A NOTE ON BLOCKS AND DEFECT GROUPS OF A FINITE GROUP

Kenzo IIZUKA and Yoshihiko ITO

(Received November 30, 1971)

Let \mathfrak{G} be a group of finite order and $\Lambda[\mathfrak{G}]$ the group algebra of \mathfrak{G} over a field Λ of characteristic p, p a rational prime, and Z the center of $\Lambda[\mathfrak{G}]$. R. Brauer, in his paper [3], considered certain subspaces of the dual spaces of the block ideals in Z and, in terms of them, gave important results concerning blocks, defect groups and p-sections of \mathfrak{G} (cf. also Brauer [1,2]). One of the authors, in [5], has approached some of the results in the way which was adopted in Osima [7], Iizuka [4] and Iizuka-Sasaki [6]. In the present paper, we shall work connecting with the properties (i) and (ii) in Introduction of [3] or with Proposition [2, B] of [5].

1. Let \Re_1 , \Re_2 , \cdots , \Re_n be the classes of conjugate elements in \Im and denote by K_{σ} the sum of all elements belonging to \Re_{σ} ; K_1 , K_2 , \cdots , K_n form a Λ -basis of Z. Let

$$(1.1) 1 = \eta_1 + \eta_2 + \cdots + \eta_s$$

be the decomposition of the unit element 1 of Z to the mutually orthogonal primitive idempotents of Z. Corresponding to (1.1), we have the block decomposition of Z:

$$(1.2) Z = B_1 \oplus B_2 \oplus \cdots \oplus B_s,$$

where each B_{τ} is a nonzero indecomposable ideal in Z and the notation \oplus means an internal direct sum.

Let $\mathfrak{P}_1, \mathfrak{P}_2, \cdots, \mathfrak{P}_r$ be a complete system of representatives for the classes of conjugate p-subgroups in \mathfrak{G} . If \mathfrak{P}_i is a Sylow p-subgroup of the normalizer of an element of \mathfrak{R}_{α} , we refer \mathfrak{P}_i as the *defect group* of the class \mathfrak{R}_{α} and denote it by $D(\mathfrak{R}_{\alpha})$. We denote by $V(\mathfrak{P}_i)$ the linear subspace of Z which is spanned by all K_{β} with $\mathfrak{P}_i = D(\mathfrak{R}_{\beta})$. We set

$$V_{\mathfrak{B}_{i}}^{\tau} = B_{\tau} \cap \sum_{\mathfrak{P}_{i} < \mathfrak{R}_{i}} \mathcal{V}(\mathfrak{P}_{j}),$$

where $\mathfrak{P}_{\mathbf{J}} \leq \mathfrak{P}_{i}$ means that $\mathfrak{P}_{\mathbf{J}}$ is conjugate to a subgroup of \mathfrak{P}_{i} , and set

$$W_{\mathfrak{P}_{i}}^{\tau} = B_{\tau} \cap \sum_{\mathfrak{R}_{i} < \mathfrak{R}_{i}} U(\mathfrak{P}_{j}),$$

where $\mathfrak{P}_j < \mathfrak{P}_i$ means that \mathfrak{P}_j is conjugate to a *proper* subgroup of \mathfrak{P}_i .

Let x_{τ} be the Λ -dimension of B_{τ} . As was shown in [6], with each B_{τ} , we can associate x_{τ} classes \Re_{β} as follows: (i) Each \Re_{α} is associated with one and only one block. (ii) If \Re_{1}^{τ} , \Re_{2}^{τ} , \cdots , $\Re_{x_{\tau}}^{\tau}$ are the classes associated with B_{τ} , then $K_{1}^{\tau}\eta_{\tau}$, $K_{2}^{\tau}\eta_{\tau}$, \cdots , $K_{x_{\tau}}^{\tau}\eta_{\tau}$ form a Λ -basis of B_{τ} . (Cf. [4,5]) In the same way as in the proof of [2, A] in [5], we obtain the following:

