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1. Introduction.

The Frankl’ problem for partial differential equations of mixed type
was posed by F. I. Frankl’ [4] (see also [9]) so as to investigate the transonic
flow past a profile with shocks. After that many authors in USSR studied
the problem to establish the maximum principles, the uniqueness and the
existence for the solution of the problem under the limitation of various
hypotheses ([3] [5] [6] [7] [8D).

The present paper is concerned with the modified Frankl’ problem [12]
which is proposed as the modification of the Frankl’s original problem in
order to be able to utilize the maximum principle of Agmon, Nirenberg and
Protter [1]. Under the definitions and assumptions in Section 2, there is
proved the maximum principle for our problem in Section 8. Then as its
applications Sections 4 and 5 are devoted to establish the uniqueness and
some estimations for the solutions of the problem of the linear equation for
which the boundary condition of the third kind is given on the elliptic
boundary, and of the nonlinear equation for which the nonlinear boundary
condition is given on the elliptic boundary.

The author would like to thank Prof. Wasao Sibagaki of Science Univ.
of Tokyo for his continual encouragement in the course of this work. The
author is also grateful to Prof. Mituo Inaba of Kumamoto Univ. for his

constant encouragement and comments in preparing of this paper.

2. Definitions and assumptions.

Let K(») be a function in C?(—y,, ¥,) for y;, ¥.>>0 and have the property
YK(y) >0 for y=+0. Consider a domain £ which is contained in the strip
R' X (—y1, y2) of the x,y-plane and defined as follows. Let A(a, 0), B(5, 0),
D(d, 0) and E(e, 0) be four points on the x-axis with d<a<b<e and let
C be the intersection point of two arcs in y <0 which issue from A and B
and have the slopes 0> dx/dy >—V —K(¥) and 0<dx/dy <V —K(y), respec-
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tively. We shall denote the arcs AC and BC by 7; and 7,, respectively. Let ¢
be a smooth Jordan arc in ¥ >0 joining D and E where it is assumed that the
length of ¢ is not less than the length / of r;. Let g, be the part of ¢ whose
length is equal to [ having the end points F and G. £ shall be the domain
enclosed with the curve ACBEGFDA. Let 2:=2N{y >0} and £,=2N{y <0)}.

Let us consider the following differential operators on functions u(x, y)

defined in 2v:

Tu = K(Y)Uzz + thyy
Lu = Tu + alx, Yus + b(x, Nuy + c(x, Nu,

where a(x, ), b(x, ¥) € C3}(2)NC(D) and c(x, y) € C°(D).

In 2, two characteristic derivatives ve=V —K(3) v-+ v, and v, = —
VZK() v+ vy for a function v(x, y) are defined. Let v, on o\UDAUBE
denote the directional derivative for a function »(x, ) in the direction of
the vector r whose inner product with the inner normal vector to ¢, DA or
BE is positive.

ASSUMPTION I. Let the coefficients of L be satisfy the following

conditions:

¢<0 in &2,

a+bV—K+ (V—K)y<0 in 2,

4(—K)c+La—bV=EK+3(V=EK)ylla+bV—K+ (V=K)]
—2V=K[a+bV—K+ (V=K% >0 in 2.

DEFINITION 1. Consider the following ten functions which are contin-

uous and bounded on each part of the boundary of 2:

an (%), agz (%), @1 (%) on m\.}ﬁ as (%, 9), az (%, 3), ¢ (x, ) on o;

B (%, ), B2 (%, ), ¢ (%, ) on T1; ¢, (%, ) on Ty,
where an<0, @ >0, —an + ap>a >0 (G=1,2) and B >p;, >0, f; + B> az; >0
for some positive constants a; (j =1, 2, 3). If, moreover, the boundary of £
is smooth at the point D or E, we shall assume that ap=ax G=1, 2), ¢1=¢;
there and if not we shall set a;; =0 there. We shall say a function # (x, y)
defined on 2 satisfies the boundary condition #€ B, (4, B, ®) where A = (ay;,
a2, 1, azg), B = (B1, B2) and @ = (o1, @2, @3, ¢4), if it satisfies

