ON THE NUMBER OF BLOCKS OF IRREDUCIBLE CHARACTERS OF A FINITE GROUP WITH A GIVEN DEFECT GROUP

Kenzo IIZUKA and Atumi WATANABE

(Received September 7, 1972)

Introduction

Let \mathfrak{G} be a group of finite order g and p a fixed rational prime; $g=p^ag'$, (p,g')=1. Let K be the number field of g-th roots of unity and \mathfrak{o} the ring of \mathfrak{p} -integers of K, where \mathfrak{p} is a prime ideal divisor of p in K. Denote by Z_0 the center of the group ring of \mathfrak{G} over \mathfrak{o} . The natural homomorphism of \mathfrak{o} onto the residue class field $K^*=\mathfrak{o}/\mathfrak{p}$ induces a ring homomorphism of Z_0 onto the center Z^* of the group ring of \mathfrak{G} over K^* , which has the kernel $\mathfrak{p}Z_0$. For every element x of Z_0 , we shall denote by x^* the image of x by the ring homomorphism. Let \mathfrak{R}_1 , \mathfrak{R}_2 , \cdots , \mathfrak{R}_n be the classes of conjugate elements in \mathfrak{G} and G_1, G_2, \cdots , G_n a complete system of representatives for the classes. Denote by $K_{\mathfrak{p}}$ the sum of all elements of $\mathfrak{R}_{\mathfrak{p}}$ and $|\mathfrak{R}_{\mathfrak{p}}|$ the cardinality of $\mathfrak{R}_{\mathfrak{p}}$, $\mathfrak{p}=1$, 2, \cdots , n. \mathfrak{G} has n distinct absolutely irreducible ordinary characters χ_1 , χ_2 , \cdots , χ_n . For each χ_i , there corresponds one and only one primitive idempotent of the center Z of the group ring of \mathfrak{G} over K which is given by

(1)
$$e_{i} = \frac{1}{g} \sum_{\nu=1}^{n} \chi_{i}(1) \chi_{i}(G_{\nu}^{-1}) K_{\nu}:$$

(2)
$$1 = e_1 + e_2 + \cdots + e_n,$$

(3)
$$e_i^2 = e_i, e_i e_j = 0 \ (i \neq j).$$

It is well known that Z has n distinct linear characters $\omega_1, \omega_2, \cdots, \omega_n$;

(4)
$$\omega_i(K_\mu) = \frac{|\Re_\mu| \chi_i(G_\mu)}{\chi_i(1)},$$

(5)
$$K_{\mu}e_{i} = \omega_{i}(K_{\mu})e_{i} = \frac{1}{g} \sum_{\nu=1}^{n} |\Re_{\mu}| \chi_{i}(G_{\mu}) \chi_{i}(G_{\nu}^{-1}) K_{\nu}.$$

Let B_1 , B_2 , ..., B_t be the *p*-blocks of absolutely irreducible ordinary characters χ_i and η_1 , η_2 , ..., η_t the corresponding block idempotents of Z_0 ;

(6)
$$\eta_{\tau} = \sum_{\chi_{i} \in B_{\tau}} e_{i} = \frac{1}{g} \sum_{\nu=1}^{n} \sum_{\chi_{i} \in B_{\tau}} \chi_{i}(1) \chi_{i}(G_{\nu}^{-1}) K_{\nu},$$

(7)
$$1 = \eta_1 + \eta_2 + \ldots + \eta_t, \ \eta_{\tau}^2 = \eta_{\tau}, \ \eta_{\tau} \eta_{\rho} = 0 \ (\tau \neq \rho),$$

(8)
$$K_{\mu}\eta_{\nu} = \frac{\left|\widehat{\mathbb{S}}_{\mu}\right|}{g} \sum_{\nu=1}^{n} \sum_{\chi \in B_{\tau}} \chi_{i}(G_{\mu}) \chi_{i}(G_{\nu}^{-1}) K_{\nu}.$$

For each class \Re_{ν} , we denote by $\mathfrak{D}(\Re_{\nu})$ a defect group of \Re_{ν} and by $d(\Re_{\nu})$ the defect of \Re_{ν} , i.e., $\mathfrak{D}(\Re_{\nu})$ is a Sylow *p*-subgroup of the normalizer $\mathfrak{N}_{\mathfrak{G}}(G_{\nu})$ in \mathfrak{G} and $p^{d(\Re_{\nu})}$ the order of $\mathfrak{D}(\Re_{\nu})$.

The following results were given in Osima [9] (Cf. Curtis-Reiner [6]).

