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1. Introduction. The notion of normal family has proved itself to be
very important in the theory of functions, since it was introduced by P.
Montel. The notion is very qualitative, and this seems to be the reason why
the characterization of normality of a family of holomorphic functions has
not yet been obtained in a satisfactory way. One of few such examples is
the following theorem due to Marty, cf. Ahlfors [11: Let D be a domain of
the complex plane C. A family & of the meromorphic functions in D is normal
if and only if the family of spherical derivatives IF QA+ F1D7Y, €5 is uniformly
bounded on every compact subset of D.

Since a meromorphic function of several variables is not always a
holomorphic mapping, Marty’s theorem cited above is not extended in a natural
way to the case of several variables. As is well known the condition in
Marty’s theorem above is also necessary and sufficient for the equicontinuity
of &, in other words, normality is equivalent to equicontinuity for &, cf.
Wu [3]. Another example not restricted to holomorphic case is Ascoli-Arzela
theorem, also cf. Wu [3]. An example for holomorphic case is famous Montel’s
theorem, which is a consequence of Ascoli-Arzela theorem. In these theorems
equicontinﬁity plays an essential réle.

As is seen in the general theory of tight and taut manifolds, cf. [3],
normality and equicontinuity are concerned with each other in a delicate
manner.

The purpose of this note is to characterize equicontinuity of a family
of holomorphic functions, §2. In §3 eguicontinuity implies normality will be
proved for holomorphic functions. In §4 an analogue of Julia problem will be
studied.

2. Equicontinuity of a family of holomorphic functions. Let D be a
domain of  C* with coordinates z, 2z, 23, -*-, z.. We denote the family of
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functions holomorphic in D by (D). For a subfamily & of (D) we
by OF tieg [0, -
denote by b2 1=1,2,3,---,# the families { PRk fe .7}, i=1,2,3,++-, 7

First we prove:

THEOREM 2.1. A subfamily & of o7 (D) is equicontinuous in D if and

only if n famillies aéé_—, 1=1,2,3, «+-, n are simultaneously uniformly bounded on

every compact subset of D.

It is obvious that the families 65 , 1=1,2,3,---, » are simultaneously

uniformly bounded if and only if the family of real functions J 82
i=1 7
fesw } is uniformly bounded on every compact subset of D, and therefore

boundedness condition for %%j, i=1,2,3,---, 7 can be replaced by one for

(5] |

Vi fesl)

PROOF OF THEOREM 2.1. Let z, be any point of D and B a closed ball
around z, contained in D. Take any point z of B, let 7 be the closed path
from 2z, to z given by the line segment. Then we have

f@—fa={ df.

Hence,

F—f| <, |af|

.
b4

57(,%1 6zk

Since B is compact, by assumption there exists a positive constant M
such that:

dzx '

IA

ldz‘,

of

62;,

2>%§M

(2

dzk] ) is nothing but

for any z€ B and for any f€.%. On the other hand (
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the line element. Denoting by ¢ the radius of B we have
F(2)—f(20) | M- |lz—2o||I<M-6.

Thus, & is equicontinuous.

Conversely, let us assume that the family {( >

p3} 62;, ) fef} is not

uniformly bounded on some compact subset of D. Then, there exists a
compact subset K of D such that

Sup Sup (é

fE€EF zEK

bz > =t eo.

Then, we can choose a sequence {f.} from & such that

)

Since every fa is holomorphic and K compact, there exists a sequence
of points of D, {z\}, 2=1,2,3, --- such that

V= (B2 @)

swp (3] 2L

II\/
3

0fa

Sup (

zEK

Since K is compact, we can find a subsequence {z.} of (z.}] which
converges to a point z, of K: z —z, (u—0).
By assumption & is equicontinuous in D and therefore at z,: for any

positive number ¢ there exists a positive constat ¢ such that
) f(@)—Ff(z2)|<e, 2EBs,

where Bs; is the closed ball around z, with radius 6. Corresponding to the
subsequence {z.} we choose the subsequence {f.} from ({fi}. By restricting
(*) to this subsequence we have

fﬁ(z) —fM(ZOD e, z€ Bs,

that is, the sequence {fu(2)—fu.(2)} is uniformly bounded on Bs. By well-
known Montel’s theorem we can find a uniformly convergent subsequence
{fu(2)—f.(z0) }. Let ¢(2) be the limit function. Then by famous Weierstrass's

theorem the sequence of real-valued functions
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{(é J a[fp(Z)a;—kfv(Zo)] '2)%}

converges uniformly to

2108 |ry
(El 62], ) ’
which is continuous in Bs.
Hence,
. » 1 3f, 2\l
tim (3 | 557G ) <ren.

