ON A S. S. CHERN, M. DO CARMO, S. KOBAYASHI THEOREM

Teruo IWATANI

(Received October 2, 1972)

S. S. Chern-M. do Carmo-S. Kobayashi [1] proved the following theorem: Theorem A. The Veronese surface in S^4 and the naturally imbedded submanifolds $S^m(\sqrt{m/n}) \times S^{n-m}(\sqrt{(n-m)/n})$ (0 < m < n) in S^{n+1} are the only compact minimal submanifolds of dimension n in S^{n+p} satisfying $||A||^2 = n/(2-1/p)$.

In the present paper, we shall prove this theorem applying the method of J. Simons [2].

1. The method of J. Simons.

Let \overline{M} be an (n+p)-dimensional Riemannian manifold and let f be an immersion of an n-dimensional manifold M into \overline{M} . Let T(M) and $T(M)^{\perp}$ denote the tangent and normal bundles of M. The connection $\overline{\mathbb{V}}$ and metric <, > on $T(\overline{M})$ lead to connections $\overline{\mathbb{V}}$ and invariant inner products <, > on T(M), $T(M)^{\perp}$ and the tensor product of them. Let $X \in \mathfrak{X}(M)$, $Y \in \mathfrak{X}(M)^{\perp}$ and $m \in M$, and put

$$(\overline{\nabla}_X V)_m = -(A^{\mathbf{V}}(X))_m + (\nabla_X V)_m,$$

where $-(A^v(X))_m \in T_m(M)$ and $(\nabla_X V)_m \in T_m(M)^\perp$. Then the mapping $(X,V) \in \mathfrak{X}(M) \times \mathfrak{X}(M)^\perp \to A^v(X) \in \mathfrak{X}(M)$ induces a bilinear mapping $(X_m,V_m) \in T_m(M) \times T_m(M)^\perp \to A^{v_m}(X_m) \in T_m(M)$. Let S(M) be the bundle whose fibre at each point is the space of symmetric linear transformations of $T_m(M)$. The second fundamental form A of the immersion f is the cross-section in $\text{Hom}(T(M)^\perp, S(M))$ which is defined by

$$A(v)=A^v\in S_m(M), v\in T_m(M)^{\perp}.$$

If $\{v_{\alpha}\}$ is an orthonormal frame for $T_m(M)^{\perp}$, then $(1/n)\sum_{\alpha=1}^p(\operatorname{tr} A^{v_{\alpha}})v_{\alpha}$ is called the mean curvature normal of M at m. M is called a minimal submanifold in \overline{M} if the mean curvature normal of M vanishes at each point. By using the second fundamental form A, we define two cross-sections. We define one

cross-section \tilde{A} in $\operatorname{Hom}(T(M)^{\perp},T(M)^{\perp})$ by

$$<\tilde{A}(v),w>=< A^v,A^w>,\ v,w\in T_m(M)^{\perp}.$$

The other cross-section A in $\operatorname{Hom}(S(M),S(M))$ is defined by

$$A = \sum_{\alpha=1}^{p} ad A^{\nu_{\alpha}} \circ ad A^{\nu_{\alpha}}$$
.

Under these notations, J. Simons [2] proved the following theorem:

THEOREM 1. Let M be an n-dimensional minimal submanifold in an (n+p)-dimensional space of constant curvature c. Then the second fundamental form satisfies

$$\nabla^2 A = ncA - A \circ \tilde{A} - A \circ A$$

where ∇^2 is the Laplace operator.

