Lemma II-5. Suppose that this inequality

holds until A(<M—1). Let the quantity in the blanket { } of (2.10) be
denoted by Y. Then for any 2<m=<k,

. 1 PN m=2
_Am)i2
1Dzl < T—p—nd <1+ I—p—nt > iy

and therefore

.10 :z_z AtHDﬁ?z(’”)Hzél:(l-l- ﬁ)ti] (v).

On the other hand (2.7) implies
A=p)|Drack+v)?
A A o
SOl +eEO @, U )+ Dallf™]e
1

k
+ At D@2+ S AH| D |24+ Al Drat |2,
2
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Substituting (2.11) into this inequality we have
(A—o)|| Dra+v||?

k- ™ e
g(1+ 1_—?_’5) e+ ADIDa@|P+cED @, 0 )

M
+33A8| )2 + ot D)%,
1
which proves that the inequality (2.10) holds for %k+1. This completes the
proof.

From the proof of this lemma we have

COROLLARY. The following inequality holds.

M
3 At||Dea™|?
m=2

<[ 1+ ff_{w)”"—l} (et AD|Da|?

& . M
+cEU @, U)+at|f|7).

THEOREM 11-2. Let VA1/k<1/4. Then for the approximate solution (a¥0,
U3DY  obtained by the algorithm (C'") holds the following inequality.

| D:a@0||2+ ET @D, T30
<Cc(T) é{ N TasllEEs C/(T)[HDtﬁ(O)HZ—I-E(ﬁ(O), (7(0)):]'

PROOF. For fixed p

<1+ T_TA_tA—t>M_1—> exp (—ﬁ—p—) as Ai—0.
Therefore by the above corollary we have
3 2D LT (D] EQ®, T)
+E(T) 2 AlF,
Therefore the theorem follows from (2.7) by setting 2=M and substituting

the above inequality.

THEOREM I1-3. Let v/ At/k<1/2. Then for the approximate solutions {290,
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USDY  obtained by the algorithm(L'") holds the following inequality.
[| D@02+ E(T D, D)
M
=CT) 3 A2+ C'(TH{IDea®|)>+ ECT®, T®)).
m=]1

Proof is exactly same for Theorem II-2

3. Convergence of the approximate solutions

In this section we assume, for brevity, that f/=0. First we consider the
algorithm (C'):

LEMMA II-7. Suppose that e belongs to L*(2). If a, satisfying alr,,=0 and
da/dn|r,=0, and B satisfy the equation
Ki(a, 9+ (Big» 9)=0 (,7=1,2)
K(¢, B+ (e, 9)=0
Jor any smooth ¢ satisfying ¢|r,,=0, then hold the following inequalities.
llaa|1§C§ P51, Z Bl =Cllel %
Now let u™ =u(mat,x;,%x,) and determine 4 and T by solving

Kis(h™, )+ (T, ) =0 PED,
3.1 (4,7=1,2)
(Bestt™, 0) — Ko, U™) =0,

where @™ and U{» are functions of the same form as #™ and U™ respec-
7 19

tively.
LEMMA 11-8. The following estimate holds.
(3.2) | D: D™ —8,u|| < ChF

as h—0 (1<m<M-1).

PROOF. Since %™ is the exact solution, the pair {wW™=D,D;u™, Wim=
D.;D;:U™)} satisfies

*) We assume, of course, that « and B are sufficiently smooth.
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Kig(w™, @) +(W, 9)=0
3.3) —K(p, W) = — (Orseets™, @) -
+ (Bez3:06™ — D: D0ps1t™, )
for any smooth ¢ satisfying ¢|r,,=0.
If the second term of the right side of the second equation is omitted, then
(Bst6™, 3;;U™) satisfies the resulting equation. Since |0 —D:Di8nu™|<
Caf?, we have by Lemma II-7

(3.4) 18z —w™|| <CaA? A<m<M—-1).
On the other hand, operating D:D: to the both side of (3.1) we have

Kif(D:Dei™, 0)+(D:D:US, 0)=0  pE 2,

(4,7=1,2)
—K((/?p, DtDZf](m))= ——(D:Dfﬁuu("‘), Qﬂp) ]5 E Noy N3
A<m=M-1)
which is a discrete analogue of (3.3). Therefore by the result of chap(I) we
have '
(35 |l — D, D™\ <Ch¥ as h—0.