D In what follows the domain with a bar means the closure of it and the arc or
interval with a bar contains its end points, but the one without a bar does not.
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ay %+ ayp th, = ¢, on DA\ BE
an U+ azp U, = ¢, on o

Bru (%, ) —Bou (X, Y) =g,

Uy = @, ON Ty,

where in the third relation (x, y) €3, corresponds to (X, Y) € 7, in such a
way that the length of the arc from F to (%, ) is equal to the length of the
arc from A to (X, Y), and in the sequel we shall write such a boundéry
condition as £ #; — B, u, =¢; for brevity.

Let C2(2) be a set of functions # (%, ) which are defined on £, belong
to C*(2) N C° (D), have the directional derivatives u, on o U DA\ BE and

have the characteristic derivatives uy which are continuous up to 7; inclusive.

DEFINITION 2. The linear problem is to seek a function z (x, ) € C?

(2) which satisfies the equation
Lu=f(x, )
in £ and the boundary condition
u € B, (4, B, 0,

where L is supposed to satisfy Assumption I and f(x, y) is an arbitrary
continuous and bounded function on 2.

ASSUMPTION II.  Let the functions K (y) and g (%,,2,5,9) € C? (2 x R?)
satisfy the following conditions:

g:>0in £ X R3,

g+ 8V —K— (/—K); >0 in 2, X R?,

A-K) &+ -8+ 8V —EK+30/ K] [g+21V—K— (/=K1
—2V—-Klgr+ & V=K — (V—=K),J: <0 in 2, X R®.

DEFINITION 3. Consider the following six functions defined on each
domain:

¢1 (%, 3, 2,8) on (DAUBE) X R% ¢, (x, 9, z, ) on o X R?;

B (x, 30, Ba (%, ), ¢5 (%, %) on T1; ¢, (%, ¥) on Ty,
where ¢y, ¢, are continuously differentiable and bounded with the requirements
0¢:/0z <0, 0¢;/0s> 0 and — B¢;/0z + 8¢;/ds > F; >0 (¢=1, 2) in the respective
domains, and B, B2, ¢; and ¢, have the same requirements as in Definition 1.

Then we shall say a function # (x, ¥) defined on @ satisfies the boundary
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condition # € B, (B, ®) where B= (8, 82) and @ = (¢1, @2 @3, @s), if it satisfies

01 (%, 9, %, v:) =0 on DAUBE

02 (%, ¥, u, ;) =0 on o

Bru(x, ) —Bu (X, Y) =g

Uy = @y ON Ty,
where in the third relation the points (x, ) and (X, Y) are taken as in
Definition 1.

DEFINITION 4. The nonlinear problem is to seek a function # (x, )
€ C?(2) which satisfies the equation

Tu= g%, 9, t, Uz, ty)
in £ and the boundary condition
u € B, (B, 0),

where the functions K (¥) and g (x, ¥, z, p, q) are supposed to satisfy Assump-
tion II.

3. Maximum principle.

THEOREM 1. Let a function u (x, y) € C? (2) satisfy the inequalities Lu >0
in 9, a1+ >0 on gy, Briig — Baux> 0 and uy > 0 on Ty, then the positive
maximum? of u in @ cannot be attained except on DA\J BE U o\ay.

To prove this fact, we require the following lemmas, which may be

proved in a similar manner as in Agmon, Nirenberg and Protter [1], Oleinik
[10] and Protter and Weinberger [111.

