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§ 1. Preliminaries.

The main purpose of this note is to give a generalization of a theorem
proved by H. Wu in his paper [5], which states:

If (N, d) is a tight complex manifold, then there is no non-constani holomo-
rphic map from C* into N.

The space C™ in the theorem will be replaced by a complex manifold
satisfying more general condition, stated in § 4.

The spaces considered here will be assumed connected and second
countable. Let M, N be complex manifolds. We denote by & (M, N) the set
of all continuous mappings from M to N and by £°(M, N) the set of all
holomorphic mappings from M to N, respectively. To (M, N) we introduce
the compact-open topology. Then, as is easily verified by the Cauchy integral
formula 2£(M, N) is closed in (M, N). This implies that a subset of
s# (M, N) is compact or closed in (M, N) if and only if it is so in sz (M, N).

By the previous assumption the complex manifolds under our consideration
are metrizable, cf. Kelley [2]. So we choose on complex manifold N a metric
dy, which converts N into a metric space. With metric dy a sequence { f;}
C# (M, N) converges to an f € (M, N) if and only if {f;} converges to f
uniformly on every compact subset. In the following we shall say a sequence
{fi yC& M, N) converges compact-uniformly in M if it converges uniformly on
every compact subsets of M. The compact-uniform limit f of a sequence
{fi JC& M, N) belongs to s#(M, N) if every f € 22(M, N).

A sequence { f; }JC¥ (M, N) is said to be compactly divergent if and only
if for any compact subset K in M and compact subset L in N there exists a
number %, such that f;(K)N\L=¢ for all i > i,.

DEFINITION 1.1 A subset & of & (M, N) is called normal if and only if
every sequence of F contains a subsequence which is either velatively compact in
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(M, N) or compactly divergent.

Since we assumed M and N second countable, (M, N) is also second
countable, and hence the compactness of a subset of (M, N) is checked by
its sequential compactness.

Let dy be a metric on N.

DEFINITION 1.2. A subset & C& (M, N) is called equicontinuous if and
only if for any positive number ¢ and any point x € M there exists a neighborhood
U of x such that x' € U implies dn(f(x), f(x")) <e for all f€ .

DEFINITION 1.3. A complex manifold N is called taut if and only if for
every complex manifold M the set of holomorphic mappings 7 (M, N) is normal.

A complex manifold N with a metric dy which metrizes N is called tight if
and only if the set of holomorphic mappings 52 (M, N) i5 equicontinuous.

For the detailed informations about taut spaces and tight spaces we refer
to Wu [5] and Barth [1].

§ 2. Two-fold assigning family of mappings.

We begin with

DEFINITION 2.1. Let M, N be complex manifolds. A subset & of (M,
N) is called two-fold assigning if and only if given any two different points p,
q €M and any two different points P, Q € N there exists an f€ 5 such that f(p)=P
and f(@)=Q.

We have

THEOREM 2.2. Let M, N be complex manifolds. A subset & of s#(M, N)
can not be normal if it is two-fold assigning.

PROOF. Let us assume that & is normal. Take a point x%,EM, a
sequence {x;} converging to x, and two different points P,QEN. By assumption
there exists a sequence { f;} of & such that f;(x;)=P and fi(%,)=Q. Since &
is normal, the sequence {f;} should contain a subsequence which is either
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compactly divergent or compact-uniformly convergent.

We assert that the sequence { f; } does not contain any compactly divergent
subsequence. For this purpose let K be a compact neighborhood of x,. Then
there exists an 4, such that x, € K for all 7 > 4,. Put L={P, Q}. Then, L is
compact in N and f;,(K) "L D L= ¢ for all i > i,. Thus, {f:} can not contain
any compactly divergent subsequence. So {f;} should contain a compact-
uniformly convergent subsequence, say {f;}. Let fo be the limit of {f;).
We choose subsequence {x;} corresponding to {f;}. Since fi—fo and x;— x,
as j— o, we have f;(x;) — fo(%,) as j — c. On the other hand by the choice
of {fz} we have fi(x) =P and fi(%)=Q. Thus we have P =@Q. This
contradicts to the assumption that P and Q are different.

COROLLARY 2.3. Let N be a complex manifold. If there exists a complex
manifold M such that a subset & of s7(M, N ) is two-fold assigning, then N can
not be taut.

In connection with equicontinuity we have a quite analogous result:

THEOREM 2.4. Let M, N be complex manifolds. If a subset 7 of 57 (M,
N) is two-fold assigning, then F can not be equicontinuous.

