テータ関数の変換公式

宮崎 直*

1 はじめに

1.1 序文

本稿の目的は,新谷氏の論文 [Shn] に沿って,テータ関数の変換公式(一般化された Poisson 和公式)を解説する事である. $\S 2$ で Weil 表現からテータ関数の変換公式が導出される過程について説明し, $\S 3$ でテータ関数を $SL(2,\mathbf{R}) \times SO(p,q)$ の被覆群に制限した場合についての具体的な計算を紹介する. $\S 3$ での計算は,保型形式のテータリフトの 1 種である織田リフトにおいて重要な役割を果たす.織田リフトについての詳細は,菅野氏による解説 [Su] を参照されたい.

本稿のおおまかな流れは [Shn] に従っているが , Heisenberg 群や Weil 表現の定義は現在よく使われているものに変更した . また , 本稿を書くにあたっては , [Ta] を参考にさせて頂いた .

1.2 記号について

 $z\in {f C}$ に対して, ${f e}[z]=\exp(2\pi\sqrt{-1}z)$ とおき, $\sqrt{z}=z^{\frac{1}{2}}$ を $-\frac{\pi}{2}<\arg z^{\frac{1}{2}}\leq \frac{\pi}{2}$ となるようにとる.さらに, $k\in {f Z}$ に対して, $z^{\frac{k}{2}}=(z^{\frac{1}{2}})^k$ とおく. $t\in {f R}^{ imes}$ に対して, $\sin t=t/|t|$ とおく.絶対値 1 の複素数のなす乗法群を ${f C}^1=\{z\in {f C}^{ imes}\mid |z|=1\}$ と表記する.

R 上の有限次元ベクトル空間 V に対して,V 上の急減少関数のなす空間を $\mathcal{S}(V)$,滑らかな関数のなす空間を $C^\infty(V)$,2 乗可積分な関数のなす空間を $L^2(V)$ と表記する.また,正の整数 m に対して, \mathbf{R}^m の元は行ベクトルとして扱うものとする.

2 テータ関数の変換公式

2.1 Heisenberg 群

W を $\mathbf R$ 上の 2n 次元ベクトル空間とし, \langle , \rangle を W 上の非退化交代形式とする. $W=X\oplus X^*$ を W の偏極 (つまり, X,X^* は $\langle X,X\rangle=\langle X^*,X^*\rangle=0$, $\dim_{\mathbf R}X=\dim_{\mathbf R}X^*=n$, $W=X\oplus X^*$

^{*}Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-8501, Japan miyaza@ms.u-tokyo.ac.jp

をみたす W の部分空間) とし,固定しておく.以下,W の元 w が $w=x+x^*$ $(x\in X,\ x^*\in X^*)$ と分解されるとき, $w=x\oplus x^*$ と表記する事にする.

X の基底 $\{e_1,e_2,\cdots,e_n\}$ と X^* の基底 $\{e_1^*,e_2^*\cdots,e_n^*\}$ を $\langle e_i,e_j^*\rangle=\delta_{i,j}$ となるようにとる.X 上の座標を $x=\sum_{i=1}^n x_ie_i\;(x_i\in\mathbf{R})$ で定めて,X 上の測度 dx を $dx=\prod_{i=1}^n dx_i$ で定義する.また, X^* 上の座標を $x^*=\sum_{i=1}^n x_i^*e_i^*\;(x_i^*\in\mathbf{R})$ で定めて, X^* 上の測度 d^*x^* を $d^*x^*=\prod_{i=1}^n dx_i^*$ で定義する.ここで, dx_i,dx_i^* は \mathbf{R} 上の通常の Lebesgue 測度であるとする.このとき, $f\in\mathcal{S}(X)$ に対して,Fourier 変換を

$$\hat{f}(x^*) = \int_X f(x)\mathbf{e}[-\langle x, x^*\rangle] dx \qquad (x^* \in X^*)$$

で定義し, $f \in \mathcal{S}(X^*)$ に対して, 逆 Fourier 変換を

$$\check{f}(x) = \int_{X^*} f(x^*) \mathbf{e}[\langle x, x^* \rangle] d^* x^* \qquad (x \in X)$$