LEMMA 1. Let L satisfy Assumption I. Comsider a function u (x, y) € C?
(2) N C° (25) having the characteristic derivative u, which is continuous up to T
inclusive.  If the function w(x,y) satisfies the inequalities Lu> 0 in 2, and
u,> 0 on 1., then the positive maximum of u in 2, cannot be attained except on
7,\UAB. Moreover, if the maximum is attained at some point (%o, 0) €AB, then
we have

].im inf u<x07 y) —u (xO’ 0) >0‘

Yy—>-0 y

2 When ¢ = 0, the assumption of positivity of the maximum may be omitted and the
same holds for Lemmas 1 and 2.
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LEMMA 2. Consider a function u (x, y) € C?(2,) N C° (2). Assume ¢ <0
in 1. If the function u(x, y) satisfies the inequality Lu> 0 in 2., then the
positive maximum of u in 2, cannot be attained in the interior of 2,. Moreover,
if the maximum is attained at some point (x,, ¥,) €Ec\J DE, then we have

lim sup u (xﬂ + /Eh Yo =+ fKZ) — U (xoy yO) < 0’

t>+0 t| k|

where the inner product of the vector & = (x;, k,) and the inner normal vector to o
or DE at (%, y,) is positive®.

PROOF OF THEOREM 1. Lemma 1 and Lemma 2 show that the positive
maximum of # is not attained at an interior point of £, and £, and on 7..
Thus it is attained at a point of the boundary of 2 except 7, or at a point
of AB. But the points of AB cannot be the maximum point by Lemmas 1
and 2. If the maximum point lies on 7,, the maximum must be attained at
a corresponding point on ¢, from the assumption, and then u, <0 owing to
Lemma 2. This contradicts with the assumption, then the theorem is proved.

THEOREM 2. If the function f(x, y) and the boundary functions ¢., ¢z, @3
and ¢, are nonnegative, then the solution of the linear problem Lu = f with u € B,
(A, B, 0) is nonpositive.

PROOF. By virtue of Theorem 1, the positive maximum in 2, if it
exists, is attained at some point of DA\UBE \Jo\s,. But using Lemma 2
the value of ay %+ apu. (=1 or 2) at the point is negative. Therefore

the contradiction concludes the proof.

4. Linear problem.

THEOREM 3. The solution of the linear problem is unique.
PROOF. This is evident from Theorem 2.

THEOREM 4. Assume ¢ < — k< 0 with a positive constant k. If a function
u (x, y) is the solution of the linear problem, there holds the estimation

+S‘1P|‘/74f)

Su; Su su
lul <C pllllcoll i p(lz:azl P p(lzswsl

X0+ G sup LK+ lal+ 5]+ [c| +17 + 2RI

% If the boundary curve of 2 is smooth at the point D or E, then the point can be
taken as (xo, ¥o).



46 . - . Megumi SAIGO. -

where the constants C, and C, are independent of the coefficients in L and the
boundary functions. Here it is requived that for arbitrary continuous functions ¥,
the problem Lu =0 with u € B, (A, B, ¥) has a solution in C?(2).

PROOF. We shall divide the solution # into solutions of two problems
such as
u=1u; + ts; 4, : Lu; = f with u,€B; (4, B, 0)
%, : Lu, =0 with u,€ B, (4, B, 0).
(D estimation of u,. Let D;=sup|f|/k and let v:==% u; — D;. Then vs
Satlsﬁes L'Ui = + f'—‘ CD1 0 Wlth Vst E Bl (A B — ¥y D], — Dl, — D1 (ﬂl—‘Bz),
0). Since ay <0 (G=1,2) and B, — F: <0, it follows by Theorem 2 that
<0 in £, and thus | #% |< D;.
(D) estimation of u,. Let a function U (x, ) € C?(2) be such that

d11U+a12U 1>C1>0 on DAUBE
a21U+a22U—22> >00na
BiU —BU,=23>¢c3 >0
Un—=—24> C4>0 on Tl,
for some positive constants ¢;( =1, 2, 3, 4) and also satisfy |U| < 1. Further,
if a function v(x, y) € C? (2) is a solution of the problem
Lv=0
vE B, (4 B, 4)
for A = (A, A 4, As), then from Theorem 2 we have v <0. Let D,= i,
sup | ¢: |/c;. Since wi == u, + D, v is a solution of the problem
Lw* =0
ws € By (A, B, £ 0+ D, A),
then again by Theorem 2 we have w: <0. Thus |#,| <D.|v|. In order
to estimate | v |, we shall take 9= U — v, then since
Ly =LU
ﬁ E B'L (A’ By 0)7

we have from ()

lo] <1+ 52 sup CIK|+lal+1b]+]cl+13.

