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CONVERGENCE OF FINITE ELEMENT SOLUTIONS
REPRESENTED BY A NON-CONFORMING BASIS
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1. Introduction

The application of finite element method to plate bending problems
(boundary value problems of biharmonic equations) has a special difficulty,
since the construction of the trial function belonging to C!-class and having
a simple form is very difficult. For this reason, engineers employ frequently
the non-conforming trial functions which belong only to C°class.

But such procedures can not be justified by the theory of the classical
variational methods. Nevertheless, it is known that some non-conforming
trial functions can give good approximate solutions [1, 3]

In the present paper we justify the use of the Adini-Clough-Melosh’s
trial function which is known as a typical non-conforming trial function to
define the rectanguler stiffness. It may be possible to apply our method to
the justification of the use of some non-conforming trial functions defined on

the trianguler elements. But we have not yet succeeded in such attempt.

2. ACM-basis

Let £ be a bounded domain in (x, y)-plane. Through the present paper
we assume that the boundary of £ is sufficiently smooth. Let £, be a
subdomain of £ satisfying the following 2 conditions.

(1) $£» consists of the square elements of side length %2 Here we assume
that the square decomposition is done by the lines parallel to the coordinate

axes and at least 2 sides of any element are in the interior of £a.
(2) Measure(2—%24)=0() as h—0.

Let ua(x, y) be a function defined on £ such that

(i) in each element e it is expressed as

2.1 wr(%, ¥) = a¥+aPx+aPy+ a1+ aOxy+aly?
+ a7(c)x3+aa(a)x2y+a;c)xy2+ a’lg y3+a§§)x"‘y+ ag)xyB.

(1) (ua(P), Ozwn(D), Oyun(p))* takes the prescrived value (ap, Bp, Tp) at each
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& grid point p€ 2,, and equals to (0, 0, 0) for the point p€02x

The polynomial defined by (2.1) is the ‘‘shape function’’ which has been
used by Adini-Clough and Melosh in defining the rectanguler element stiffness.
: For the theoretical treatment we transform this expression into another one.

Consider the following functions for each point p€ £a.

(D (p(O)
(09, 000, 0y0®)=(1, 0, 0) at p
=(0, 0, 0) at other grids,
@ P
(0, 0208, By0")=(0, 1, 0) at p
=(0, 0, 0) at other grids,
3 0?;

(0P, 0:09, OypP)=(0, 0, 1) at p
=(0, 0, 0) at other grids,

where ¢$? has the expression like (2.1) in each square element. Then it is

evident that the function w.(x, y) can be expressed also in the following form.

M
@.2 wi(x,y) = ,,21 {m(ﬁ)w‘”-#azwh@)(ﬂm+5‘ywn(P)¢(2)} :
We call the system {¢@, ¢, 0@} (=1, 2, ..., M), where M is the number

of grids in £, Adini-Clough-Melosh’s (ACM) basis. As easily seen ACM-basis

is continuous on £, but not continuously differentiable.

3. Finite element method for biharmonic equations

The problem considered in this paper is

@.1) . Lw—Ff in 2,
dw
B2 w=—7—=0 on 02,

where 4° denotes the biharmonic operator and # is the outward normal to
i 39. We assume that f is sufficiently smooth in 2. Therefore, as well known,
this boundary value problem has a unique solution w which is sufficiently

smooth in 2.

e

* 0O,w denotes Ow/0x.

%
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In finite element method, the unknowns {¢®} in (2. 1) are determined

so as to minimize the following functional.

(€R)) F(ww) = Zelﬂwh 2, —2(fwn)a,,
where (f,g)n,,=g fg dxdy and
Qp

(#,0) 2.0 = Oztt, 0220)e+2(02yts, Ouyv).+ (Oyy2t, Oyy0)e,
3.4

”u”;.e:(u:u)z.m
THEOREM 1. The above procedure is equivalent to the following one;

Determine the unknowns {(ws, w$, wP} in
M
x = 3 0P+ o uP0)

by solving the system of equations

(3.6) 33 (wn, @F)ee=(f, 0§ (=0, 1, 2)
@=12,..., M).
To prove this we provide

LEMMA 1. For any function w of the form (3.5) holds the following
inequality.
G.7D Max |w| <d|way| o, (d: diameter of 2:),
Qp

where |-|lo, denotes the usual L*norm.

PROOF. Let the upper and lower parts of 8£2. be denoted by the
equations y=y1(x), y=y,(x¥) and the right and left parts by x=x,(3), x=x,(¥)
respectively. Since w is piecewise smooth in 2, and 2, is partitioned by the
lines paralell to the coordinate axes, w, exists and piecewise smooth with
respect to y except finite number of x. Therefore, the function w., exists as
the function in L?*(£:) and we can write that

v

3.8 ALY y)=g Way(%, ¥)AY (except finite x),
Yo

since w.(x,,)=0 (if necessary, we extend w to whole space by setting w=0
in R®*—#2;). Hence by Schwarz' inequality

Y1

(3.9 Wi (%, ) gdS W, (%, 9.