で定義すると,Fourier 反転公式 $\check{\hat{f}}=f$ が任意の $f\in\mathcal{S}(X)$ で成立する.集合 $H(W)=W imes\mathbf{R}$ に演算を

$$(w,t)\cdot(w',t') = \left(w+w',\ t+t'+\frac{1}{2}\langle w,w'\rangle\right)$$
 $(w,w'\in W,\ t,t'\in\mathbf{R})$

で定める事で定義される群を Heisenberg 群という.このとき,H(W) の中心は $Z(H(W))=\{(0,t)\in H(W)\mid t\in {\bf R}\}\simeq {\bf R}$ である.

任意の $r \in \mathbf{R}^{ imes}$ に対して,H(W) の $L^2(X)$ 上のユニタリ表現 U_r を

$$U_r(h)f(y) = \mathbf{e}\left[r\left(t + \frac{1}{2}\langle x, x^* \rangle + \langle y, x^* \rangle\right)\right]f(y+x)$$
$$(h = (x \oplus x^*, t) \in H(W), \ f \in L^2(X))$$

によって定義する. Heisenberg 群の表現を扱う上では,次の3つの定理は基本的である.

定理 $\mathbf{2.1.}$ 任意の $r \in \mathbf{R}^{\times}$ に対して , $(U_r, L^2(X))$ は H(W) の既約ユニタリ表現である .

定理 2.2 (Stone-von Neumann の定理). $r \in \mathbf{R}^{\times}$ とする . H(W) の既約ユニタリ表現 (Π, V_{Π}) が $\Pi(0,t) = \mathbf{e}[rt]$ $(t \in \mathbf{R})$ をみたすとき , (Π, V_{Π}) は $(U_r, L^2(X))$ とユニタリ同値である .

定理 2.3 (Schur の補題). $(\Pi, V_\Pi), (\Pi', V_{\Pi'})$ を H(W) の既約ユニタリ表現とする.このとき, (Π, V_Π) から $(\Pi', V_{\Pi'})$ への連続 H(W)-準同型写像全体のなす空間は高々1 次元である.

今後, U_1 を U と略記する事にする.

2.2 R 上での Weil 表現

この節では, ${f R}$ 上での ${
m Weil}$ 表現について復習する.詳しくは,松本氏による解説 ${
m [Ma]}$ を 参照されたい.

Sp(W) を W 上の斜交群, すなわち,

$$Sp(W) = \{ \sigma \in GL(W) \mid \langle w\sigma, w'\sigma \rangle = \langle w, w' \rangle \ (\forall w, w' \in W) \}$$

とする.ここで,GL(W) は W に右から作用しているものとする.Sp(W) の H(W) への右作用を

$$h^{\sigma} = (w\sigma, t)$$
 $(h = (w, t) \in H(W), \ \sigma \in Sp(W))$

で定義しておく.

 $L^2(X)$ のユニタリ自己同型写像 T 全体のなす群 $\mathrm{Aut}(L^2(X))$ は全ての $f\in L^2(X)$ に対して $T\mapsto Tf$ が連続となる最弱の位相に関して Hausdorff 位相群になる . Mp(W) を

$$U(h^{\sigma}) = T^{-1} \circ U(h) \circ T \qquad (\forall h \in H(W))$$
 (2.1)

をみたす (σ,T) のなす $Sp(W) \times \operatorname{Aut}(L^2(X))$ の部分群とすると,Mp(W) は部分位相によって局所 compact な Hausdorff 位相群となる.ここで,Stone-von Neumann の定理より,射影 $Mp(W) \ni (\sigma,T) \mapsto \sigma \in Sp(W)$ は全射である事に注意しておく.