Let M be as in Theorem 1 and let $\{E_i\}$ be a local orthonormal frame field on M which is covariant constant with respect to ∇ at m. Then we have

(1)
$$\langle \nabla^2 A, A \rangle (m) = \sum_{i=1}^n \langle \nabla_{E_i} \nabla_{E_i} A, A \rangle (m)$$

= $(1/2) \sum_{i=1}^n \nabla_{E_i} \nabla_{E_i} \langle A, A \rangle (m) - \sum_{i=1}^n \langle \nabla_{E_i} A, \nabla_{E_i} A \rangle (m).$

Now, we assume M is compact. Integrating the both sides of (1) over M and applying Green's theorem, we obtain

$$\int_{M} \langle \nabla^{2} A, A \rangle = - \int_{M} \langle \nabla A, \nabla A \rangle \leq 0.$$

Using Theorem 1, we obtain

Since \tilde{A} is a symmetric, positive semi-definite operator at each point, we may choose a frame $\{v_{\alpha}\}$ for $T_m(M)^{\perp}$ such that

$$\tilde{A}(v_{\alpha}) = \lambda_{\alpha}v_{\alpha}, \ \lambda_{\alpha} \geq 0, \ \alpha = 1, 2, \dots, p.$$

Then we have

Therefore we obtain

(3)
$$\langle \nabla^2 A, A \rangle (m) \geq (nc - (2-1/p)||A||^2)||A||^2(m).$$

Thus, we have

THEOREM 2 ([2]). If M is an n-dimensional compact minimal submanifold in an (n+p)-dimensional space of constant curvature c, then we have the inequality

$$\int_{M} (\|A\|^2 - nc/(2 - 1/p)) \|A\|^2 \ge 0.$$

The lower bound for this estimate in the special case where $\overline{M}=S^{n+p}$ is, of cource, achieved when $\|A\|^2\equiv 0$ or $\|A\|^2\equiv n/(2-1/p)$. If $\|A\|^2\equiv 0$, then M is a totally geodesic submanifold S^n . We shall determine all minimal submanifolds M of S^{n+p} satisfying $\|A\|^2\equiv n/(2-1/p)$.

Let M be an n-dimensional manifold which is minimally immersed in S^{n+p} and satisfies $\|A\|^2 \equiv n/(2-1/p)$. Setting $\|A\|^2 = \text{constant}$ in (1), we obtain

$$\langle \nabla^2 A, A \rangle (m) = -\sum_{i=1}^n \langle \nabla_{E_i} A, \nabla_{E_i} A \rangle (m).$$

Using (3), we have

$$\sum_{i=1}^{n} \langle \nabla_{E_i} A, \nabla_{E_i} A \rangle (m) \leq ((2-1/p)\|A\|^2 - n)\|A\|^2 (m).$$

This shows that if $||A||^2 \equiv n/(2-1/p)$, then A is parallel. Since two inequalities in (2) are actually equalities in the case $||A||^2 = n/(2-1/p)$, we have

$$\lambda_1 = \cdots = \lambda_p = 0.$$

2. Proof of Theorem A.

Chern-do Carmo-Kobayashi [1] gave the following algebraic lemma:

LEMMA. For non-zero symmetric matrices A_1 and A_2 , the equality

$$|| \Gamma A_1, A_2 ||^2 = 2|| A_1 ||^2 || A_2 ||^2$$

holds if and only if A_1 and A_2 can be transformed simultaneously by an orthogonal matrix into scalar multiples of

$$\left(\begin{array}{c|c} 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{array}\right) \ and \ \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 - 1 & 0 \\ \hline 0 & 0 & 0 \end{array}\right).$$

Moreover, if A1, A2 and A3 are symmetric matrices and if

$$\|[A_{\alpha}, A_{\beta}]\|^2 = 2\|A_{\alpha}\|^2 \|A_{\beta}\|^2, 1 \le \alpha, \beta \le 3,$$

then at least one of matrices A_{α} must be zero.

From (4), (5) and Lemma, we conclude that p must be 1 or 2. We consider the cases p=1 and p=2 separately.