[1. A] Let \Re_1^{τ} , \Re_2^{τ} , \cdots , $\Re_{x_{\tau}}^{\tau}$ be the classes associated with \mathcal{B}_{τ} in the above sense. If $\Re_{i\mu}^{\tau}$ ($\mu=1, 2, \cdots, m(\tau, i)$) are the classes \Re_{β}^{τ} with $\Re_i=D(\Re_{\beta}^{\tau})$, then $K_{j\nu}^{\tau}\eta_{\tau}$ ($\nu=1, 2, \cdots, m(\tau, j)$; $\Re_j \leq \Re_i$) form a Λ -basis of $V_{\mathbb{B}_i}^{\tau}$ and the residue classes modulo $W_{\mathbb{B}_i}^{\tau}$, $K_{i\mu}^{\tau}\eta_{\tau}+W_{\mathbb{B}_i}^{\tau}$ ($\mu=1, 2, \cdots, m(\tau, i)$), form a Λ -basis of the factor space $V_{\mathbb{B}_i}^{\tau}/W_{\mathbb{B}_i}^{\tau}$.

Let \hat{Z} be the dual space of Z, i.e., \hat{Z} is the linear space which consists of all linear mappings of Z to Λ . Corresponding to (1.2), the space \hat{Z} is decomposed in

$$(1.3) \hat{Z} = \hat{B}_1 \oplus \hat{B}_2 \oplus \cdots \oplus \hat{B}_s,$$

where each \hat{B}_{τ} may be regarded as the dual space of B_{τ} , *i.e.*, \hat{B}_{τ} consists of all elements f of \hat{Z} such that f vanishes on all B_{λ} with $\lambda \neq \tau$. Let U_i^{τ} be the linear subspace of B_{τ} spanned by those elements $K_{i\nu}^{\tau}\eta_{\tau}$ ($\nu = 1, 2, \dots, m(\tau, i)$):

$$(1.4) B_{\tau} = U_{1}^{\tau} \oplus U_{2}^{\tau} \oplus \cdots \oplus U_{r}^{\tau}.$$

Corresponding to (1.4), we have

$$\hat{B}_{\tau} = \hat{U}_{1}^{\tau} \oplus \hat{U}_{2}^{\tau} \oplus \cdots \oplus \hat{U}_{r}^{\tau},$$

where each \hat{U}_i^{τ} may be regarded as the dual space of U_i^{τ} . Then, in the same way as in the proof of [2, B] of [5], we obtain the following proposition:

- [1.B] (1) For any nonzero element f of \hat{U}_i^{τ} , there exists at least one class \Re_{α} with $\Re_i = D(\Re_{\alpha})$ and with $f(K_{\alpha}) \neq 0$.
- (2) If \Re_{β} is a class such that the defect group $D(\Re_{\beta})$ does not contain any subgroup conjugate to \Re_i , then $f(K_{\beta})$ vanishes for all elements f of \hat{U}_i^{τ} .

This proposition is a supplement to [2, B] of [5], referred in the following:

- I. For $V = \hat{U}_i^{\tau}$, the following two conditions are satisfied:
- (1) For any nonzero element f of V, there exists at least one class \Re_{α} with $\Re_i = D(\Re_{\alpha})$ and with $f(K_{\alpha}) \neq 0$.
- (2) If the order of $D(\mathfrak{R}_{\beta})$ is smaller than that of \mathfrak{P}_i , then $f(K_{\beta})$ vanishes for all elements f of V.

II. \hat{U}_{τ}^{τ} has the maximum dimension of all linear subspaces V of \hat{B}_{τ} which satisfy the conditions (1) and (2) of I.

I and II play an important rôle in [3]. In the later sections, we shall study the conditions (1) and (2) of I.

