ON THE RANK OF THE p-DIVISOR CLASS GROUP OF GALOIS EXTENSIONS OF ALGEBRAIC NUMBER FIELDS

Sunao YAMAMOTO

(Received December 2, 1971)

Let p and k be a prime number and an algebraic number field. Let K/k be a finite Galois extension which contains a primitive p-th root ζ_p of unity and we denote the Galois group of K/k by G. Corresponding to the decomposition of the group ring $Z_p[G]$ of G over the ring Z_p of p-adic integers into the direct sum of non-zero indecomposable two-sided ideals B called blocks: $Z_p[G] = \sum_B B$, the unity of G is decomposed into the sum of orthogonal primitive central idempotents γ_B : $1 = \sum_B \gamma_B$. For any multiplicative abelian $Z_p[G]$ -group A, we have its decomposition into a direct product:

$$A = \prod_{\mathcal{B}} A_{\mathcal{B}}, \qquad A_{\mathcal{B}} = A^{\eta_{\mathcal{B}}}.$$

When we take as A the p-divisor class group and the unit p-class group of K, the results in [8], [7], so-called "Spiegelungssatz", will be able to be generalized to the case the order of G is divisible by p (Theorem 1). In case p is odd and K is the cyclotomic field of p^{n+1} -th roots of unity over the rational field Q, (*) becomes the Iwasawa's Δ -decomposition ([4]). In this case we shall obtain some more detailed results (Theorem 2, Theorem 3).

§1. Spiegelungssatz.

For any absolutely irreducible character χ of G in the algebraic closure of the p-adic number field Q_p , we put

$$\eta_{\chi} = \frac{\chi(1)}{\sharp G} \sum_{\sigma \in G} \chi(\sigma^{-1}) \sigma.$$

Then η_B is a sum of several idempotents η_x . Namely when $\eta_x\eta_B=\eta_x$, we denote $\chi \in B$ and then

$$\eta_B = \sum_{\chi \in B} \eta_{\chi}.$$

Next we define the linear character χ^* of G by

$$\zeta_p^{\sigma} = \zeta_p^{\chi * (\sigma)}$$
 for $\sigma \in G$,

where $\chi^*(\sigma)$ is a (p-1)-th root of unity contained in Z_p . Moreover for any χ we put

$$\overline{\chi}(\sigma) = \chi^*(\sigma)\chi(\sigma^{-1})$$
 for $\sigma \in G$.

Then $\overline{\chi}$ is also an absolutely irreducible character of G and $\overline{\chi}=\chi$. For each block B, $\sum_{\chi\in B} \gamma_{\overline{\chi}}$ becomes an orthogonal primitive central idempotent of $Z_{\mathfrak{p}}[G]$ and therefore defines a block \overline{B} such that

$$\bar{B} = Z_{p} [G] \gamma_{\bar{B}}, \qquad \gamma_{\bar{B}} = \sum_{\chi \in B} \gamma_{\bar{\chi}}, \qquad \bar{\bar{B}} = B.$$

Let D be the divisor group of K and H be its subgroup of all c such that c^m is principal for some exponent m prime to p. We denote the p-divisor class group of K by $\mathfrak{D}=D/H$. Then \mathfrak{D} is a $Z_p G$ -group. The class field N/K corresponding to H is an unramified abelian extension and N/k is a Galois extension. Let \mathfrak{G} be the Galois group of N/k and \mathfrak{A} be its abelian p-subgroup corresponding to K. Then

$$\text{ (b)} / \text{ (1)} \underline{=} G, \qquad \text{ (b)} = \bigcup_{\sigma \in G} \text{ (1)} S_{\sigma}, \qquad S_{\sigma}|_{\mathit{I\!R}} \underline{=} \sigma,$$

and $\mathfrak A$ becomes a $Z_p \llbracket G
rbracket$ -group defined by

$$S_{\sigma}^{-1} \alpha S_{\sigma} = \alpha^{\sigma}$$
 for $\alpha \in \mathfrak{A}, \ \sigma \in G$.