Consequently
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S ) ST
wl<c(2lal 4 swlal  sole

=+ SuP | ¢ I)

Cz . 1
X {1+ 5 sup CIK|+lal+[b]+]cl+11.
(II) From the estimations (I) and (II) we have the estimation for %, which

completes the proof.

THEOREM 5. Let the boundary functions o, and az have the properties
a; < — d; <0 for some positive constants d; (i =1, 2). I f a function u (x, y) is
the solution of the linear problem, then there holds the estimation

sup | ¢ | sup | ¢ |
|| < d1 + 7

+ Cs {_Suptll:oal. +supl¢4l+C4suprl'[supIBlIJrsup]le+1]}

x { sup |y | +sup |y | | _sup|as |+ sup|an| +1},

1 2

where the constants C; and C, are independent of the coefficients in L and the
boundary functions. Here it is required that for arbitrary continuous function g
in 2 and boundary functions ¢s on T, ¢, on 1y, there exists a solution in C? @
of the problem Lu= g with u € B, (4, B, 0, 0, ¢35, ¢o).
PROOF. Suppose that the solution # is composed of solutions of threé
problems such as
U =10, + v+ 0v3;
v;: Ly, =0 with v; € B; (4, B, ¢, ¢5 0, 0)
v2: Ly, =0 with v, € B, (4, B, 0, 0, ¢35, ¢s)
vs: Lvs = f with vs € B, (4, B, 0, 0,0, 0).
(D estimation of vi. Let Ey=sup | ¢, |/d;+ sup |¢: |/d, and let v =+ v,— E,.
Then v. satisfies
Ly, =—cE,
v: € B (A B, £ ¢1—anEy, + ¢2— an Ey, E; (B; — B, 0).
Since £ ¢ —ay E;1 >0 (=1, 2) and B> B, by Theorem 2 we have v: <0
in 2, and then | v, | < E..
(ID  estimation of v,. Let a function V (x, ¥) € C?(2) be such that

LV >0
BiVi—BV,=2A3> e, >0
Va=2%i> e, >0
IVi<i,
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where e; are positive constants (i=1,2). Further, if a function % (%, )
€ C?(2) is a solution of the problem

Li =LV

u E 31 (A, By 09 0! ZSJ 14)9

‘then by Theorem 2 # < 0. Let E,=sup los|/e; +sup | @i |/€..  Since e =
+ v, + E, @ is a solution of the problem

Lwy = E, LV
w: € B; (A4, B, 0, 0, + o+ Ely o+ Ey Xy,

then by Theorem 2 and the conditions for V and E,, @+ <0. Thus |v:] <
E,|a|. Next we shall estimate |#|. Takingw,=V — 4, w, is a solution of
the problem

Lw,=0

W E B1 (A, By xlr XZJ 0: 0)9
where X; = ay V 4+ ai V., (=1, 2). Then from (I)

a5, | sup | % + sup | 4, |

dl dZ
Thus
_ sup | 1| o sup |, |
lul<1+—/‘”’|11 e
Consequently
. ¢ sup | ¢s | sup | ¢
lo2] <G, ( e, o e )

sup|aul+SUP|“12| + sup | ax | + sup | ax |}
d1 dZ )

x {1+
(IID From (I) and (II) we have for a solution v, of the problem

Lvo =0 :
Vo E BI (A; Br 0),

the estimation

|0 | < supcliwll . sup(liwzl +c;'(ﬂ)7l:ﬁi+supl¢4])
1 2

sup]a11]+sup|mz|+ Sup|a21|+SUPlazz|}
7 .