(A) We may set

(9)
$$\eta_{\tau} = \sum_{\nu} a_{\nu}^{\tau} K_{\nu} \ (a_{\nu}^{\tau} \in \mathfrak{o}),$$

where \Re_{ν} ranges only over p-regular classes.

- (B) For each η_{τ} , there exists a *p*-regular class \Re_{μ} satisfying the following conditions:
- (a) $a_{\mu}^{\tau} \equiv 0 \pmod{\mathfrak{p}}$.
- (b) For $\chi_i \in B_\tau$, $\omega_i(K_\mu) \not\equiv 0 \pmod{\mathfrak{p}}$ and, if $d(\mathfrak{R}_\nu) < d(\mathfrak{R}_\mu)$, $\omega_i(K_\nu) \equiv 0 \pmod{\mathfrak{p}}$.
- (c) If $\mathfrak{D}(\mathfrak{R}_{\nu})$ is not conjugate to any subgroup of $\mathfrak{D}(\mathfrak{R}_{\mu})$, then $a_{\nu}^{\tau} \equiv 0 \pmod{\mathfrak{p}}$. In this case, $\mathfrak{D}(\mathfrak{R}_{\mu})$ is called a defect group of B_{τ} and $d(\mathfrak{R}_{\mu})$ the defect of B_{τ} ;

$$d(\Re_{\mu}) = \min\{ m \mid \chi_i(1) \equiv 0 \pmod{p^{n-m}} \text{ for all } \chi_i \in B_{\tau} \}.$$

R. Brauer, in his papers [1, 2], gave the following theorem: The class sums K_{ν}^* with $d(\mathfrak{R}_{\nu}) = 0$ form a basis of a subalgebra M of the center Z^* . The number of blocks of defect 0 is equal to the rank of M^* for sufficiently large n.

In the present paper, in §1, we shall show that we can take n=2 in Brauer's theorem. In §2, we shall prepare some lemmas for the following section. In §3, we shall count the number of blocks B_{τ} with a given defect group \mathfrak{D} .

§ 1

In the following, as is discribed above, we shall give an improvement of Brauer's theorem.

It is well known that the space M, in Brauer's theorem, is an ideal of Z^* and that the primitive idempotents of M are identical with those idempotents η_{τ}^* such that B_{τ} have defect 0; we denote by E_0 the sum of all those idempotents. We have

(10)
$$M = Z^* E_0 \oplus M(1 - E_0).$$

LEMMA 1. We have

$$Z^*E_0 = \sum_{d(B_{\tau})=0} K^*\eta_{\tau}^*$$

where $d(B_{\tau})$ denotes the defect of B_{τ} .

PROOF. If $d(B_{\tau})=0$, then B_{τ} consists of exactly one absolutely irreducible character χ_i hence we have

$$Z^*\eta_{\tau}^* = K^*\eta_{\tau}^*$$
.

LEMMA 2. We have

$$M^2 = Z^*E_0.$$

PROOF. We have to show that for any two classes \Re_{λ} , \Re_{μ} with defect 0 and for any block B_{ρ} with $d(B_{\rho}) > 0$,

$$K_{\lambda}K_{\mu}\eta_{\rho} \equiv 0 \pmod{\mathfrak{p}Z_0}$$

holds. In the expression

$$K_{\lambda}K_{\mu}\eta_{\rho} = \sum_{\nu=1}^{n} \sum_{\chi_{i} \in B_{\rho}} \frac{|\Re_{\lambda}| |\Re_{\mu}| \chi_{i}(G_{\lambda}) \chi_{i}(G_{\mu}) \chi_{i}(G^{-1})}{g \chi_{i}(1)} K_{\nu},$$

hold $\chi_i(G_\lambda) \chi_i(G_\mu) \chi_i(G_\nu^{-1}) \in \mathfrak{g}$, $|\mathfrak{R}_\lambda| |\mathfrak{R}_\mu| \equiv 0 \pmod{p^{2a}}$ and $g\chi_i(1) \equiv 0 \pmod{p^{2a}}$. This proves Lemma 2.

From Lemma 1, 2, we obtain the following:

THEOREM 1. If M is the linear subspace of Z^* spanned by those K_{ν}^* with $d(\Re_{\nu}) = 0$, then the number of blocks B_{τ} with defect 0 is equal to rank_{K*} M^2 .

§ 2

In this section, we prepare for § 3.