Mp(W) の部分群として,Sp(W) の 2 重被覆群を構成しよう.そのために少し準備をする. $\sigma \in Sp(W)$ に対して,

$$w\sigma = (xa + x^*c) \oplus (xb + x^*d) \qquad (\forall w = x \oplus x^* \in W)$$

によって定まる $a\in \operatorname{End}_{\mathbf{R}}(X),\ b\in \operatorname{Hom}_{\mathbf{R}}(X,X^*),\ c\in \operatorname{Hom}_{\mathbf{R}}(X^*,X),\ d\in \operatorname{End}_{\mathbf{R}}(X^*)$ をとり, $\sigma=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ と行列表示する.また, $c\in \operatorname{Hom}_{\mathbf{R}}(X^*,X)$ に対して, $\det^*c=\det(\langle e_i^*c,\ e_i^*\rangle)_{i,j=1,\cdots,n}$ と定義する.

$$\det^* c
eq 0$$
 となる $\sigma = \left[egin{array}{c} a & b \ c & d \end{array}
ight] \in Sp(W)$ に対して, $\mathbf{r}_0(\sigma) \in \mathrm{Aut}(L^2(X))$ を

$$(\mathbf{r}_0(\sigma)f)(x) = |\det^* c|^{\frac{1}{2}} \int_{X^*} \mathbf{e} \left[\frac{1}{2} \langle xa + x^*c, xb + x^*d \rangle - \frac{1}{2} \langle x, x^* \rangle \right] f(xa + x^*c) d^*x^*$$

$$(f \in \mathcal{S}(X))$$

を連続に拡張したものとして定義する.このとき, $\mathbf{r}(\sigma)=(\sigma,\mathbf{r}_0(\sigma))\in Mp(W)$ であり,次の (1),(2) をみたす連続群準同型写像 $\Psi\colon Mp(W)\to\mathbf{C}^1$ が唯 1 つ存在する:

(1)
$$\Psi(1,t) = t^2 \quad (\forall t \in \mathbf{C}^1),$$

$$(2) \ \Psi(\mathbf{r}(\sigma)) = (\sqrt{-1})^n \frac{\det^* c}{|\det^* c|} \quad \left(\ \forall \sigma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in Sp(W) \ \text{s.t. } \det^* c \neq 0 \right).$$

ここで, $\widetilde{Sp}(W)=\operatorname{Ker}\Psi$ とおくと,連続群準同型写像

$$\varpi \colon \widetilde{Sp}(W) \ni (\sigma, T) \mapsto \sigma \in Sp(W)$$

は全射で ${\rm Ker}\, \varpi=\{(1,\pm 1)\}$ であり, $\widetilde{Sp}(W)$ は Sp(W) の非自明な 2 重被覆群になっている.このとき, $\widetilde{Sp}(W)$ の $L^2(X)$ 上のユニタリ表現が

$$\omega \colon \widetilde{Sp}(W) \ni (\sigma, T) \mapsto T \in \operatorname{Aut}(L^2(X))$$

により定義される.このユニタリ表現 $(\omega, L^2(X))$ を Weil 表現という.

$$\Psi$$
 の性質 $(1),(2)$ と Schur の補題より , $\varpi(\tilde{\sigma})=\left[egin{array}{cc} a & b \\ c & d \end{array}
ight] (\det^* c \neq 0)$ となる $\tilde{\sigma}\in\widetilde{Sp}(W)$

に対して,ある複素数 $\epsilon_{\omega}(\tilde{\sigma})$ が存在して, $\{\epsilon_{\omega}(\tilde{\sigma})\}^2 = \left((\sqrt{-1})^n \frac{\det^* c}{|\det^* c|}\right)^{-1}$ かつ $\omega(\tilde{\sigma}) = \epsilon_{\omega}(\tilde{\sigma}) r_0(\varpi(\tilde{\sigma}))$ が成立する.