2. We shall keep the notation of the preceding section. We denote by $|\mathfrak{J}|$ the order of a subgroup \mathfrak{J} of \mathfrak{G} . In the chain of p-subgroups \mathfrak{P}_i ,

$$\mathfrak{P}$$
: \mathfrak{P}_1 , \mathfrak{P}_2 ,, \mathfrak{P}_r ,

we assume that $|\mathfrak{P}_i| \leq |\mathfrak{P}_j|$ for $1 \leq i < j \leq r$. Let h_1, h_2, \dots, h_e be the numbers such that $|\mathfrak{P}_{h_i}| < |\mathfrak{P}_{h_{i+1}}|$, $i = 1, 2, \dots, e-1$, and that $|\mathfrak{P}_j| = |\mathfrak{P}_{h_i}|$ for $h_{i-1} < j \leq h_i$, $i = 1, 2, \dots, e$, where $h_0 = 0$. Let

$$\mathfrak{X}$$
: X_1 , X_2 ,, X_e

be a system of linear subspaces of B_{τ} . Assume that the system $\mathfrak X$ satisfies the following condition:

(a) For
$$i = 1, 2, \dots, e$$
,

$$(2.1) X_1 \oplus X_2 \oplus \cdots \oplus X_i = U_1^{\tau} \oplus U_2^{\tau} \oplus \cdots \oplus U_{h_i}^{\tau} (= V_{h_i}^{\tau})$$

holds.

From (2.1) for i = e, we get

$$(2.2) B_{\tau} = X_1 \oplus X_2 \oplus \cdots \oplus X_{\epsilon}.$$

Corresponding to (2,2), we have

$$\hat{B}_{\tau} = \hat{X}_1 \oplus \hat{X}_2 \oplus \cdots \oplus \hat{X}_{\epsilon_2}$$

where each \hat{X}_i may be regarded as the dual space of X_i . Then the condition (a) is equivalent to the following:

(â) For
$$i = 0, 1, 2, \dots, e - 1$$
,

$$(2.4) \hat{X}_{i+1} \oplus \hat{X}_{i+2} \oplus \cdots \oplus \hat{X}_{\epsilon} = \hat{U}_{h_i+1}^{\tau} \oplus \hat{U}_{h_i+2}^{\tau} \oplus \cdots \oplus \hat{U}_{r}^{\tau}$$

holds.

We denote by $p^{d(\Re_{\alpha})}$ the order of $D(\Re_{\alpha})$ and by p^{d_i} the order of \Re_i ; $d(\Re_{\alpha})$ is called the *defect* of \Re_{α} . We then have the following:

[2. A] I. For $V = \hat{X}_i$, the following two conditions are satisfied.

- (1) For any nonzero element f of V, there exists at least one class \Re_{α} with $d(\Re_{\alpha}) = d_i$ and with $f(K_{\alpha}) \neq 0$.
- (2) If $\Re B$ is a class such that $d(\Re B) < d_i$, then $f(K_B)$ vanishes for all elements f of V.
 - II. \hat{X}_i has the maximum dimension of all linear subspaces V of \hat{B}_{τ} which

satisfy the conditions (1) and (2) of I in this proposition.

PROOF. We first show I. By (2.4) for i = i-1, i, we have

$$(2.5) \hat{X}_i \oplus A_2 = A_1 \oplus A_2,$$

where

$$A_1 = \sum\limits_{h_i-1 < k \le h_i} \hat{U}_k^{ au}, \ A_2 = \sum\limits_{j>i} igoplus_{h_j-1 < k \le h_j} \hat{U}_k^{ au}.$$

If f is an element of \hat{X}_i , then f belongs to $A_1 \oplus A_2$ hence, by [1. B], f vanishes on $V_{h_{i-1}}^{\tau}$. Let $f = f_1 + f_2$ ($f_1 \in A_1$, $f_2 \in A_2$) and $f \neq 0$. Then $f_1 \neq 0$ hence, by [1. B], there exists a class \Re_{σ} with defect d_i and with $f_1(K_{\sigma}) \neq 0$. On the other hand, $f_2(K_{\beta}) = 0$ for all \Re_{β} with $d(\Re_{\beta}) \leq d_i$. Therefore, we see that $f(K_{\sigma}) = f_1(K_{\sigma}) \neq 0$. We next show II. Let V be a linear subspace of \hat{B}_{τ} satisfying (1) and (2) of I. Since we have $V \subset \sum_{j>h_{i-1}} \hat{U}_j^{\tau}$ by (2) and $V \cap \sum_{j>h_i} \hat{U}_j^{\tau} = \{0\}$ by (1), we have

$$V \oplus \sum_{j>h_i} \hat{U}_{j}^{\tau} \subset \sum_{j>h_i-1} \hat{U}_{j}^{\tau}.$$

Hence we see that $\dim V \leq \dim \hat{X}_i$.