Let \mathfrak{S}_1 , \mathfrak{S}_2 , \cdots , \mathfrak{S}_r be the *p*-regular sections (p'-sections) of \mathfrak{S} and denote by S_β the sum of all K_ν such that $\mathfrak{R}_\nu \subseteq \mathfrak{S}_\beta$. It is easy to see that two elements G, H of \mathfrak{S} belong to the same p'-section \mathfrak{S}_β if and only if G^{p^a} and H^{p^a} are conjugate to each other in \mathfrak{S} . Let N be the radical of Z^* and assume that the unit element 1 belongs to \mathfrak{S}_1 . We have the following:

LEMMA 3. For each \mathfrak{S}_a , we have

$$S_{\alpha}^* N = \{0^*\}$$

and

(12)
$$N = \{x^* \in Z^* \mid S_1^* x^* = 0^*\}.$$

PROOF. First, we show (11). Let x be any element of Z_0 such that $x^* \in N$. By (1), (2), we have

$$S_{\alpha}x = \sum_{\nu=1}^{n} \sum_{i} \frac{\chi_{i}(S_{\alpha})\omega_{i}(x)\chi_{i}(G_{\nu}^{-1})}{g} K_{\nu}.$$

It follows from Frobenius's theorem (Cf. Curtis-Reiner [6, Corollary (41.9)]) that

$$\chi_i(S_a) \equiv 0 \pmod{p^a_0}$$

holds, hence $\chi_i(S_\alpha)\chi_i(G_\nu^{-1})/g\in\mathfrak{o}$. Since $x^*\in N$, we have

$$\omega_i(x) \equiv 0 \pmod{\mathfrak{p}}$$
.

Therefore, we get

$$S_{\alpha}x \equiv 0 \pmod{\mathfrak{p}Z_0}$$

which implies (11). Next, we show (12). Assume that $S_1^*x^*=0^*$ $(x\in Z_0)$. By (5), (7), we have

$$S_1^*x^*\eta_\tau^* = \omega_\tau^*(x^*)\{\sum_{\nu}\sum_{\chi_i \in B_\tau} \frac{\chi_i(S_1)\chi_i(G_\nu^{-1})}{g} K_\nu\}^* = \omega_\tau^*(x^*)S_1^*\eta_\tau^* = 0^*,$$

where ω_{τ}^* is a linear character of Z^* associated with B_{τ} . It follows from Lemma 4 that

$$\omega_{\tau}^*(x^*) = 0$$

holds for $\tau=1, 2, \dots, t$. Hence, x^* belongs to N.

LEMMA 4. We have

(13)
$$S_1 \eta_\tau \equiv 0 \pmod{\mathfrak{Z}_0} \qquad (\tau = 1, 2, \dots, t),$$

(14)
$$S_1 \eta_{\tau} = \eta_{\tau}$$
 (for B_{τ} with defect 0).

PROOF. Assume $S_1 = \{1\} \cup \Re_1 \cup \cdots \cup \Re_l$ (disjoint union). For each μ ($1 \le \mu \le l$), \Re_{μ} is a p-singular class and, by Osima [9] or Brauer-Nesbitt [3] with (8) (Cf. also lizuka [7; 8, Theorem 2]), $K_{\mu}\eta_{\tau}$ is a linear combination of only those K_{ν} such that \Re_{ν} are p-singular classes. This fact combined with (A) in Introduction yields

$$S_1 \eta_{\tau} = \eta_{\tau} + \sum_{\mu} K_{\mu} \eta_{\tau} \not\equiv 0 \pmod{\mathfrak{p} Z_0}.$$

If $d(B_{\tau}) = 0$, then $K_{\mu}\eta_{\tau} = 0$ and $S_{1}\eta_{\tau} = \eta_{\tau}$.

§ 3

In this section, for every *p*-subgroup $\mathfrak D$ of $\mathfrak G$ or every number d $(0 \le d \le a)$, we shall give a certain submodule of Z^* , the K^* -rank of which is equal to the number of blocks B_{τ} with $\mathfrak D(B_{\tau})=\mathfrak D$ or with $d(B_{\tau})=d$, $\mathfrak D(B_{\tau})$ being the defect group of B_{τ} .

First, we consider the number of blocks of a given defect d. Let $V^{(d)}$ be a linear subspace of Z^* which is spanned by those K^*_{ν} such that $d(\Re_{\nu}) \leq d$. As is well known,

$$V^{\text{(-1)}} = \{0^*\} \subseteq V^{\text{(0)}} \subseteq V^{\text{(1)}} \subseteq \cdots \subseteq V^{\text{(a)}}$$

is a chain of ideals in Z^* (Cf. Osima [9]). We have

$$V^{(d)} = \sum_{d(\mathcal{B}_{\tau}) < d} Z^* \eta_{\tau}^* \, \oplus \sum_{d(\mathcal{B}_{\rho}) = d} Z^* \eta_{\rho}^* \, \oplus \sum_{d(\mathcal{B}_{\sigma}) > d} V^{(d)} \eta_{\sigma}^*,$$