PROOF. As in the proof of Theorem 2.2 we choose a point %, EM, a
sequence of points {x;} of M converging to %, two different points P, QEN
and a sequence {f;} of & such that f;(x))=P and fi(x)=Q. Assume that &
is equicontinuous. Then, given any positive number ¢ there exists a neighbo-
rhood V' of x, such that x€V implies that d(f(x), f(xo))<e for any fE.&,
where d is the metric inducing the topology of N. Since x;—x, as i — oo,
there exists an 7, such that x,€V for all 1 >14,. Then, by the fact that
{£YCF d(fi(xa), filx))<e for all i>4,. Let us choose e so that e <d(P, Q).
By the choice of {f;} that f;(#:)=P and fi(x%9)=Q, we obtain aAlfi{x), fi(x)) =
d(P, @) < e<d(P, Q). This is a contradiction. Thus & can not be equicon-
tinuous.

COROLLARY 2.5. Let N be a complex manifold. If there exists a complex
manifold M such that a subset 5 of (M, N) is two-fold assigning, then N can
not be tight.
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PROOF. Assume that N is tight with respect to some metric d, then
any subset & of (M, N) is equicontinuous with respect to d. Suppose
that & is two-fold assigning. Then, Theorem 2.4 applies.

§ 3. Manifolds admitting two-fold transitive group of automorphisms.

Let M be a complex manifold and At (M) the group of biholomorphic
mappings of M onto M itself. Awut(M) is a subset of s#(M, M) and therefore
g7 (M, M) is two-fold assigning if Aut(M) is two-fold assigning. On the other
hand Aut (M) is two-fold assigning if and only if it is two-fold transitive.
Suppose M is either taut or tight. Then, £(M, M) should be normal or
equicontinuous, respectively. This, by Theorem 2.2 and Theorem 2.4, contra-
dicts to the assumption that s#(M, M) is two-fold assigning. Hence Awut (M)
can not be two-fold assigning. Thus in an obvious way we proved the following.

THEOREM 3.1 Let M be a complex manifold. If its group of automorphi-
sms Aut(M) acts two-fold transitively on M, then M can neither be taut nor tight.

COROLLARY 3.2. The spaces P", C™ are neither taut nor tight.

COROLLARY 3.3. If a complex manifold M is either taut or tight, then
Aut(M) can not be two-fold transitive.

Since any bounded domain of C» is tight, we have the following

PROPOSITION 3.4. The group of automorphisms of a bounded domain of
C™ 1s not two-fold transitive.

This fact is implicitly known, see Wu [5]. We only notice that Aut(M)
is two-fold transitive if and only if its isotropy subroup G., x €M acts tran-
sitively on M—{x}.

Equicontinuity and normality are considerably rigid conditions. In this
connection we have
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PROPOSITION 3.5. Let M be a complex manifold. If a family & of
holomorphic functions on M is a vector space over the complex number field C
containing C and seperates the points of M, then & is two-fold assingning and
therefore can neither be normal nor equicontinuous.

PROOF. Let p, ¢ and ¢;, ¢, be two different points of M and C, respe-
ctively. Since & seperates the points of M, there exists an f€% such that
f(P)=*f(@). We define a function g(x) by

_ _ey LR =F(D)
gt =art (e F =75y -
Then, g belongs to % and satisfies g(p)=c,; and g(@)=c,. Thus, & is
two-fold assigning. The latter part of the proposition is the direct consequ-
ence of Theorem 2.2 and Theorem 2. 4.

§ 4. Some theorems of Liouville-Wu type.

It is easily checked that the condition “‘two-fold assigning’’ in Theorem
2.2 and Theorem 2.4 can be relaxed to weaker one: there exist a sequence
{#:} of M converging to an inner point x, of M, two different points P, Q€ N
and a sequence {f;} of s#(M, N) such that fi(x,)=P and f,(%,)=Q. Though
this assumption is almost equivalent to assume ““nof equicontinuous’’, the results

are very important as the following several theorems show.

LEMMA 4.1. Let M, N be complex manifolds and Aut(M) act two-fold
transitively on M. Then, for any non-constant mapping f€ 52(M, N) the family
foAut(M)={ foo:0C Aut(M)} is neither normal nor equicontinuous with respect to

any metric on N.

PROOF. Since f is not constant, there exist two points p, g€ M such
that f(p)#fg). Put f(p)=P and f(g)=Q. The assumption that Aut(M) is
two-fold transitive implies that for any two different points @, b€ M there
exists a o€ Aut(M) such that o(a)=p and o(b)=qg. Hence, fo s(a)=P and foos
(b)=Q. Thus, the family foAut(M) satisfies the weakened condition cited
above. Our Lemma is proved.

Now, we are able to prove a generalization of Wu’s theorem cited in § 1.
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THEOREM 4.2. Let M be a complex manifold and Aut(M) act two-fold
transitively on M. Then there is no non-constant holomorphic mapping from M

to either a taut space or a tight space.
PROOF. A direct consequence of Lemma 4. 1.