By Artin's isomorphism theorem, we have a $Z_p \subseteq G$ -isomorphism:

$$\mathfrak{D} \cong \mathfrak{A} \; ; \; \mathfrak{k} \to \left(\frac{N/K}{\mathfrak{k}} \right).$$

Hence we obtain the decompositions (*) of $\mathfrak D$ and $\mathfrak A$ such that

$$\mathfrak{D} = \prod_{p} \mathfrak{D}_{B}, \qquad \mathfrak{A} = \prod_{p} \mathfrak{A}_{B}, \qquad \mathfrak{D}_{B} \cong \mathfrak{A}_{B}.$$

Let \widetilde{N}/K be the subextension of N/K corresponding to the subgroup \mathfrak{A}^p of \mathfrak{A} . Then we can identify the Galois group $\widetilde{\mathfrak{A}}$ of \widetilde{N}/K with $\mathfrak{A}/\mathfrak{A}^p$ as $Z_p[G]$ -groups. By the assumption $\zeta_p \in K$, \widetilde{N}/K becomes a Kummer extension such that

$$\widetilde{N}=K(W), \qquad W=\{\widetilde{N}\ni\omega\neq0\;;\;\omega^p\in K\}.$$

The radical class group $\mathfrak{W} = W/K^{ imes}$ of $ilde{N}/K$ becomes a $Z_{p} \llbracket G
rbracket$ -group defined by

$$\bar{\omega}^{\sigma} = \overline{\omega^{S_{\sigma}}}$$
 for $\omega \in W$, $\sigma \in G$.

Now we put

$$\omega^{\alpha} = \chi_{\omega}(\alpha)\omega$$
 for $\omega \in W, \alpha \in \mathfrak{A}$.

where $\chi_{\omega}(\alpha)$ is a p-th root of unity independent on the choices of representatives of $\overline{\omega} \in \mathfrak{W}$ and $\overline{\alpha} \in \widetilde{\mathfrak{A}}$. Therefore $\chi_{\overline{\omega}}$ defined by $\chi_{\overline{\omega}}(\overline{\alpha}) = \chi_{\omega}(\alpha)$ belongs to the character group $\widetilde{\mathfrak{A}}^*$ of $\widetilde{\mathfrak{A}}$. Then we have an isomorphism:

$$\mathfrak{M} \cong \widetilde{\mathfrak{A}}^*; \bar{\omega} \rightarrow \chi_{\bar{\omega}}.$$

LEMMA 1. In the decompositions (*) of $Z_p[G]$ -group $\widetilde{\mathfrak{A}}$ and \mathfrak{B} , $\widetilde{\mathfrak{A}}_B$ is isomorphic with $\mathfrak{B}_{\overline{B}}$ for each block B.

PROOF. For $\omega \in W$, $\alpha \in \mathfrak{A}$, $\sigma \in G$

$$\omega^{\alpha^{\sigma}} = \omega^{S_{\sigma}^{-1}\alpha S_{\sigma}} = (\chi_{\omega}^{S_{\sigma}^{-1}}(\alpha)\omega^{S_{\sigma}^{-1}})^{S_{\sigma}} = \chi_{\omega}^{S_{\sigma}^{-1}}(\alpha)^{\chi^{*}(\sigma)}\omega.$$

Hence by the definition of $\chi_{\overline{\omega}}$,

$$\chi_{\overline{\omega}}(\bar{\alpha}^{\sigma}) = \chi_{\overline{\omega} \times *(\sigma)\sigma^{-1}}(\bar{\alpha})$$
 for $\bar{\omega} \in \mathfrak{V}$, $\bar{\alpha} \in \mathfrak{N}$, $\sigma \in G$.

For each block B if we put

$$\eta_B = \sum_{\sigma \in G} a_{\sigma} \sigma, \qquad a_{\sigma} = \frac{1}{\sharp G} \sum_{\chi \in B} \chi(1) \chi(\sigma^{-1}) \in \mathbb{Z}_p,$$

then

$$\eta_{\overline{B}} = \sum_{\sigma \in G} a_{\sigma} \chi^*(\sigma) \sigma^{-1}.$$

Hence it follows that

$$\chi_{\overline{\omega}}(\bar{\alpha}^{\eta_B}) = \chi_{\overline{\omega}^{\eta_{\overline{B}}}}(\bar{\alpha}).$$

Therefore we have

$$\widetilde{\mathfrak{A}}_{B} \cong \mathfrak{B} / \prod_{B' \neq \overline{B}} \mathfrak{B}_{B'} \cong \mathfrak{W}_{\overline{B}}.$$

Let \mathbb{C} be the p-Sylow subgroup of the divisor class group of K. Then \mathbb{C} is a $Z_p[G]$ -group and is naturally $Z_p[G]$ -isomorphic with \mathbb{D} . Similarly the subgroup \mathbb{C} of \mathbb{C} generated by all elements of order p is a $Z_p[G]$ -group and we have a natural $Z_p[G]$ -isomorphism:

$$\widetilde{\mathbb{C}} \cong \widetilde{\mathbb{D}} = \mathfrak{D}/\mathfrak{D}^p$$
.