Inequalities (3.4) and (3.5) implies inequality (3.2).

THEOREM 1I-3 If the triangulation is nearly consistent and the assumption of
Theorem 11-2 is satisfied, then the approximate solutions obtained by algorithm (C')
converge to the exact solution as h—0, and hold the following estimates.

(3.6) |30 — 50D, E(UWN 6D, yen geoyr<cnt,

PROOF. Rewrite (3.1) as follows.

Ky, o)+ (T, o) =0 PEL
5, 7=1,2
3.7 ) =) A
(D:D™, ) — K(p, U™) = (D D™ —B,u™, ¢p)
p E ND, N3

By Lemma II-8 we see that the L%norm of the quantity E®™ =D,D:i" —0zu‘™
is bounded by Ch'* as h—0.

Let a™ =4 —am, B =0 U@, Then they satisfy the following
equality for 1<m<M-—1. ’
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Kii(a™™, op) + ([:75,’,"), ©p)=0 pE L
,7=1,2
(3.8 G, 7 ! y
(D:D:a™, ¢p) — K (@p, f™)=(E™, ®p)
p E N07 N3

(1) Estimation of E(F®, ). The solution of the “original problem’ for
the equation (3.7) is {u®™,U®). Therefore, applying the result of Chap(I)

for m=0, we obtain
lvg-Ugl<cnt.

On the other hand, since #” is the interpolating function of #‘®, we know
IlU@-0QlI<cn*

which implies

(3.9 IBRI=109-0@I<ch

or E(B®, f)=0(h).

(2) Estimation of |D:a‘’||. First we see

(3.10) | D:a® —0,u® || <ChE,

Since the exact solution of the ‘“‘original problem’ of the system

Kif(Ded®, ¢p) +(D:UD, 0)=0, p€ 2a
G, j=1,2)
(D18t ) — K(@p, D:T®) =0,
v p €Ny, Ny

(3.11)

is clearly (D;u®, D;U), the result of chap(I) implies

(3.12) |1 Du® — D@ || <ChE.

By (3.10), (8.11) and the assumption of the theorem we obtain

(3.13) 1D || =| D (2 — 2| <ChE.

(3) Equation (3.8), estimations (3.9) and (3.13) and Theorem II-2 imply
G149 | Dia®||2+ E(B90, B40) < Ch,

and thus

(3.15) |46 — 0|2, BTN —Jon, [en _Jeny < Ch.
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Now by (3.7) and the result of chap(I) we have
(3.16) 1490 — g0z, E(TD—y@D, ed_ydn) < Ch.
Therefore by (3.15) we see

|u@n— @02, E(UN TN, U _TED) < Ch,

which is the desired estimates.

THEOREM II-4 The conclusion of the Theorem I11-3 is, replacing U@ py TED
valid for the approximate solutions obtained by algorithm(L').

Proof is almost the same for Theorem II-3 and hence we ommit it.

REMARK. Approximations of high order accuracy.

The assumption ‘“‘nearly consistent decomposition’ is obliged by the use
of piecewise linear basis. But if we employ more accurate basis this as-
sumption will be unnecessary. In fact the authour have obtained the following
result [30.

Let us call the trial functions treated by Zldmal [7] k-th order basis if
the used polynomial is of A-th order (k<3). We consider the first boundary
value problem and approximate the exact solution # and 4du by

%%y, )= 33 uprp(Xy, X3)
PEN)

U (xly xz) = Z UP}PP<x17 x2)7
PeQn

respectively, where {¢p} is the basis of order . Note that the trial function
in [7] can be represented by a suitable system of functions {¢p} as above.
Then if the decomposition is regular, the convergence rate of the approximate
solutions of order % is given by

loCu— ||, ||du—T||<Ch*

in static problem.