1 2

x {1+

(IV) estimation of vs. Suppose a function W (x,y) € C*(2) is such that
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LW > m >0.in .2, where m is some pdsitive constant. Let a function @ (x, »)
€ C?(2) be a solution of the problem

Liv=LW

w E Bl (A’ B’ 0)!

then by Theorem 2 we have @ <0. Let E;=sup|f |/m. Since d. =+ v5 +
E;w is a solution of the problem

Ly =+ f+ Es LW
l}i E Bl (Ay By 0)’

then again by Theorem 2 we have 0+ <0. Thus |v;| < E;|@|. In order to
estimate | w | we set o =W — i, then ¥ is a solution of the problem

Ly=0
17 E Bl (A’ B’ A):

Where 4= (61, 62, 63, 54), 0“7, = a4 W + [227) W7 (Z = 1, 2), 63 = B.l Wl - BZ WZ and
0y = W,. Then from (III) we have

|5 <C;(sup | B | +sup|B;|+1)

% {SUP]auI"'Sup}aul + sup | ay | + sup | as | +1}_

1 2
Therefore

(2
m

os | < sup | f | (sup| B | +sup | B | + 1)

% {SUP|£¥11]+511P[“12] + SuPl“ml‘:i‘Sllplﬂ’zzl +1J>.
1 2
(V) Combining (IID and (IV), we have the estimation for #, which completes
the proof.

REMARK. Let the boundary of the domain 2 be supposed that 7, and
oo are parallel with y-axis whose end points are A (g, 0), C(aq,—1),D (d, 0) =F
and G (4, 1), and let the other parts of the boundary satisfy the assumptions
in Section 2. Then if @;; =0 on DA\JBE, as =0 on gy, as =0 on o \o, and
7= (1, 0) on g, the function U in Theorem 4 may be set, for instance, U =
ulexp (v (¥ + D) — (x —a/3 —2d4/3)*]1, where v is a sufficiently large number
and x is a constant chosen to be | U| <1. Concerning V and W in Theorem
5 for the same domain, we may set as previous U, but in this case no other

condition is taken on a;; except the assumptions in the theorem.
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THEOREM 6. Let the assumptions of Theorem 4 be satisfied. Then the
solution u of the linear problem which has the bounded second derivative .. and
the bounded first derivatives ., uy on 2 depends continuously on the coefficients
of L, the function f and the boundary functions.

PROOF. Let the functions # and # be the solutions of the linear

problems

Lu = Ktz + thyy + athz + bty + cu=7f
u € B, (4, B, 0®)

and

@ = Kilpy + tiyy + @il + bty + i = f
‘YZ E Bl (-AA; E, 5),
respectively. Then the difference function v = @ — % satisfies
Lv=F—FfHAIE "B tha+ @—Dtta+ b —b) ey + (c — O u]
v € B, (4, B, ¥,
where ¢; =0 — ¢+ (@ — @) v+ (@ — @) U, =1, 2), ¢3=03 — o3+ (B —

B) uy — (B2 — o) 4, and ¢y = @, — ¢s. Therefore by virtue of Theorem 4 there
holds the inequality

~ 2osup (| @i — @i | + |@q —an | + | @ — ai|)
lu ul <C1<’L§ inf(ld;ll + I&v,;zl)

LS (@ —¢s [+ B =Bl +|F— B
' inf(|/§1|+152|)

+Supl¢4—<ﬂ4|>

X {14 = CZ~—supE|f{|+|a|+|5|+|e|+13}
inf | £

Cs

i sup{| f—fI+ | KE—K|+|a—a]|+1b5—-bl+1c—cl},

from which the required results may be deduced.

5. Nonlinear problem.
THEOREM 7. The solution of the nonlinear problem is unique.

PROOF. Suppose that there are two solutions #, and #, for the problem.
Then the difference function v = %, — u, satisfies
Tv + av. + bvy + v =0
v E Bl (Ay B, 0)7
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1
B x, 9, tus + A — ) e, tur, + 1 — 1) u2,) dt and

fe = Bcyan -1, 2.

By virtue of Assumption II, Definitions 3 and 4, v =0 in 2 is guaranteed by
Theorem 2.