2.3 誘導表現

L と L' をそれぞれ X と X^* の ${\bf Z}$ -格子とし , $\psi\colon\Lambda\to{\bf C}^{ imes}$ を H(W) の部分群 $\Lambda=(L\oplus L') imes{\bf R}$ のユニタリ指標とする.ここで , ψ から誘導される H(W) のユニタリ表現 $(\rho_\psi,I_\Lambda(\psi))$ を定義しよう.表現空間 $I_\Lambda(\psi)$ を

$$I_{\Lambda}(\psi)^{\infty} = \{\theta \in C^{\infty}(H(W)) \mid \theta(\lambda h) = \psi(\lambda)\theta(h) \ (\forall \lambda \in \Lambda)\}$$

を内積

$$\langle \theta_1, \theta_2 \rangle_{\Lambda} = \int_{\Lambda \backslash H(W)} \theta_1(h) \overline{\theta_2(h)} dh$$

$$= \frac{1}{\text{vol}(X^*/L')} \int_{(X/L) \times (X^*/L')} \theta_1(x \oplus x^*, 0) \overline{\theta_2(x \oplus x^*, 0)} dx d^*x^*$$
(2.2)

について完備化した Hilbert 空間とし, H(W) の作用を右移動

$$\rho_{\psi}(h)\theta(z) = \theta(zh) \qquad (h \in H(W), \ \theta \in I_{\Lambda}(\psi))$$

で定める.ここで, $\mathrm{vol}(X^*/L')=\int_{X^*/L'}d^*x^*$ とし,dh は (2.2) の 2 つめの等号が成立するような $\Lambda\backslash H(W)$ 上の右 H(W) 不変測度とする.この dh の正規化の仕方は少し不自然だが,この後の議論をする上で都合が良い.

X の \mathbf{Z} -格子 L に対して,L の \langle , \rangle に関する双対格子 $L^* = \{l^* \in X^* \mid \langle l, l^* \rangle \in \mathbf{Z} \ (\forall l \in L)\}$ をとる. M^* を L^* の部分格子とし, M^* の \langle , \rangle に関する双対格子 $M = \{l \in X \mid \langle l, l^* \rangle \in \mathbf{Z} \ (\forall l^* \in M^*)\}$ をとる.つまり,

とする . $\Lambda_0=(L\oplus L^*) imes \mathbf{R},\ \Lambda_1=(L\oplus M^*) imes \mathbf{R}\subset H(W)$ とおく . Λ_1 のユニタリ指標 $\chi\colon\Lambda_1\to\mathbf{C}^ imes$ を

$$\chi(\lambda) = \mathbf{e} \left[t + \frac{1}{2} \langle l, l^* \rangle \right]$$
 $(\lambda = (l \oplus l^*, t) \in \Lambda_1)$

で定義する . $\mu \in M/L$ に対して , Λ_0 のユニタリ指標 $\chi_\mu \colon \Lambda_0 \to \mathbf{C}^{ imes}$ を

$$\chi_{\mu}(\lambda) = \mathbf{e} \left[t + \frac{1}{2} \langle l, l^* \rangle + \langle \mu, l^* \rangle \right] \qquad (\lambda = (l \oplus l^*, t) \in \Lambda_0)$$

で定義する.このとき, $\chi_\mu|_{\Lambda_1}=\chi$ だから $I_{\Lambda_0}(\chi_\mu)$ は $I_{\Lambda_1}(\chi)$ の H(W)-不変な閉部分空間であり,簡単な議論によって,

$$I_{\Lambda_1}(\chi) = \bigoplus_{\mu \in M/L} I_{\Lambda_0}(\chi_{\mu}) \tag{2.3}$$

と分解される事が分かる.実際, $\theta \in I_{\Lambda_1}(\chi)$ に対して, $\theta^\mu \in I_{\Lambda_0}(\chi_\mu)$ を

$$\theta^{\mu}(h) = \frac{1}{\#(M/L)} \sum_{\lambda \in \Lambda_1 \setminus \Lambda_0} \chi_{\mu}(\lambda)^{-1} \theta(\lambda h)$$

で定義すると, $\theta=\sum_{\mu\in M/L}\theta^\mu$ が成立する.ここで,#(M/L) は M/L の位数を表す. 命題 2.4.以下が成立する:

- (1) $I_{\Lambda_1}(\chi)$ の分解 (2.3) は内積 $\langle , \rangle_{\Lambda_1}$ に関する直交分解である .
- (2) $\mu \in M/L$ と $f \in \mathcal{S}(X)$ に対して, $\Theta_{\chi_{\mu}}(f) \in I_{\Lambda_0}(\chi_{\mu})$ を

$$\Theta_{\chi_{\mu}}(f)(h) = \sum_{l \in L} \mathbf{e} \left[t + \frac{1}{2} \langle x, x^* \rangle + \langle \mu + l, x^* \rangle \right] f(x + \mu + l) \quad (h = (x \oplus x^*, t) \in H(W))$$

で定義する.このとき, Θ_{χ_μ} を連続に拡張して $L^2(X)$ から $I_{\Lambda_0}(\chi_\mu)$ へのユニタリ H(W)-同型写像が得られる.

(3) $\nu \in M/L$ と $\theta \in I_{\Lambda_1}(\chi)^\infty$ に対して, $F_{\chi_{\nu}}(\theta) \in L^2(X)$ を

$$F_{\chi_{\nu}}(\theta)(x) = \frac{1}{\operatorname{vol}(X^*/M^*)} \int_{X^*/M^*} \theta((x-\nu) \oplus x^*, 0) \mathbf{e} \left[-\frac{1}{2} \langle x + \nu, x^* \rangle \right] d^*x^* \quad (x \in X)$$

で定義する.このとき, $F_{\chi_{\nu}}$ を連続に拡張して $(\rho_{\chi},I_{\Lambda_{1}}(\chi))$ から $(U,L^{2}(X))$ への連続 H(W)-準同型写像が得られる.

(4) (2),(3) で定義した $\Theta_{\chi_{\mu}}$ と $F_{\chi_{\nu}}$ に対して,

$$F_{\chi_{\nu}} \circ \Theta_{\chi_{\nu}} = \mathrm{id}_{L^{2}(X)}, \qquad F_{\chi_{\nu}} \circ \Theta_{\chi_{\mu}} = 0 \quad (\nu \neq \mu)$$

が成立する.

この命題は Fourier 級数展開の理論と指標の直交性を用いれば,直接計算によって確かめる事ができる.分解 (2.3) において, $\langle , \rangle_{\Lambda_1}$ を各 $I_{\Lambda_0}(\chi_\mu)$ に制限して得られる内積は, $\langle , \rangle_{\Lambda_0}$ と一致する.また,この命題と Schur の補題より, $(U,L^2(X))$ から $(\rho_\chi,I_{\Lambda_1}(\chi))$ への連続 H(W)-準同型写像は Θ_{χ_μ} 達の線型結合で表せる事に注意しておこう.

2.4 テータ関数の変換公式

 $Sp(L \oplus M^*)$ を

$$(L \oplus M^*)\gamma = L \oplus M^*, \qquad \qquad \chi(\lambda^{\gamma}) = \chi(\lambda) \quad (\forall \lambda \in \Lambda_1)$$

をみたす $\gamma \in Sp(W)$ のなす Sp(W) の部分群とし. $\widetilde{Sp}(L \oplus M^*) = \varpi^{-1}(Sp(L \oplus M^*))$ とおく.また, $\mu \in M/L$ と $f \in \mathcal{S}(X)$ に対して, $\widetilde{Sp}(W)$ 上のテータ関数 $\vartheta_f(\tilde{\sigma};\mu)$ を

$$\vartheta_f(\tilde{\sigma};\mu) = \Theta_{\chi_\mu}(\omega(\tilde{\sigma})f)(0,0) = \sum_{l \in L} (\omega(\tilde{\sigma})f)(x + \mu + l)$$

で定義する.

定理 $\mathbf{2.5}$ (テータ関数の変換公式). $\tilde{\gamma} \in \widetilde{Sp}(L \oplus M^*)$ と $\mu \in M/L$ に対して ,

$$\vartheta_f(\tilde{\gamma}\tilde{\sigma};\mu) = \sum_{\nu \in M/L} C_{\tilde{\gamma}}(\mu,\nu)\vartheta_f(\tilde{\sigma};\nu) \qquad (\forall f \in \mathcal{S}(X))$$
 (2.4)

が成立するような複素数 $C_{\tilde{\gamma}}(\mu, \nu)$ $(\nu \in M/L)$ が存在する .