But the subsequence {z,) of {z\) was chosen so as

(31252 V2

which is a contradiction.

As is easily seen Theorem 2.1 is extended to the case of .w&™(D), the
family of holomorphic mappings of D to C™. Let # be a subfamily of .r™(D).
We denote by &; the family consisting of i-th component of the members of
F 2 Fi={fi: f= (S, fo f3=+, fir=++, fm) for some f€ 5 ).

THEOREM 2.2. A subfamily & of se™(D) is equicontinuous if and only

if m-n families 66? , 1=1,2,3,--+, m, 7=1,2,3,---, n are all simultaneously
J

uniformly bouded on every compact subset of D.

PROOF. It suffices to observe that & is equicontinuous if and only if
m families &, 1=1,2,3,.--,m are simultaneously equicontinuous in D. Then
Theorem 2.1 applies.

The following terminology seems to be convenient. Considering that

the condition imposed on aa“j in Theorem 2.1 is the same as is found in well-

known Montel’s theorem, we call a subfamily € of (D) a Montel family
in D if € is uniformly bounded on every compact subset of D. Then Theorem
2.1 is stated as follows: A subfamily # of sz (D) is equicontinuous in D if and
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only if n families %, 1=1,2,3,---, % are all Montel families.
4

3. Equicontinuity implies normality. Let D be a domain of C» and
(D) again the family of functions holomorphic in D. In the following we
shall consider the normality of the subfamily of .&(D). The difinition of
normality will be given in somewhat restricted form. For the general one we
refer to Wu [3].

In this note we call a sequence of (D) compact-uniformly convergent

in D if it is uniformly convergent on every compact subset of D.

DEFINITION 3.1. A subfamily & of (D) is called normal in D if any
sequence of F contains a compact-uniformly convergent subsequence or a subsequernce
which diverges compact-uniformly to infinity.

With this definition we are able to prove a generalization of classical
Montel’s theorem which asserts that a Montel family of holomorphic functions
is normal:

THEOREM 3.2. An equicontinuous subfamily # of /(D) is normal.

This is essentially a consequence of Theorem 2.1. But we give here a
direct proof.

Before we prove Theorem 3.2 we show

LEMMA 3.3. Let D and & be the same as in THEOREM 3.2. Let z, be
any point of D. If & is equicontinuous in D, then for any connected compact
subset K of D, containing z,, there exists a positive constant Mz such that for
every f€ . #

f(2)—f(z0) |<Mx, z€K.

PROOF. First we want to define a special covering ¥ of D. Take a
positive number ¢ and fix. Since & is equicontinuous in D, we can associate
to every point x of D an open neighborhood V(x) such that |f(x)—F(x")|<e
for any two points x/, x” € V(x). The family {V(x)}, x€D thus constructed
gives an open covering of D, which we denote by ..
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Let K be any connected compact subset of D containing 2,. Then K is
covered by a finite number of neighborhoods V(x;), V(x2), V(%s),---, V(x) of
Be. Let z be any point of K. z and 2z, can be connected by a chain € of
neighborhoods from V(x,), V(#2), V(&3), -+, V(xx): E={V(%:),V(%i0), V (%s)s =+,
V(%)Y 20€EV (%), V(x:)DNV (%45 .07 ¢, §=1,2,3,--+,5—1,V(%4,) 22,35€ {1,2,3,-- -, k}.
We can choose @ so that any member of {V(x),V(x2),V(x3),+++,V(xx) } appears
at most once in €. Hence we may assume that s <% and therefore that the
chain € is given by (V(x), V(x2),V(%3),-++, V(xs)}. Now, take a poin %] in
V(xDNV (x541), i=1,2,3, -+, s—1, respectively.

Then we have

Fa) =D =Fe) —Fa)+ T (Frd—F))
+ 3 ) —f D)+ = 2.

Since 2o, %1 EV(x1); %42, €V (%); %5 %is1 €V (%ix1)
for 1=1,2,3,...,s—1 and x,, 2z€ V(»,), by the construction of V. we obtain

f(z0) —f(2) | < 2se < 2ke.

Thus, we may take 2ke as Mx, and Lemma 3.3 is proved.

PROOF OF THEOREM 2.2. Let z, be a point of D and { Kz} an exaustion
by compact sets of D: KiCKriS---, kDKksD. We assume that z, € K, and every
K is connected. Since D is a domain-lof Cn, such exaustion exists.

Now, let {f;} be a sequence of #. Then following two cases occur:
(a) {f:«(zp)} has a convergent subsequence;

(b) {fi(ze)} tends to infinity.

For the case (a) we shall prove that the sequence {f;) contains a
compact-uniformly convergent subsequence. By Lemma 3.3 there exists a
positive constant M; for K, such that |f(z)—f(z,)|<M, for any f€ % and any
z€ K;,. Specializing this to the sequence { f;} we have |f:(2)—fi(z) | ZM,.