Therefore by Lemma 1, for each block B

$$\widetilde{\mathbb{C}}_{\mathcal{B}} \cong \widetilde{\mathfrak{D}}_{\mathcal{B}} \cong \widetilde{\mathfrak{N}}_{\mathcal{B}} \cong \mathfrak{W}_{\overline{\mathcal{B}}}.$$

On the other hand, since $K(\omega)/K$ is unramified for $\omega \in W$, there is some $\mathfrak{c} \in D$

such that

$$(\omega) = \mathfrak{c}$$
 in \widetilde{N} , $\overline{\mathfrak{c}} \in \widetilde{\mathfrak{G}}$.

We define a $Z_p \llbracket G
right
right
right
rightarrow homomorphism <math>arphi$ of $\mathfrak W$ into $\widetilde{\mathbb C}$ by

$$\varphi \colon \mathfrak{W} \rightarrow \widetilde{\mathfrak{C}} ; \ \overline{\omega} \rightarrow \overline{\mathfrak{c}}.$$

For each element $\overline{\omega}_0$ in the kernel \mathfrak{V}_0 of φ , there is some $x \in K$ such that $(\omega_0) = (x)$ in \widetilde{N} and hence $\omega_0 x^{-1}$ is a unit in \widetilde{N} . Therefore $\varepsilon = (\omega_0 x^{-1})^p$ is a unit in K and

$$ar{\omega}_0 = \overline{\sqrt[p]{arepsilon}}$$
 , $\sqrt[p]{arepsilon} \in W$.

Now let E denote the unit group of K and E_0 denote its subgroup of all ε such that $\sqrt[p]{\varepsilon} \in W$. Then both E and E_0 are G-groups and also all the unit p-class group $\mathfrak{G}=E/E^p$, its subgroup $\mathfrak{G}_0=E_0/E^p$ and \mathfrak{M}_0 become $Z_p[G]$ -groups. Moreover from the above argument we have $Z_p[G]$ -isomorphisms:

$$\mathfrak{W}_0 \cong \mathfrak{E}_0$$
, $\mathfrak{W}/\mathfrak{W}_0 \cong \varphi(\mathfrak{W}) \subset \widetilde{\mathfrak{C}}$.

Hence in the decompositions (*) of \mathfrak{W}_0 and \mathfrak{C}_0 ,

$$\mathfrak{X}_{0B} \cong \mathfrak{F}_{0B}, \qquad \mathfrak{X}_{B}/\mathfrak{X}_{0B} \cong \varphi(\mathfrak{X}_{B}) \subset \widetilde{\mathfrak{F}}_{B}.$$

Therefore we obtain the following theorem.

THEOREM 1. For each block B let e_B and δ_B denote the ranks of \mathfrak{T}_B and \mathfrak{E}_{0B} , respectively. Then we have

$$e_B - \delta_{\bar{B}} \leq e_{\bar{B}} \leq e_B + \delta_B$$
.

When the order of G is prime to p, this theorem is shown in [8], [7]. REMARK. In particular we consider the case p is odd and k is the rational field Q and the maximal real subfield K^+ of K is a Galois extension of Q with the subgroup $G^+ = \{1, \sigma_\infty\}$. Then σ_∞ belongs to the center of G and hence in $Z_p[G]$ we obtain a decomposition of the unity into a sum of two orthogonal central idempotents:

$$1 = \frac{1 + \sigma_{\infty}}{2} + \frac{1 - \sigma_{\infty}}{2}.$$

Each η_B is a summand of either $\frac{1+\sigma_\infty}{2}$ or $\frac{1-\sigma_\infty}{2}$, and we call a block B even in the former case and odd in the latter. Then immediately it follows that

$$B$$
: even $\rightleftharpoons \bar{B}$: odd.