Yo
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On the other hand,

(3.10) WAz, y);;dS u2 (x, ydx.

Z0

Substituting (3.9) into (3.10) we obtain (3.7).

PROOF OF THEOREM 1. First we note that we can obtain the same
function whether we minimize F(us) by {a;} or by {w®, w®, w), since the
two expressions are equivalent. Now multiplying the first, second and third
equations in (3.6) by w{, w® and w@ respectively, summing first each
equation on p and then the resulting three equations, we obtain

(3- 11) ?uuh”g,e: (f: wh)ﬂh-

By the inequality (3.7), if the left-hand side of the above equation equals to
zero then u»=0, and consequently the equation (3.6) has a unique solution.
On the other hand, F(us) is a quadratic form on {wP}, and moreover this
form is positive definite by the inequality (3.7). Since the stationary
condition of F(us) is nothing but the equation (3.6), the theorem is now
completely proved.

The behaviour of ux as h—0 is a little complicated compared with
those of the approximate solutions obtained by the usual variational methods.
First we observe that by Green’s identity

(3. 12) 2 (w, u';;)z,,:(f, wh>gh+G(w, 7,(7;),

where

(3.13) G(w, un)=1 S {Pazwcos(n, x)Cawn+ 0zyw [cos(n, x)0ywn
¢ Qe

+cos(#, ¥)72 tn] +0yywcosney)dy i) ds.
Therefore, the functional F(uz) is expressed also by

(3.14) F(uw) =¥Ilw—w;z|l§_,+2G(w, wa) —||lwllZ o,

The approximate solution is thus so determined as to minimize the sum of
the first and second terms of the right hand side of (3.14). Therefore we have
to estimate the quantity G(w,w:) for the obtained approximate solution wua
to prove the convergence of the approximate solutions. This will be done in
the next section.
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4. Estimation of G(w, %)

Without loss of generality we can assume that p is the origin of the
coordinate. In the present section we thus drop the suffix p of ¢{. Let
er (k=1,2,3,4) be the square element which is in the Ath quadrant and has
the origin as a corner.

(a) Estimation of G(w,e®): Consider the function

@D Wt )=l 22— By — - Yt 20— 2
3 2 2 2
T W T P e By

By using this function ¢® can be written explicitly as follows.

Wo(xyy) in e
Wo(—x,y) in (4]
4- 2 K (O] R p—
“.2 ¢@(x, ) o= ) n e
Yolx, —3) in éy.

First we find that

4

i=1

S Ozywcos(n, )0y ds=0,
e,

4
pa S Ozywcos(n, ¥)0,p@ds=0.
e;

i=1

Therefore, by symmetry it suffices to estimate the quantity

4.3) Eo— ﬁg BaaCOS (2, £)Bugp®ds,
=1, 9e¢;
Define
3
4.9 BN == v+ 5 =y

Then by (4.1) we see that, for example, in e,

lim cos(#, )8¢© (e, ) =—L(Y),

g—>+0

lim cos(7,%)0:¢®(h—e, ) =B()

g—>+0

for any 0<y<h, where n denotes the outward normal to Oe; from the inside
of e;. The similar relations hold for the other integrands in (4.3), and hence
E° can be written as follows.
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EO= Sh EazzW(h, y) _oazxw(or y) +6‘=xw<_h’ y)]B (y)dy

+ S° [BastoChy ) — 20500, )+ Boatt(—h, )] B(—3)dy.
=

By using the Taylor expansion and the relations

" " d 1 4 "2 dy=_1_ pe
[ scnay=o. §'secnay=Lon § vecnay=-L- 1,

we can prove that
h4
E0=84x2yw<0, 0) W +0(h6) (a4x2y=6a:xxzyy);
and consequently we have

LEMMA 2.
.5 G, 69) =TBuasto($) + Oamto (9] - +OCh).

(B)  Estimation of G(w, ¢®): Define

(4.6) V(x,y)=x— }22 xz-—%xy+ }}2 ﬁ—i—%xzy— ;}3 x%y.

Then ¢® can be written as follows.