Hence,

£ | < | fitzo) | + M.

By assumption the sequence {fi(z,)} has a convergent subsequence {fx
(2z0)}. Then convergence of {fi(z,)} implies that there exists a positive constant
L, such that |fa(z)| < L,. Consequently, we obtain
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]fx(z) [ <L,+M, z€ K,.

Then, Montel’s theorem applies and there exists a subsequence {f,) of
{(fn) which converges uniformly on K;. Applying Lemma 3.3 again to { Il
and K, we can choose a subsequence {fx,) of {fi,) which converges uniformly
on K,. Thus we obtain inductively a series of subsequences of original {f:}:
{Fn), (Fae),--- where (fi,) is a subsequence of {fa,-:} and converges uniformly
on K;. Then, by wellknown diagonal process we can contruct a subsequence
of original {f;} which converges compact-uniformly in D.

Now, we shall consider the case (b). By the same arguments as for the
case (a) there exists a positive number M, such that |fi(z)—fi(2)) | <M, z€ K.

Hence, we have

| i@ |z — M.

Si(z0)

We assumed that the sequence {fi(z,)} diverges to infinity. So we can
find a subsequence {fa;(z,)} such that

If/\1<zo> l = 4 +M,.
Consequentry, we have
|fu@ | zn, z¢k.

This means that the subsequence {fx,} diverges uniformly to infinity in
K;. In the same way we can choose a subsequence {f,} of {fn) which
diverges uniformly to infinity in XK, a subsequence {fx)} of {fr} which
diverges uniformly to infinity in Kj;, and so forth. From thus obtained series
of subsequences of original { f;} we can construct a sequence which diverges
compact-uniformly to infinity in D. Since in both cases {K) is a exaustion
by the compacts subset of D, the latter part of Theorem 3.2 is easily verified.

In general the converse of Theorem 3.2 can not be proved. In the

following we shall show the converse of Theorem 3.2 under some restriction.

PROPOSITION 3.4. If any sequence of & has a subsequence which converges
compact-uniformly in D, then F is equicontinuous in D.

PROOF. Assume that & is not equicontinuous in D. Then, there exists
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a point z, of D such that % is not equicontinuous at z, that is, we can find
a positive number s, a sequence {z;} converging to z, and a sequence {f;} of
& such that |fi(z;)—fi(20)|= . On the other hand, since {f;} is a sequence
of &, by assumption we can choose a subsequence {fa} which converges
compact-uniformly in D, the limit of which we shall denote by f.

Let U be a relatively compact neighborhood of 2z,. Then, there exists a
large number N; such that zx€ U for A>N,. Since f is the uniform limit of
{ /1), for any positive ¢ there exists a large number N, such that |fia(z)—f(2)]
<e for any z€ U and 2>>N,. Choosing ¢ and N so as 3¢<e, and N> Max (N,
N,), we have

&< | AEI—AGD) |
< | A@I—FED | + | fad—f) |

+ , J(z0) — f1(20) {

<2t | a0 —fGzo) |, 4> N

f being continuous at z,, by choosing U so that ,f(z) —f(z,) | <e for every

z€ U, we have
f(za)—f(zy) | <e for 2 >N.

Consequently, we have g, <3e < gy, which is a contradiction.

From the arguments in the proof of Theorem 3.2 we may state the

following:

PROPOSITION 3.5, Let D be a domain of C™ and (f:} a sequence of
(D) which is equicontinuous in D.

Then,
(@) if the sequence {fi{z,)} has a converging subsequence for some point z,ED,
then {f:) contains a subsequence which converges compact-uniformly in D;
(b) if the sequence {fi(z,)} has a subsequence which diverges to infinity, for some
point 2€D, then { f;) has a subsequence which diverges compact-uniformly to infinity
in D.
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Remark. The restriction imposed upon the converse of Theorem 3.2 is
unaboidable because of the fact that the metric of the range of functions in
Theorem 3.2 is the usual metric of the complex number plane C. If we
adopt the spherical distance, then the converse of Theorem 3.2 naturally holds,
see §1.

4. Domain of equicontinuity. In this section we shall define a domain
of equicontinuity for a family of holomorphic functions and consider an
analogue of Julia problem raised for a domain of normality.

Let D be a domain of C*, & a subfamily of (D). We say D is the
domain of existence of & if all functions of % can not continued simultane-
ously to larger domain, Then, as is well known, D is a domain of holomorphy.

Our results in this section are all carried over to Riemann domain. But
for the sake of simplicity we restrict ourselves to the domains of the complex
number space C™.