As a converse of [2. A], we obtain the following:

[2.B] Let \mathfrak{X} be a system for which (2.2) holds. If each \hat{X}_i satisfies I of [2.A], then the system \mathfrak{X} satisfy the condition (a).

PROOF. From (2) of I, we see that

$$\sum_{\substack{j>i\\j>i}} \hat{X}_j \subset \sum_{\substack{j>i\\k\neq j}} \sum_{\substack{h\\i-1\leq k\leq h,j\\i}} \hat{U}_k^{\tau}.$$

On the other hand, II of [2.A] for $\hat{X}_i = \sum_{\substack{h_{i-1} < k \le h_i}} \hat{U}_k^{\tau}$ and (2.3) yield that dim $X_j = \dim \sum_{\substack{h_{j-1} < k \le h_j}} U_k^{\tau}$ holds for $j = 1, 2, \cdots$, e. Therefore, \mathfrak{X} satisfies the condition (\hat{a}) and hence the condition (a).

3. We shall keep the notation of the preceding sections. Let

$$\mathfrak{D}$$
: Y_1 , Y_2 ,, Y_r

be a system of linear subspaces of B_{τ} . Assume that $\mathfrak Y$ satisfies the following condition:

(b) For $i = 1, 2, \dots, e$,

$$(3.1) Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{h_i} = U_1^{\tau} \oplus U_2^{\tau} \oplus \cdots \oplus U_{h_i}^{\tau} (= V_{h_i}^{\tau})$$

and, for $h_{i-1} < k \le h_i$, $i = 1, 2, \dots, e$,

$$(3.2) Y_1 \oplus \cdots \oplus Y_{k-1} \oplus U_k^{\tau} \oplus Y_{k+1} \oplus \cdots \oplus Y_{h_i}$$

$$= U_1^{\tau} \oplus \cdots \oplus U_{k-1}^{\tau} \oplus U_k^{\tau} \oplus U_{k+1}^{\tau} \oplus \cdots \oplus U_{h_i}^{\tau}$$

hold.

We see that dim $Y_j = \dim U_j^{\tau} = m(\tau, j)$ holds for $j = 1, 2, \dots, r$ and that

$$(3.3) B_{\tau} = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_r$$

holds. Corresponding to (3.3), we have

$$\hat{B}_{\tau} = \hat{Y}_1 \oplus \hat{Y}_2 \oplus \cdots \oplus \hat{Y}_r,$$

where each \hat{Y}_j may be regarded as the dual space of Y_j . It is easy to see that (b) is equivalent to the following condition:

$$(\hat{b})$$
 For $i = 0, 1, 2, \dots, e-1,$

$$(3.5) \qquad \hat{Y}_{h_{i+1}} \oplus \hat{Y}_{h_{i+2}} \oplus \cdots \oplus \hat{Y}_{r} = \hat{U}_{h_{i+1}}^{\tau} \oplus \hat{U}_{h_{i+2}}^{\tau} \oplus \cdots \oplus \hat{U}_{r}^{\tau}$$

and, for $h_i < k \le h_{i+1}$, $i = 0, 1, 2, \dots, e-1$,

$$(3.6) \qquad \hat{U}_{h_{i+1}}^{\tau} \oplus \cdots \oplus \hat{U}_{k-1}^{\tau} \oplus \hat{Y}_{k} \oplus \hat{U}_{k+1}^{\tau} \oplus \cdots \oplus \hat{U}_{r}^{\tau}$$

$$= \hat{U}_{h_{i+1}}^{\tau} \oplus \cdots \oplus \hat{U}_{k-1}^{\tau} \oplus \hat{U}_{k}^{\tau} \oplus \hat{U}_{k+1}^{\tau} \oplus \cdots \oplus \hat{U}_{r}^{\tau}$$

hold.