hence,

$$V^{(d)}s = \underset{d(B_{\sigma}) < d}{ \bigoplus} Z^* \eta_r^* s \oplus \underset{d(B_{\rho}) = d}{ \bigoplus} Z^* \eta_{\rho}^* s \oplus \underset{d(B_{\sigma}) > d}{ \bigoplus} V^{(d)} \eta_{\sigma}^* s,$$

where $s=S_1^*$ (Cf. Tsushima [10, 11]). If $d(B_\sigma)>d$ then, by Lemma 3, we see that $V^{(d)}\eta_\sigma^*s=\{0^*\}$ holds, because $V^{(d)}\eta_\sigma^*\subseteq N$. Therefore, we get

$$V^{(d)}s = V^{(d-1)}s \oplus \sum_{d(B_0)=d} Z^* \eta_{\rho}^*s.$$

If $d(B_{\rho}) = d$ then, by Lemma 3, we have

$$K^* \cong Z^* \eta_\rho^* / N^* \eta_\rho^* \cong Z^* \eta_\rho^* s \qquad \text{(as K^*-modules)}.$$

Hence we obtain the following:

PROPOSITION 1. The number of blocks B_{τ} of defect d is equal to $\operatorname{rank}_{K^{\#}} V^{(d)}s - \operatorname{rank}_{K^{\#}} V^{(d-1)}s$.

Next, in the analogous way as above, we consider the number of blocks B_{τ} with a given defect group \mathfrak{D} . For two subgroups \mathfrak{H}_1 , \mathfrak{H}_2 of \mathfrak{G} , the notation $\mathfrak{H}_1 \leq \mathfrak{H}_2$ ($\mathfrak{H}_1 < \mathfrak{H}_2$) will mean that \mathfrak{H}_1 is conjugate to a subgroup (a proper subgroup) of \mathfrak{H}_2 , and the notation $\mathfrak{H}_1 \approx \mathfrak{H}_2$ will mean that \mathfrak{H}_1 and \mathfrak{H}_2 are conjugate to each other in \mathfrak{G} . Let \mathfrak{D} be a p-subgroup of \mathfrak{G} and $V(\mathfrak{D})$ the linear subspace of Z^* which is spanned by those K_r^* such that $\mathfrak{D}(\mathfrak{R}_r) \leq \mathfrak{D}$. It is also well known that $V(\mathfrak{D})$ is an ideal of Z^* . We have

$$V(\mathfrak{D}) = \underset{\mathfrak{D}(\mathcal{B}_{\mathbf{f}}) < \mathfrak{D}}{\textstyle \bigoplus} V(\mathfrak{D}) \eta_{\tau}^{*} \, \oplus \, \underset{\mathfrak{D}(\mathcal{B}_{\mathbf{f}}) \approx \mathfrak{D}}{\textstyle \bigoplus} Z^{*} \eta_{\rho}^{*} \, \oplus \, \underset{\mathfrak{D}(\mathcal{B}_{\mathbf{f}}) * \mathfrak{D}}{\textstyle \bigoplus} \, V(\mathfrak{D}) \eta_{\sigma}^{*},$$

hence,

$$V(\mathfrak{D})s = \underset{\mathfrak{D}(B_{7}) < \mathfrak{D}}{\bigoplus} V(\mathfrak{D})\eta_{\tau}^{*}s \, \oplus \underset{\mathfrak{D}(B_{9}) \approx \mathfrak{D}}{\longmapsto} Z^{*}\eta_{\rho}^{*}s \, \oplus \underset{\mathfrak{D}(B_{7}) \pm \mathfrak{D}}{\longmapsto} V(\mathfrak{D})\eta_{\sigma}^{*}s.$$

For B_{σ} with $\mathfrak{D}(B_{\sigma}) \not \preceq \mathfrak{D}$, we have $V(\mathfrak{D})\eta_{\sigma}^* \subseteq N$ hence, by Lemma 3,

$$V(\mathfrak{D})\eta_{\sigma}^* s = \{0^*\}.$$

For B_{τ} with $\mathfrak{D}(B_{\tau}) < \mathfrak{D}$, we have

$$V(\mathfrak{D})\eta_{\tau}^* = V(\mathfrak{D}(B_{\tau}))\eta_{\tau}^*.$$

Therefore we see that

$$V(\mathfrak{D})s = \underset{\mathfrak{D}(B_{\tau}) < \mathfrak{D}}{\bigoplus} V(\mathfrak{D}(B_{\tau})) \eta_{\tau}^{*} s \bigoplus_{\mathfrak{D}(B_{\rho}) \approx \mathfrak{D}} Z^{*} \eta_{\rho}^{*} s$$
$$= \underset{\mathfrak{D}(S)}{\sum} V(\mathfrak{D})s \bigoplus_{\mathfrak{D}(B_{\rho}) \approx \mathfrak{D}} Z^{*} \eta_{\rho}^{*} s$$

holds. Thus we obtain the following:

PROPOSITION 2. The number of blocks B_{τ} with a given defect group $\mathfrak D$ is equal to $\mathrm{rank}_{K}*V(\mathfrak D)s - \mathrm{rank}_{K}*\sum_{s\in S}V(\mathfrak D)s$.