Wl(-x;y) in (4%
—Z(—x,5) in e
4.7 O (x, y)= .
a-n B =~Wol(=%~3 in e
i(x, —y) in e
Since

> S 0z cos(n, x)0,0Pds=0,
ey

= S Oz cos(n, ¥)0.0Pds=0,

de;

b3 S Oz cOS(7, X)0,0Pds=0,
e;

i=1

we see that

4
Gw, ¢9) = ES By coS(n, )Bypds
i=1 %

de;

- S L8500, B)— 23,5200, 0) + Busao(, —h) 18 (2)dx

- S [0y (x, B) 23w, 0) +Dyyto(x,— 1) I8 (—x)dx,
—h
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where

and hence we can prove

LEMMA 3.
G, o) = —B,a0($) = W+00®),
“48
G, ¢P) = —Buagi(p) <= hi+OUD.
Let us put

M0=M3X1w1(,°)l, M1=M%x(]w]9)l, |[w@ ).
Then by Lemma 2 and Lemma 3 we obtain
THEOREM 2. For any ws of the form (3.5) it holds that
4.9 , | G(w, ws) | Zconst - {My+ M} 12,

where the constant depends only on the exact solution w.

5. An interpolation theorem

We shall prove

LEMMA 4. Let w be a sufficiently smooth fzmctz'on_ defined on e={(x,y);
0=x,y<h}). Then there exists a function W, of the form (2.1) such that

GB.1D lleo—awn|2 , <const-h* as h—0,
where the constant depends only on w.

PROOF. Let the points (0,0), (0,%), (%,0) and (h, k) be denoted by
1,2,3 and 4 respectively. Then the interpolating function

4
(5. 2) Ur= 2 (u’p Qﬂz(,o) =+ asz (/?z(,l) + ayw;; ga;,"’))
pP=1

is the desired one. To prove this we first note that by the definition of ¢®

the following equalities hold.
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4 6 12
p};x Wpﬁzz¢§?) =— PE (w,—w,) + 0 (w,—wz)x

7

12
+ % (W1 —we—ws+w,)y — T (w1 —we—ws+wHxy,
4 (1) 2 6 '
> azwpazzﬁop === T (zazwl+ axwz) + 'h_z (azwl‘{'azwz)x
p=1

e —27 (20,014 B0 — 20,15 — 0ty

- % (azwl + azwz —6zw3 == azw4) x}’ »

200,09 =0,
Therefore it is easy to see that
Ozl =0+ O (1) in e.
By the same way we have |
Oy ln =0z + O (1) in e,
Oyytln=0yyw+ O (h) in e.

The estimation (5.2) is thus evident.
By this lemma we have

THEOREM 3. If w is sufficiently smooth in 2, then there exists a function
$ Wn of the form (2.1) such that

2,e=

Y |lw=ws|% ,Zconst-h? as h—0.

6. Convergence of the approximate solutions

By the preceding results we can obtain some a priori estimates neces-

PN s

sary for proving the convergence of approximate solutions. Let w and w:. be

the exact and approximate solutions respectively.

s et o

LEMMA 5. ws is uniformly bounded as h—0.

PROOF. By (3.11) and Schwarz' inequality

SRRy

6.1 2 leenllz.. IS laslleenlay

e
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and by the lemma 1

6.2) llwwnlle,<const-Max|wa|

Q

gconstw/z flewnlZ, .
Therefore by (6.1)

(6.3) VZ lwill;, < const-| flla, ,

and again by lemma 1 we have

'€

Max |un| < const- /Sl

= const-|fla,

which completes the proof.

LEMMA 6.
(i) Mixlw‘gﬂl, M%xlwgz)lgconst-h’l,
(1) |G(w,un) | <Zconst-A,
(iid) p2 loo—wall2,, <const-h,

PROOF. (i) follows from lemma 5 and the Markov’s inequality [2].
(ii) is the immediate consequence of the theorem 2 and (i) of this lemma.

Proof of (iii). For the interpolationg function @, given in theorem 3 holds
(6.4) g lw—2|% , < const- k2
Therefore by theorem 2
F@n) = 2 llll5,. —2(f, )
= S w—all, +26Gw, @)~ o,

< —|wl} g, + const-A2

On the other hand, it holds that
F(w) < F@@w),
so that
S Jw—wnl?, + 260, w0 —wll o,

=Fwn)<—|lw|? g, +const-A?,
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and consequently by (ii) we have the estimation (iii).
Finally we get

THEOREM 4. If the exact solution w is sufficiently smooth in 2, then the
approximate solution wn converges to w on 2, and the order of convergence is

given by

(6.5) - Max [w—ws| < const-1/ 7 as h—0,
Q
where if Q—02,7%¢ we extend wy to 2—82, by setting wa=0 tn £—2x

PROOF. By the similar way to the proof of lemma 1, it can be shown
that

MilX ] W—Wh l g dilazy(w—wh) “Q
Q

Therefore, by the assumption (2) and the estimate (iii) of the lemma 6, we

have

Max |w—w < const- (S Jw—wil, +lw—wil} o_,)
Q e
< const -4,

which completes the proof.
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