Then we have the following:

[3. A] I. For $V = \hat{Y}_k$, the following two conditions are satisfied.

- (1) For any nonzero element f of V, there exists at least one class \Re_{α} with $\Re_k = D(\Re_{\alpha})$ and with $f(K_{\alpha}) \neq 0$.
- (2) If \Re_{β} is a class such that $d(\Re_{\beta}) < d_k$, then $f(K_{\beta})$ vanishes for all elements f of V.
- II. \hat{Y}_k has the maximum dimension of all linear subspaces V of \hat{B}_{τ} which satisfy (1) and (2) of I in this proposition.

PROOF. For $\hat{X}_i = \sum\limits_{\substack{h_i-1 < k \leq h_i \\ j > h_i}} \hat{Y}_k$, we have (2.4) and, for $\hat{X}_i = \hat{Y}_k$, $A_1 = \hat{U}_k^{\tau}$, $A_2 = \sum\limits_{\substack{j > h_i \\ j \neq k}} \hat{U}_j^{\tau}$, we have (2.5). Then we can verify [3.A] by the same way as [2.A] is proved.

As a converse of [3. A], we have the following:

[3.B] Let \mathfrak{Y} be a system for which (3,3) holds. If each \hat{Y}_k satisfies I of [3.A], then the system \mathfrak{Y} satisfies the condition (b).

PROOF. For $\hat{X}_i = \sum_{\substack{h_i=1 \leqslant k \leqslant h_i}} \hat{Y}_k$, the statement I of [2.A] remains valid,

hence we have (3.5) for these \hat{Y}_k . Therefore, by (1) of I, we get

$$\hat{Y}_k \oplus \sum_{\substack{j>h_i\\j\neq k}} \hat{U}^{\tau}_{j} \subset \sum_{j>h_i} \hat{U}^{\tau}_{j}.$$

Then, by the same way as (2.4) is deduced, we see that (3.6) holds.

- 4. The notation of the preceding sections will be used throughout, unless stated. Now, assume that the system $\mathfrak D$ satisfies the following condition:
- (c) For $i = 1, 2, \dots, r$,

$$(4.1) \qquad \qquad \underset{\mathfrak{B}_{j} \leftarrow \mathfrak{B}_{i}}{\sum \oplus} Y_{j} \oplus Y_{i} = \underset{\mathfrak{B}_{j} \leftarrow \mathfrak{B}_{i}}{\sum \oplus} U_{j}^{\tau} \oplus U_{i}^{\tau} \ (= V_{\mathfrak{B}_{i}}^{\tau})$$

holds.

From the condition (c), we see that, for $i = 1, 2, \dots, r$,

$$(4.2) \qquad \qquad \underset{\mathfrak{D}_{j} < \mathfrak{D}_{i}}{\sum} Y_{j} = \underset{\mathfrak{D}_{j} < \mathfrak{D}_{i}}{\sum} U_{j}^{\tau} \quad (= W_{\mathfrak{D}_{i}}^{\tau})$$

holds and that the system $\mathfrak D$ satisfies the following condition:

(d) For
$$i = 1, 2, \dots, r$$
,

$$(4.3) W_{\mathfrak{P}_{i}}^{\tau} \oplus Y_{i} = W_{\mathfrak{P}_{i}}^{\tau} \oplus U_{i}^{\tau}$$

holds.

Conversely, from the condition (d), we see that (4.2) holds for $i=1, 2, \cdots, r$ and that the system $\mathfrak P$ satisfies the condition (c).

As a special case of (4.1), we have

$$(4.4) B_{\tau} = Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{\tau}.$$

Corresponding to (4.4), we have

$$\hat{B}_{\tau} = \hat{Y}_1 \oplus \hat{Y}_2 \oplus \cdots \oplus \hat{Y}_{\tau},$$

where each \hat{Y}_i may be regarded as the dual space of Y_i . It is easy to see that (c) is equivalent to the following condition:

(ĉ) For
$$i = 0, 1, 2, \dots, r-1,$$

$$(4.6) \qquad \hat{Y} \oplus \underset{\mathbb{R}_{i} \to \mathbb{R}_{i}}{\sum} \oplus \hat{Y}_{j} = \hat{U}_{i}^{\tau} \oplus \underset{\mathbb{R}_{i} \to \mathbb{R}_{i}}{\sum} \oplus \hat{U}_{j}^{\tau}$$

holds.