 $M/L=\{\mu_1,\mu_2,\cdots,\mu_N\}\;(N=\#(M/L))\;$ とおくと,行列 $C_{\tilde{\gamma}}=(C_{\tilde{\gamma}}(\mu_i,\mu_j))_{i,j=1,\cdots,N}\;$ はユニタリ行列であり, $C_{\tilde{\gamma}_1\tilde{\gamma}_2}=C_{\tilde{\gamma}_1}C_{\tilde{\gamma}_2}\;(orall ilde{\gamma}_1, ilde{\gamma}_2\in \widetilde{Sp}(L\oplus M^*))\;$ が成立する.

さらに,
$$\varpi(\tilde{\gamma}) = \left[egin{array}{c} a & b \\ c & d \end{array} \right]$$
と表すと $\det^* c \neq 0$ となるとき, $C_{\tilde{\gamma}}(\mu, \nu)$ は,

 $C_{\tilde{\gamma}}(\mu,\nu)$

$$= \frac{\epsilon_{\omega}(\tilde{\gamma})|\det^* c|^{-\frac{1}{2}}}{\operatorname{vol}(X^*/M^*)} \sum_{l \in L/M^*c^*} \mathbf{e} \left[\frac{1}{2} \langle \mu + l, (\mu + l)ac^{-1} \rangle - \langle \mu + l, \nu c^{-1} \rangle + \frac{1}{2} \langle \nu, \nu c^{-1} d \rangle \right]$$
(2.5)

で与えられる.ここで, c^* は $\langle x_1^*c,x_2^* \rangle = \langle x_2^*c^*,x_1^* \rangle \; (\forall x_1^*,x_2^* \in X^*) \;$ で定まる $\mathrm{Hom}_{\mathbf{R}}(X^*,X)$ の元とする.

証明.群準同型写像 $Sp(L\oplus M^*)\ni\gamma\mapsto\Xi_{\gamma}\in \operatorname{Aut}(I_{\Lambda_{1}}(\chi))$ を $(\Xi_{\gamma}\theta)(h)=\theta(h^{\gamma})$ $(\theta\in I_{\Lambda_{1}}(\chi))$ で定義すると, $\Xi_{\gamma}\circ\rho_{\chi}(h)\circ\Xi_{\gamma}$ $(\forall h\in H(W))$ が成立する.よって, $\tilde{\gamma}\in\widetilde{Sp}(L\oplus M^*)$ に対して, $\gamma=\varpi(\tilde{\gamma})$ とおくと, $\Xi_{\gamma^{-1}}\circ\Theta_{\chi\mu}\circ\omega(\tilde{\gamma})$ は $(U,L^{2}(X))$ から $(\rho_{\chi},I_{\Lambda_{1}}(\chi))$ へのユニタリ H(W)-準同型写像になる.よって,ある複素数 $C_{\tilde{\gamma}}(\mu,\nu)$ $(\nu\in M/L)$ が存在して,

$$\Xi_{\gamma^{-1}} \circ \Theta_{\chi_{\mu}} \circ \omega(\tilde{\gamma}) = \sum_{\nu \in M/L} C_{\tilde{\gamma}}(\mu, \nu) \Theta_{\chi_{\nu}}$$
 (2.6)

が成立する.この両辺による $\omega(\tilde{\sigma})f$ $(\tilde{\sigma}\in\widetilde{Sp}(W),f\in\mathcal{S}(X))$ の像を考え, $(0,0)\in H(W)$ での値をとると (2.4) が得られる.