Let \mathfrak{D}^+ denote the p-divisor class group of K^+ . Then \mathfrak{D}^+ is a $Z_p \llbracket G \rrbracket$ -group and clearly

$$\mathfrak{D}^+ = \prod_{B \text{ : even}} \mathfrak{D}_B^+, \qquad \mathfrak{D}_B^+ \cong \mathfrak{D}_B \quad \text{for each even block } B.$$

§2. Cyclotomic fields.

Let p be odd and k be the rational field Q and K be the cyclotomic field $Q(\zeta)$ obtained by adjoining a primitive p^{n+1} -th root ζ of unity. In this case, the Galois group G of K/Q is the direct product of the cyclic group G_0 of order p-1 and the cyclic group P of order p^n :

$$G=G_0\times P$$
, $G_0=<\rho>$, $P=<\pi>$,

where ρ and π are generators of G_0 and P, respectively. Then the order of χ^* is equal to p-1. The number of blocks of $Z_p[G]$ is p-1 and

$$\eta_B = \frac{1}{p-1} \sum_{t=0}^{p-2} \chi^{*i}(\rho^{-t}) \rho^t$$
 when $\chi^{*i} \in B$.

By the definition of \overline{B} ,

$$\chi^{*i} \in B \rightleftharpoons \chi^{*j} \in \overline{B}$$
 when $i+j=p$.

When $\chi^{*i} \in B$, we denote η_B by η_i and A_B by A_i in the decomposition (*).

Now, between unit groups of K and $K^+{=}Q(\zeta{+}\zeta^{{-}{\rm i}})$ the following relation holds.

LEMMA 2. Let E^+ denote the unit group of K^+ and $E_0^+ = E_0 \cap E^+$. Then we have

$$E_0 = E_0^+ E^p$$
.

PROOF. In the case of n=0, this lemma is shown in [9]. For general case too, it can be proved in the same manner. Namely for each unit ε in E_0 there is some $x \in K$ prime to $\mathfrak{p}=(1-\zeta)$ such that $\varepsilon \equiv x^p \pmod{\mathfrak{p}^{p^n+1}}$. Hence

$$\varepsilon - \varepsilon^p \equiv x^p (1 - x^{p(p-1)}) \equiv 0 \pmod{\mathfrak{p}^p}$$
.

We can put $\varepsilon = \zeta^g \varepsilon^+$ for $\varepsilon^+ \in E^+$, and then

$$\varepsilon - \varepsilon^p = \zeta^g \varepsilon^+ (1 - \zeta^{g(p-1)}) + \zeta^{gp} \varepsilon^+ (1 - \varepsilon^{+p-1}).$$

Since ε^+ is real, $1-\varepsilon^{+p-1}\equiv 0\pmod{\mathfrak{p}^2}$. Hence $1-\zeta^{\sigma(p-1)}\equiv 0\pmod{\mathfrak{p}^2}$ and then $g\equiv 0\pmod{p}$. Therefore ε^+ is contained in E_0 . This completes the proof of our lemma.

From Lemma 2 it follows that $\mathfrak{E}_0 = E_0^+ E^p / E^p$. In the decomposition (*) of \mathfrak{E}_0 :

$$\mathfrak{E}_0 = \prod_{i=1}^{p-1} \mathfrak{E}_{0i}, \qquad \mathfrak{E}_{0i} = \mathfrak{E}_0^{\eta_i},$$

since units in E_0^+ are invariant under σ_∞ and $\eta_i\sigma_\infty=(-1)^i\eta_i$, then we have $\mathfrak{E}_{0_i}=1$ for all odd i. Therefore by Theorem 1 the following theorem is obtained.

THEOREM 2. In the cyclotomic field of p^{n+1} -th roots of unity over Q, let e_i and δ_i denote the ranks of the i-components \mathfrak{D}_i of \mathfrak{D} and \mathfrak{E}_{0_i} of \mathfrak{E}_{0} , respectively. Then we have

$$\delta_i = 0$$
, $e_j \leq e_i \leq e_j + \delta_j$ when i is odd and $i+j=p$.

Let e^+ be the rank of the p-divisor class group \mathfrak{E}^+ of K^+ . Then by the remark of the previous section,

$$e^+ = \sum_{j: \text{even}} e_j$$
.

From now on, we assume that the class number h^+ of K^+ is prime to p. This assumption holds for all n if it holds for n=0 ([3]). Then it follows that $e_j=0$ for all even j. But since representatives of the basis of \mathfrak{E}_0 give independent unramified Kummer extensions of K of degree p, by Theorem 2

$$e_i = \delta_j$$
 when i is odd and $i+j=p$.