The proof is almost the same as in the previous algorithms and thus
we omit this. Further, we add that the dynamic problems can be also solved
by this method and the similar theorems to Theorem II-1~Theorem II-4 hold.
The details is stated in [3].
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APPENDIX. Numerical examples

Let 2 be a unit square and consider the following problems.

A A4=1.0 n 2,
U= (Cilz =0 on 042.

€2)) Au=1.0 in Q,
u= Z—Z =0 on I,
u=M(u)=0 on Iy,

M) =V (u)=0 on I,

where I'; is the portion of 02 illustrated in Figure 1.

. I3
I, I,
t
h
{
T] “— h—
Figure 1.

The element used in our computation is right-angled equilateral triangle (see
Figure 1).

To solve these static problems we applied the algorithm(L’) to the
equation

e+ et + A*u=1. 0,

under the corresponding boundary condition, where « is a suitable positive
number (dumping factor). Therefore, our computational procedure is as
follows.
For (A):
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2= 33 Ui,
PEN)

PEQ

(02, 8gp)+(T™, 1) =0 pED,
(DD, 1)+ ([D:~+Dr1a™, 1) — (00 ™, 05

=(1' 07 gﬂ}?) pENo,
41, D41 given.
For (B):

A= 3 uppp
PEN)+N3

U= Ui pdop (5,5=1,2),
rEQL
(D:Dsiz™, yp) + % (CD:+D:Ja™, yp)— K(@p, U ™)

=<1- 07¢P> PEN(J,N&

A9, D% given.

The time-mesh Af was taken according to the Theorem II-2, and a was
chosen 50 for (A) and 30 for (B), since the smallest eigenvalue of simply
supported unit square plate is 4n*. If our theory of this paper is correct, the
above schemes must be stable, and if the above schemes converge, then the
limit function must be good approximate solution of the corresponding static
problem. The results are described in Table 1 and 2. Table 1 is the central
value of #¥" in problem (A). For comparison we cited the result obtained by
using Adini-Clough-Meliosh’s basis from [6]. Table 2 is the value of #“" at
the middle point of the free edge (I';), and the maximum values of M, and
M,, where

Algorithm (L) ACM
h=1/4 1.800x 1073 (M=20) 1.403x 1073
h=1/8 1.425x 1073 (M=380) 1.304x 1073
h=1/16 1.309:< 1073 (M=300) 1.275x1073
exact 1.26x10°3
e s E

Table 1.
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am (1/2, 1) Mx(1/2,1) My (1/2,0) M
h=1/4 1.021x1072 | —0.982x 101 0.880x 1071 100
h=1/8 1.103x1072 | —1.084x 101 1.097 x 101 300
h=1/16 1.173x1072 | —1.138x 10! 1.182x 1071 800
(B) 1.13 X102 | —0.972x10-1 1.19 x1071

Table 2. (v=0.3)

M, =080 4,000,
M=+ g0,

(B) denotes the value calculated by Boobnov about 70 years ago (cited from

[61).

It is easily forecast that the accuracy of M, and M, will decrease on

the boundary. Really, the ‘‘finite difference equation”’

Ko (2, 0p) + (U, Ap)=0

is not “‘consistent’’, for example, on the boundary I'; (see the equation (2.6)
in chapter (I)). In such case we can take a suitable interpolating function
using the values of the internal points. Table 3 shows the result of such

interpolations. The first row is the value of the function

h=1/8 h=1/16
Modified Mx. (a) —1.055x% 1071 —1.078x10"1
Modified Mx. (b) —1.050% 101 —1.076 x 1071
Table 3.
@) : gan @ 1)+yz7§g'> <% 1—h>,

and the second is for

(b) ogs (% 1) +v { ugn

+h (Uggﬂ (—é 1—h> —ggn (% 1—2h>>}.

These tables shows that the accuracy of 2 is very good in spite of
the small number of used parameters and the accuracy of M, and M, is also
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not bad considering the number of parameters.

It was further observed that the criterion given by Theorem II-3 is
certainly a sufficient condition, though about 6 times overestimated for (A)
and 44 times for (B). It seems that the constant & in Lemma II-4 can be
regarded as unity in practical cumputation. But the reason of this phenome-

non is not ciear for the present.
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