The case p=1. Let V be a local unit normal vector field and let $\{e_i\}$ be an orthonormal frame for $T_m(M)$ such that $A^{V_m}e_i=\rho_ie_i$. We extend it to a local frame field $\{E_i\}$ by parallel translation of $\{e_i\}$ along geodesics issued from m. Since A is parallel and V is also parallel, the representation of A^V with respect to $\{E_i\}$ is

$$\begin{pmatrix} \rho_1 & 0 \\ \vdots & \vdots \\ 0 & \rho_n \end{pmatrix}$$
, ρ_i =constant, $1 \le i \le n$.

We choose all of the different elements from ρ_1, \dots, ρ_n , and assume them ρ_1, \dots, ρ_r . If we define distributions $T_{\rho_1}, \dots, T_{\rho_r}$ by

$$T_{\rho_i}(m) = \{X \in T_m(M): A^{\nu}X = \rho_i X\}, i=1,\dots,r,$$

then each T_{ρ_i} is involutive, totally geodesic and parallel. Using this parallelism and Gauss equation, we have

$$1 + \rho_i \rho_j = 0, i \neq j.$$

Hence, we get that r=2 and if we put $\rho_1=\rho$, then $\rho_2=-1/\rho$. Thus the two distributions T_ρ and $T_{-1/\rho}$ give a local decomposition of M, that is, M is locally a Riemannian product of spaces of constant curvatures $(1+\rho^2)$ and $(1+1/\rho^2)$.

The case p=2. Let $\{v_1,v_2\}$ be an orthonormal frame for $T_m(M)^{\perp}$ such that $\tilde{A}v_{\alpha}=2\lambda^2v_{\alpha}$, $\alpha=1,2$. From Lemma, the matrix representations of A^{v_1} and A^{v_2} with respect to an adapted frame $\{e_i\}$ for $T_m(M)$ are

$$\lambda \left(\begin{array}{c|c} 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{array} \right) \text{ and } -\lambda \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 - 1 & 0 \end{array} \right).$$

We extend $\{v_{\alpha}\}$ and $\{e_i\}$ to local frame fields $\{V_{\alpha}\}$ and $\{E_i\}$ by parallel translation with respect to the connections of $T(M)^{\perp}$ and T(M). Since A is parallel, from the constructions of $\{V_{\alpha}\}$ and $\{E_i\}$, the matrix representations of A^{p_1} and A^{p_2} with respect to $\{E_i\}$ are

$$\lambda \left(\begin{array}{c|c} 0 & 1 & 0 \\ \hline 1 & 0 & 0 \end{array} \right) \text{ and } -\lambda \left(\begin{array}{c|c} 1 & 0 & 0 \\ \hline 0 & -1 & 0 \end{array} \right), \lambda = \text{const.}.$$

We assume $n \ge 3$ and consider the distribution

$$T_0 = \{X: A^{\nu_1}X = 0\} = \{X: A^{\nu_2}X = 0\} + \{0\}.$$

Then T_0 is parallel. We therefore obtain

$$0 = \langle E_1, R(E_1, X)X \rangle = \langle E_1, E_1 \rangle \langle X, X \rangle, X \in T_0.$$

This is a contradiction. Hence, n=2. We may therefore assume that $\lambda=1/\sqrt{3}$, since $n/(2-1/2)=\|A\|^2=4\lambda^2$. Using Gauss equation, we have that M is a space of constant curvature 1/3.

By the actual calculation, we know that the second fundamental forms and the normal connection forms in the cases p=1 and p=2 coincide with those of $S^m(\sqrt{m/n})\times S^{n-m}(\sqrt{(n-m)/n})$ in S^{n+1} and those of the Veronese surface of S^4 with respect to such frame fields as the predescribed ones respectively. We may therefore conclude that minimal submanifolds in S^{n+p} satisfying $\|A\|^2 = n/(2-1/p)$ coincide locally with $S^m(\sqrt{m/n})\times S^{n-m}(\sqrt{(n-m)/n})$ in S^{n+1} or the Veronese surface of S^4 . If such manifolds are compact, they coincide globally. This completes the proof of Theorem A.

References

- [1] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970.
- [2] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.

Department of Mathematics, Faculty of Science, Kumamoto University