 (\hat{c}) yields that

$$(4.7) \qquad \qquad \underset{\mathfrak{P}_{j} > \mathfrak{P}_{i}}{\sum \bigoplus} \hat{Y}_{j} = \underset{\mathfrak{P}_{j} > \mathfrak{P}_{i}}{\sum \bigoplus} \hat{U}^{\tilde{j}}_{j}$$

holds for $i = 0, 1, 2, \dots, r-1$. (ĉ) is equivalent to the following condition:

$$(\hat{d})$$
 For $i = 0, 1, 2, \dots, r-1,$

$$\hat{Y}_i \oplus \sum_{\mathbb{R}_j \to \mathbb{R}_i} \hat{U}_j^{\tau} = \hat{U}_i^{\tau} \oplus \sum_{\mathbb{R}_j \to \mathbb{R}_i} \hat{U}_j^{\tau}$$

holds.

Then we obtain the following:

[4.A] Under the assumption (4.4), the system $\mathfrak P$ satisfies one of the conditions (c) and (d) if and only if each Y_i of $\mathfrak P$ satisfies the following two conditions.

- (1) For any nonzero element f of \hat{Y}_i , there exists at least one class \Re_{α} with $\Re_i = D(\Re_{\alpha})$ and with $f(\Re_{\alpha}) \neq 0$.
- (2) If \Re_{β} is a class such that $D(\Re_{\beta})$ does not contain any subgroup conjugate to \Re_i , then $f(K_{\beta})$ vanishes for all elements f of \hat{Y}_i .

REMARK 1. In stead of (c), assume the following:

(e) For $h_{i-1} < k \le h_i$, $i = 1, 2, \dots, e$,

$$(4.9) \qquad \qquad \sum_{j \leq h_{j-1}} Y_j \oplus Y_k = \sum_{j \leq h_{j-1}} U_j^{\tau} \oplus U_k^{\tau}$$

olds.

Then (3.1), (4.4), (4.5) and (3.5) hold; (e) is equivalent to

(e) For $h_{i-1} < k \le h_i$, $i = 1, 2, \dots, e$,

$$(4.10) \hat{Y}_k \oplus \sum_{j > h_i} \hat{Y}_j = \hat{U}_k^{\tau} \oplus \sum_{j > h_i} \hat{U}_j^{\tau}$$

holds.

In this case, we have to replace (2) of [4. A] by the following:

(2') If \Re_{β} is a class with $d(\Re_{\beta}) \leq d_i$ such that $D(\Re_{\beta})$ does not contain any subgroup conjugate to \Re_i , then $f(K_{\beta})$ vanishes for all elements f of \hat{Y}_i .

REMARK 2. In the left side of (4.1) or (4.9), we may replace $\Sigma \oplus$ by $\Sigma.$

References

- [1] R. Brauer, On the arithmetic in a group ring, Proc. Nat. Acad. Sci. U. S. A. 30 (1944), 109-114.
- [2] R. Brauer, On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 182-186.
- [3] R. Brauer, Defect groups in the theory of representations of finite groups, Illinois Journ. Math. 13 (1969), 53-73.
- [4] K. Iizuka, Note on blocks of group characters, Kumamoto Journ. Sci. A. 2 (1956),

309-321.

- [5] K. Iizuka, A note on blocks of characters of a finite group, Journ. Algebra 20 (1972). (to appear)
- [6] K. Iizuka and S. Sasaki, A remark on the representations of finite groups (in Japanese), Mem. Fac. Gen. Ed. Kumamoto Univ. 4 (1968), 1-6.
- [7] M. Osima, Notes on blocks of group characters, Math. Journ. Okayama Univ. 4 (1955), 175-188.

Department of Mathematics, Faculty of Science, Kumamoto University

Department of Mathematics, Faculty of Education, Kumamoto University