COROLLARY 4.3. A holomorphic mapping from P* (or C™) to a taut space
or a tight space is constant.

PROOF. A two-fold transitive group of automorphisms acts on P~”, and

on C* also.

The proof of Lemma 4.1 suggests an idea to extend Theorem 4.2 to
more general case. We begin with the complex number space C*. The space
C™ is most popular as the range of holomorphic mappings. It may be said
that the space C* is sufficiently wide as the range of holomorphic mappings
and that classical Liouville’s theorem and Wu’'s theorem characterize this

fact to some extent. From this point of view we define

DEFINITION 4.4. A complex manifold N is called an exact range of complex
manifold M if and only if for any two different poinis P, Q of N there exists an
fEs# (M, N) such that f(M) contains both P and Q.

For example the complex number plane C is the exact range of C™, but
a bounded domain of C™ can not be the exact range of C* On the other hand

C can not be the exact range of compact spaces.
Our result concerning exact range is

THEOREM 4.5. Let M be a complex manifold and Aut(M) act two-fold
transitively on M. If a complex manifold N is the exact range of M, then there
is no non-constant holomorphic mapping from N to either a taut space or a tight

space.

PROOF. Assume that there exist a taut space L and a non-constant
holomorphic mapping f of N to L. It is easily verified that the family s (M,
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N) is two-fold assigning. Then, the family fos# (M, N) satisfies the weakened
condition remarked at the beginning of this section. On the other hand, as a
subset of s#(M, L) the family fo 22 (M, N) must be normal. This is a con-
tradiction. Hence f must be constant. The proof for the case of tight L is
quite analogous.

COROLLARY 4.6. If M is a complex manifold on which the complex
number plane C as a complex Lie group acts transitively, then there is neither
non-constant holomorphic mapping from M to a taut space nor a tight space.

PROOF. It suffices to notice that the condition “C acts transitively on M’
implies that M is the exact range of C.

It will be interesting to compare Corollary 4.6 with Theorem 1.1 of
Kobayashi [3].

§ 5. A property of C*.

As is remarked at the beginning of §4 the condition “two-fold assigning”’
can be replaced by weaker one in most of the theorems in §2, §3. Along this
line the theorems in §4 were proved. Through these sections we have in mind
that the properties ‘‘two-fold assigning’’ and “two-fold lransitive’ are the most
remarkable characters of the set of all holomorphic functions and of the
group of automorphisms of C= respectively.

Now, we consider another property of C* which is not necessarilly
equivalent to ““fwo-fold assigning” property. Let x be a point of C*. Then x»
can be identified with the constant mapping with value %, which we denote
again by x. Then, there exists a sequence {f;} of Aut(C") which converges

compact-uniformly to x.

Abstracting this fact we define

DEFINITION 5.1. Let M and N be complex manifolds. We call a subset
& of s#(M, N) compactly assigning if and only if given any compact subset K

of M and any open subset U of N there exists an fE€F such that F(E)CU.

We have
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THEOREM 5.2. Let M be a complex manifold such that Aut(M) is compa-
ctly assigning as a subset of 57 (M, N). Then M can neither be taut nor tight.

e
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PROOF. Let P, Q be any two different points of M and « any point of
M different from P and Q. Let {U.}, {Va}, #=1,2,3, --- be monotonely

decreasing sequences of open neighborhoods of a such that N Un=NVa={a},
n=1

=1n
ValUn and Upii &V, Then{U,—Vu}, n=1,2,3, --- is a sequence of open sets.
By assumption there exists an fn € Ant(M) such that fa({P, @)CUn—Va By
U...& V. the sequence {f.} consist of different elements. By putting fa(P)=
%ny f2(@)=y. and ¢.=F.' we obtain:
(1) two sequences (%}, {¥.} converging to the point a such that x.7y., and
(2) a sequence ¢, € Aui(M) such that ¢.(2.)=P and ¢.(¥.)=0Q.
’__1_‘his is the same circumstances as in §4. Hence Theorem 5.2 is proved.

It is obvious that Aut(M) is compactly assigning if and only if for any
constant mapping a€s# (M, M), which is identified with the point a« of M,
there exists {fn}CAut(M) which converges compact-uniformly to a. So we

have another expression of Theorem 5.2:

PROPOSITION 5.3. Let M be a complex manifold. If for any constant
mapping a € 57 (M, M), which is identified with the poini a€ M, there exists a
sequence {fn} CAut(M) which converges compact-uniformly to a, then M can neither

be taut nor tight.
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§ 6. Holomorphic functions in two-fold homogeneous manifold.