Finally, by making use of the first main theorem on blocks (Brauer [2, (10B)]), we consider the number of blocks B_{τ} with a given defect group \mathfrak{D} . Let $\mathfrak{N}_{\mathfrak{G}}(\mathfrak{D})$ be the normalizer of \mathfrak{D} in \mathfrak{G} . By the first main theorem on blocks, the number of blocks of \mathfrak{G} with defect group \mathfrak{D} is equal to that of blocks of $\mathfrak{N}_{\mathfrak{G}}(\mathfrak{D})$ which have defect group \mathfrak{D} . Hence we may reduce our problem to the case in which \mathfrak{D} is a normal p-subgroup of \mathfrak{G} . By Proposition 2, we obtain the following:

THEOREM 2. If $\mathfrak D$ is a normal p-subgroup of $\mathfrak G$, then the number of blocks of $\mathfrak G$ with defect group $\mathfrak D$ is equal to $\mathrm{rank}_{\mathcal R^*}U_0(\mathfrak D)s$, where $U_0(\mathfrak D)$ is the linear subspace of Z^* spanned by those K_{ν}^* such that $\mathfrak R_{\nu}$ are p-regular classes with defect group $\mathfrak D$.

REMARK 1. Let $U(\mathfrak{D})$ $(U^{(d)})$ be the linear subspace of Z^* spanned by those K_{μ}^* such that \Re_{μ} are p-regular classes with $\mathfrak{D}(\Re_{\mu}) \leq \mathfrak{D}$ $(d(\Re_{\mu}) \leq d)$. It is easy to see that

$$V(\mathfrak{D})\,s\!=U(\mathfrak{D})s\ (V^{\scriptscriptstyle{(d)}}\!s=U^{\scriptscriptstyle{(d)}}\!s)$$

holds. Then, in Proposition 2 (Proposition 1), we may replace $V(\mathfrak{D})$ $(V^{(d)})$ by $U(\mathfrak{D})$ $(U^{(d)})$.

REMARK 2. If the group \mathfrak{G} has a normal Sylow p-subroup \mathfrak{F} and \mathfrak{K}_{ν_1} , \mathfrak{K}_{ν_2} , \cdots , \mathfrak{K}_{ν_m} are the p-regular classes with defect group \mathfrak{F} then, for each ν_j $(1 \leq j \leq m)$, there corresponds a p'-section \mathfrak{S}_{β} such that $K_{\nu_j}^* s = S_{\beta}^*$. Considering this fact, it is easy to see from Thorem 2 that the number of blocks with maximum defect is equal to the numer of p-regular classes with maximum defect (Brauer [4, Theorem 2; 2, 6(D)]).

REMARK 3. From Theorem 2 follows some of the results in Bovdi [5] also.

REFERENCES

- [1] R. Brauer, On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 182-186.
- [2] ——, Zur Darstellungstheorie der Gruppen endlicher Ordnung Math. Zeitschr. 63 (1956), 406-444.
- [3] R. Brauer and C. Nesbitt, On the modular representations of finite groups, Univ. Toront Studies Math. Ser. 4 (1937).
- [4] ——, On the modular characters of groups, Ann. Math. 42 (1941), 556-590.
- [5] A. A. Bovdi, Number of blocks of characters of a finite group with a given defect (Russian), Ukrain. Math. Z. 13 (1961), 136-141.
- [6] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- [7] K. Iizuka, Note on blocks of group characters, Kumamoto J. Sci. Ser. A 2 (1956), 309-321.
- [8] ——, On Brauer's theorem on sections in the theory of group characters, Math. Zeitschr. 75 (1961), 299-304.
- [9] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ. 4 (1955), 175-188.
- [10] Y. Tsushima, On the annihilator ideals of the radical of a group algebra, Osaka J. Math. 8 (1971), 91-97.
- [11] —, On the block of defect zero, Nagoya Math. J. 44 (1971), 57-59.

Department of Mathematics, Faculty of Science, Kumamoto University