Let T denote the G-subgroup of E^+ generated by a circular unit T_0 :

$$T_0 = \sqrt{\frac{(1 - \zeta^r)(1 - \zeta^{-r})}{(1 - \zeta)(1 - \zeta^{-1})}}, \quad r \equiv \chi^*(\rho) \pmod{p}.$$

Then from the class number formula for K^+ ([2], [5]), h^+ is given by a group index: $h^+=[E^+:T]$. Therefore under $(h^+,p)=1$,

$$\mathfrak{E} = \mathfrak{E}_1 \times E^+ E^p / E^p = \mathfrak{E}_1 \times T E^p / E^p, \quad \mathfrak{E}_1 = \mathfrak{E}^{\eta_1} = <\zeta > E^p / E^p,$$

where $\mathfrak E$ is a p-elementary abelian group of the rank $\frac{p-1}{2} p^n$ and $\mathfrak E_j$ for even $j \neq p-1$ is generated by $(T_0 E^p)^{\eta_j \pi^g}$ $(s=0,1,\cdots,p^n-1)$ and $\mathfrak E_{p-1}$ is generated by $(T_0 E^p)^{\eta_{p-1} \pi^g}$ $(s=0,1,\cdots,p^n-2)$. Therefore

the rank of
$$\mathfrak{E}_{j}=\left\{ egin{array}{ll} p^{n} & \text{for even } j\!=\!p\!-\!1. \\ p^{n}\!-\!1 & \text{for } j\!=\!p\!-\!1. \end{array} \right.$$

On the other hand, since

$$\mathfrak{C}_0 \subset \prod_{j: \text{even}} \mathfrak{C}_j = TE^p/E^p,$$

finally we have

$$\delta_{j} \leq \begin{cases} p^{n} & \text{for even } j \neq p-1. \\ p^{n}-1 & \text{for } j=p-1. \end{cases}$$

Particularly in the case of n = 0,

 $\delta_{p-1} = 0$, $0 \le \delta_j \le 1$, $\delta_j = 1 \rightleftharpoons (T_0 E^p)^{\eta_j} \in \mathfrak{F}_0$ for even $j \neq p-1$.

Making use of the method in [1], we can estimate $(T_0E^p)^{\eta_j}$ and obtain the following lemma.

LEMMA 3. In the cyclotomic field of p-th roots of unity over Q, $(T_0E^p)^{n_j}$ is in \mathfrak{E}_0 if and only if the Bernoulli number P_j is divisible by p for $j=2,4,\cdots,p-3$.

From this lemma, it follows immediately that:

THEOREM 3. In the cyclotomic field of p-th roots of unity over Q under the assumption $(h^+, p) = 1$, the rank e_i of the i-component \mathfrak{D}_i of the p-divisor class group \mathfrak{D} is given by

$$e_1=0$$
, $0 \le e_i \le 1$ for $i = 3, 5, \dots, p-2$.

Moreover $e_i = 1$ if and only if the Bernoulli number B_j is divisible by p for even $j \leq p-3$ such that i+j=p.

REMARK. For all $p \le 4001$, it is known ([6]) that in the cyclotomic field of p^{n+1} -th roots of unity over Q, the assumption $(h^+, p) = 1$ is satisfied and when B_j is divisible by p, then \mathfrak{T}_i becomes a cyclic group of order p^{n+1} .

References

- [1] Z. I. Borevich and I. R. Shafarevich, Number Theory, New York and London, 1966.
- [2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Berlin, 1952.
- [3] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, 20(1956), 257-258.
- [4] K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., 70(1959), 530-561.
- [5] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math., 76(1962), 171-179.
- [6] K. Iwasawa and C. C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan, 18(1966), 86-96.
- [7] S. -N. Kuroda, Über den allgemeinen Spiegelungssatz für Galoissche Zahlk"rper, J. Number Theory. 2(1970), 282-297.
- [8] H. W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkürper, J. reine angew. Math., 199(1958), 165-174.

[9] K. Shiratani, Bemerkung zur Theorie der Kreiskörper, Memoirs of Scie., Kyushu Univ., 18(1964), 121-126.

> Department of Mathematics, Faculty of Science, Kumamoto University