By a two-fold homogeneous manifold we understand a complex manifold
the group of automorphisms of which is two-fold transitive. In this section
we shall investigate the value-distribution of holomorphic functions in a two-
fold homogeneous domain of C», which will lead us to a Picard-type theorem.
_ Oeljeklaus proved in his article [4] that a compact two-fold homogeneous
manifold is projective-algebraic. This was worked out from the view point
of the theory of almost homogeneous spaces. In connection with the result of
Oeljeklaus and our results in preceding sections there naturally arises the
following question: what is the non compact two-fold homogeneous manifold?
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Especially, does there exist a proper subdomain of C* which is two-fold homogene-
ous’?

At present we can not give complete answer to this question. Here we
only give several properties of such manifolds.

First we prove

PROPOSITION 6.1. Let M be a two-fold homogeneous manifold. Then for
any non-constant holomorphic function f on M the image fMD of M by f is
dence in C, that is, f(M)=C.

PROOF. Assume that the image f(M) is not dence in C. Then there
exist a point @€C and a closed disk 4 containing @ such that 4N f(M)=¢.
Now, let ¢ be an automorphism of Riemann sphere which maps the comple-
ment of 4 into the unit disk D={{:]|{|<1}). The composite gof maps M into
D. Thus sof is a bounded holomorphic function on M. By Theorem 4.5 oof
should be constant. Since ¢ is an automorphism, f itself should be constant.
This constradicts to the assumption that f is non-constant.

Concerning the two-fold homogeneous subdomain of C* we have

PROPOSITION 6.2. If D is a two-fold homogeneous subdomain of C*, then
DN\L#¢ for any real hyperplane L.

PROOF. Assume that there exists a real hyperplane L such that DN\L=¢.
Let 2z, 2525 «+«, 20, z5=%,;+1'_1 5 7=1,2,3, ---, nbe the coordinates of C=» and
L be given by {z: ¢(2)=0) where

6(2) = 31 (azes+bsy)+d; asbsdeR.
g1

Since D is connected and DN\L= ¢, we may assume that DC{z: ¢(z)<
0}. Now, let us define a complex linear function @(z) by

0 =3 (a5—v' =T bpzs+d.
J=1

Then, we have ¢(z2)=Re ®(z) and therefore we see that lexpl@(2)]1|<1
if and only if ¢(2)<0. By the construction of 0(z) the function Z(z)=exp
{0(2)] is holomorphic and |¥(2)|<1 for every z€D, that is, Z(z) is bounded
holomorphic function in D. This contradicts ‘again to Theorem 4.5, because
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@(z) is non-constant and therefore ¥ (z) is non-constant.

Now, we want to improve Proposition 6.1, 6.2 and prove a Picard-type
theorem for two-fold homogeneous manifolds.

We start from

PROPOSITION 6.3. C—{a, b} is taut.

There are several proofs. The simplest is one making use of classical
Schottky’s theorem and Barth’s recent result, cf. [1].

LEMMA 6.4. ( Schottky, Bohr and Landau) Let
f(2)=ay,+az+ -+

be holomophic and f(2)70, #1 in the unit disk {z:|z|<R). If |ay|< &, then there
exists a constant M(k, 0) such that

[ f()| <Mk, 6)
for every z satisfying |z| <O0R, 0<6<1, where M(k, 6) depends only upon k and 6.

LEMMA 6.5. (Barth) Let M be a complex manifold. If the set of all
holomorphic mappings from the unit disk to M is normal, then M is taut.

The proof of Proposition 6.3 is direct from Lemma 6.4 and Lemma 6.5.
Our result is as follows.

THEOREM 6.6. Let M be a two-fold homogeneous complex manifold. If a
Ffunction f(z) holomorphic in M is non-constant, then there is at most one value a

such thal the equation f(z)=a has no solution.

PROOF. Assume that there exists a holomorphic function f(z) which
misses two values @, b (%) in M. By Proposition 6.3 the family foAut(M)=
{foo:s€ Aut(M)} is normal. On the other hand foAut(M) can not be normal
except when f(z) is a constant, because Aut(M) acts two-fold transitively on
M. Hence, if f(z) is non-constant, f(z) misses at most one value.

As an application of Theorem 6.6 we obtain the following statement
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which is a refinement of Proposition 6. 2.

COROLLARY 6.7. If D is a two-fold homogeneous subdomain of C=», then
for any non-constant entire Junction f(z) there is at most one value a such that
the niveau set L,={z € C™: f(2)=a} does not meet D: L, ND=4¢.

PROOF. If there exist two values a, b such that Ls\D=¢ and L;\D=¢.
Then the restriction of f(2) to D defines a holomorphic mapping from D to
C—{a,b}. Since D is two-fold homogeneous, f(z) must be constant by Theorem
4.2. This contradicts to the assumption that f(z) is non-constant.
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