THEOREM 8. Consider the nonlinear problem having the property that
| 0g/0z |, | 0g/0p |, | 8g/0q | are bounded and 8g/6z> k>0 on 2 X R? for some
positive constant k. Then if a function u (x, y) is the solution of the problem,

there holds the estimation

|u|<cs(suplwlog,1y, 0,0l Supl%(ﬁg;y, 0, 01
sup | £(%, 5, 0, 0, 0]

sup | ¢ | 1+ :
+ = Bt sup el ) (14 - sup [l K| +13) + : ;

where the constant Cs is independent of K, g and the boundary functions, and C,
depends only on the bounds of the derivatives of g. Here it is required that there
exists a solution in C?(2) of the problem mentioned in Theorem 4 for the

equation Lu = 0 whose coefficients a, b and c are replaced by
. (' og
a=— So 'E (x, Y, tu, tuz. tug) dt,

& E ag
b——SO 3 ) dit and

1
=— S % (G ) dt, respectively,
o 0z

with the boundary condition u € B (A, B, ®) where a;; (i, j =1, 2) are replaced
by

s (0o
Q) = SO az (x, Y, tu, tu7) dt’

Y e ' awi ----- 7 —
do={ By =1, 2.
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THEOREM 9. Consider the monlinear problem having the property that

| 8g/0z |, | 0g/op |, | 6g/dq | are bounded on 2 X R®. Further, assume that 0¢;/0z<

— 1; < 0 for some positive constants n; (i =1, 2). Then, if a function u(x, y) is

the solution of the problem, there holds the estimation

] < ST o1 (%, 9, 0, O L _sup l g2 (x, 9,0, 0]
7, .

+ Cs {sup | ¢s| +suples| +Cosup | g(x,9,0,0,0) |[suplf; | +suplB:|+11},

where the constant Cs depends only on 0¢;/0z, 0p:;/0s (G =1, 2) and C, is inde-
pendent of K, g and the boundary functions. Here it is requived that there exists
a solution in C?(2) of the problem mentioned in Theorem 5 for L with the
coefficients a, b and ¢ and for ay; (i, § =1, 2) described in Theorem 8.

PROOF of THEOREMS 8 AND 9. There hold the relations

g%, y, , the, thy) = (%, ¥, 0, 0, 0) — Gtz — buy — Cu,
0 (%, 9, 4, 4) = ¢; (%, 9, 0, 0) + @uu + anu. G =1, 2).

Then we can produce from Theorems 4 and 5 the respective estimations.
THEOREM 10. Let the assumptions of Theorem 8 be satisfied. Then the

solution u of the nonlinear problem which has the bounded second derivative Uz

on 2 depends continuously on the coefficient K, the function g and the boundary
Sunctions.
PROOF. Let # and # be the solutions of the nonlinear problems
Kuzx + Uyy = 8 (xy y, u, u,;,. My)
u € By (B, 0)
and
Kﬁzz + Ay = & (x, ¥, 4, ¥ y)
@ € B, (B, 0,
respectively. Then the difference function w = # — »# satisfies

Kvee + wyy + aws + bwy + cw
= g<x’ Y, ‘ZZ, 1/71;, ﬁy) == g(xr Y, ﬁ’ ﬁz» ﬁ?l) - (K_ K) Uz

w E Bl (A; _Ey W)1
where

1
~—-—S %(x,y,tﬁ-%(l—t)u, i, + (1 — 0 ta, tily + (1 — ) uy) dt
0
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1
Gy =— SO gﬁ‘ oy, ti+ A —Du, ti. + A — D u,) di,

3= 03 — @3 + (31—51>“1—(192—52)%2 and ¢y = @y — @4

Then from Theorem 4 we have the inequality

sup | & — ¢y | i Sup | &, — ¢ |

Iﬁ_ul <C10( b1 bz

L SuD |85 —¢s| +sup | B —Bi| +sup|fo—Bl

+sup | ¢y — ¢4 |)
as

X 1+ -5 suprl BT +10)

+ Ck“' sup(1 g— gl + | KE— K1),

from which the result of the theorem follows.
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