DEFINITION 4.1. Let D be a domain of C* and & a subfamily of o
(D). We assume that D is the domain of existence of . A subdomain D* of
D is called the domain of equicontinuity of if F is equicontinuous in D and
F is never equicontinuous in any larger domain which contains D* as its proper
subdomain.

A domain D* of C* is simply called a domain of equicontinuity if it is the

domain of equicontinuity for some family of holomorphic functions.

DZFINITION 4.2. Let & be a subfamily of sz (D) and D be the domain

of existence of . A subdomain D* of D is called the Montel domain of F if

F is a Montel family in D*, but is no longer a Montel Jamily in any larger

domain which contains D* as a proper subdomain. A domain D* of C* is called

simply a Montel domain if it is the Montel domain of some family of holomorphic
Sunctions.

Remark. Even if D is schlicht, that is, a subdomain of C™, the domain
of existence of a subfamily of .7 (D) is not necessarily schlicht.

Let D be a domain of holomorphy in C». Then we can construct such
a sequence of functions that converges compact-uniformly in D and the limit
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has D as its domain of existence. Hence, we may state that a domain of
holomorphy is a Montel domain.

Now, we assert that the converse of this fact also holds:

THEOREM 4.3. Let D be a domain of C® and & a subfamily of sz(D)
which has D as its domain of existence. If a subdomain D* of D is the Montel
domain of &, then D* is a domain of holomorphy.

PROOF. Our method of proof is due to Cartan and Thullen, cf. [2].
Suppose that D is not a domain of holomorphy. Then, by the fundamental
theorem of Cartan and Thullen [2] D is not holomorphically convex. Hence,
there exists a compact subset K of D such that the set

E={2€D%: | f(2) | <Sup | KK |, fE52(D*)

is not compact in D*. Since the envelope of holomorphy E(D*) of iD* is a
domain of holomorphy, the set

R=(2€ E(D®): | () | < Sup | (KD

s, fe 7 (E(D*)}

is compact in E(D*). It is easily verified that K=I€ﬂD*. In the following
we shall reproduce the main consideration in the classical work of Cartan and
Thuillen [3].

Now, let S(zy, 7) denote the polydisk {z€C™: |z;—2}|<7, i=1,2,3,-,n}.
We define a function d(z) by d(z)= Sup {r: S(z,r)CD*} for z€ D*. Then,
d(K)=ZIEng d(z) gives the destance bet§veen 0D* and K. Take positive p as

0<d(K) and fix. Suppose that for a point z,€ D* the following inequality
holds for every f€ &7 (D*): |f(2z0)|< Sup |f(KD].
Then, for any differential operator of the form

» 6v1+v2+~-+vn

V) — P

D®= 02" 02%2-+0z" V_(VDVZ""’V?!),
1 2 n

We have
D® flz) | < Sup | DOKKD |.

Let K, be the closure of the p-neighborhood of K. Since p<d(K), K, is
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compact in D. Let z be any point of K. Then, Cauchy’s inequality implies

| posa | < Ll sup | ASGod |

v luple ey,

< i Sup | A .

Hence, we obtain

e tv,

lyoleoe
Sup | DOAK) | < L2l sup | k) |-
Consequently, we have
! !
| D9sG) | < Ahtel sup | 5K |

Thus, the Taylor expansion of f at z, converges in the polydisk S (2o, 0).
Since K is not compact in D* there exists a point z,EK such that a(zp)<p.
This means that z,&K,. Then, S(z,p0)—D* contains non-empty open set. The
function f was arbitrary in &7 (D*). So we restrict our arguement to FCr
(D*). Since by assumption & is a Montel family and therefore is uniformly
bounded in compact subset K, the inequality derived above implies that & is
uniformly bounded in S(zy, p)—D* which contains non-empty interior 4. This
shows that & is a Montel family in D*J4. This contradicts to the assumption
that D* is the Montel domain of .=, Thus, D* is holomorhically convex, and
Theorem 4.3 is proved.

Now, we are ready to solve the following problem, which is the purpose
of this section.

Problem. Is a domain of equicontinuity a domain of holomorphy ?
Our answer is affirmative:

THEOREM 4.4. Let D be a domain of C* & a subfamily of (D) and
D the domain of existence of #. I [ D* is the domain of equicontinuity of &, then
D* is a domain of holomorphy.

PROOF. By definition & is equicontinuous in D*, but is no longer
equicontinuous in any larger domain. By Theorem 2.1 D* is equal to the
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intersection of # Montel domains of » families 88%-, k=1,2,3,---,mn. Since by

Theorem 4.3 a Montel domain is a domain of holomorphy, and D is the

intersection of Montel domains, D is a domain of holomorphy. This completes
the proof.

The converse of Therem 4.4 is obviously true.
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