また, $\tilde{\gamma}_1,\tilde{\gamma}_2\in Sp(L\oplus M^*)$ に対して, $\gamma_1=\varpi(\tilde{\gamma}_1),\;\gamma_2=\varpi(\tilde{\gamma}_2)$ とおくと,

$$\Xi_{(\gamma_1\gamma_2)^{-1}} \circ \Theta_{\chi_{\mu_i}} \circ \omega(\tilde{\gamma}_1\tilde{\gamma}_2) = \Xi_{\gamma_2^{-1}} \circ (\Xi_{\gamma_1^{-1}} \circ \Theta_{\chi_{\mu_i}} \circ \omega(\tilde{\gamma}_1)) \circ \omega(\tilde{\gamma}_2) \qquad (i = 1, 2, \cdots, N)$$

となる.この両辺に(2.6) を用いると,左辺は $\sum_{j=1}^N C_{ ilde{\gamma}_1 ilde{\gamma}_2}(\mu_i,\mu_j)\Theta_{\chi_{\mu_i}}$ となり,右辺は

$$\Xi_{\gamma_{2}^{-1}} \circ \left(\sum_{k=1}^{N} C_{\tilde{\gamma}_{1}}(\mu_{i}, \mu_{k}) \Theta_{\chi_{\mu_{k}}} \right) \circ \omega(\tilde{\gamma}_{2}) = \sum_{k=1}^{N} C_{\tilde{\gamma}_{1}}(\mu_{i}, \mu_{k}) \left(\sum_{j=1}^{N} C_{\tilde{\gamma}_{2}}(\mu_{k}, \mu_{j}) \Theta_{\chi_{\mu_{j}}} \right)$$

$$= \sum_{j=1}^{N} \left(\sum_{k=1}^{N} C_{\tilde{\gamma}_{1}}(\mu_{i}, \mu_{k}) C_{\tilde{\gamma}_{2}}(\mu_{k}, \mu_{j}) \right) \Theta_{\chi_{\mu_{j}}}$$

となるから, $C_{\tilde{\gamma}_1\tilde{\gamma}_2}(\mu_i,\mu_j)=\sum_{k=1}^N C_{\tilde{\gamma}_1}(\mu_i,\mu_k)C_{\tilde{\gamma}_2}(\mu_k,\mu_j)$ を得る.これより, $C_{\tilde{\gamma}_1\tilde{\gamma}_2}=C_{\tilde{\gamma}_1}C_{\tilde{\gamma}_2}$ が得られる.

 L^2 -ノルムの値が 1 であるような $f \in \mathcal{S}(X)$ をとり,

$$\mathbf{V}_f = \bigoplus_{i=1}^N \mathbf{C}\Theta_{\chi_{\mu_i}}(f) \subset I_{\Lambda_1}(\chi)$$

とおくと, $C_{\tilde{\gamma}}$ は \mathbf{V}_f 上の 2 種類の正規直交基底 $\{\Xi_{\gamma^{-1}}\Theta_{\chi_{\mu_i}}(\omega(\tilde{\gamma})f)\}_{i=1}^N$ と $\{\Theta_{\chi_{\mu_i}}(f)\}_{i=1}^N$ の変換行列であるから,ユニタリ行列である.

最後に (2.5) を示す . (2.6) の両辺による $\omega(\tilde{\gamma}^{-1})f$ $(f\in\mathcal{S}(X))$ の像を考えると ,

$$\Xi_{\gamma^{-1}}\Theta_{\chi_{\mu}}(f) = \sum_{\nu \in M/L} C_{\tilde{\gamma}}(\mu, \nu)\Theta_{\chi_{\nu}}(\omega(\tilde{\gamma}^{-1})f)$$

となる. さらに命題 2.4(4) より

$$F_{\chi_{\nu}}(\Xi_{\gamma^{-1}}\Theta_{\chi_{\mu}}(f)) = C_{\tilde{\gamma}}(\mu,\nu)\omega(\tilde{\gamma}^{-1})f. \tag{2.7}$$

この両辺を定義に基づいて計算して比較する事で,(2.5)が得られる.

${f 3}$ $\widetilde{SL}(2,{f R}) imes SO(Q)$ 上でのテータ級数の変換公式

3.1 簡約双対ペア $(SL(2, \mathbf{R}), O(Q))$

まず, $J=\begin{pmatrix}1\\-1\end{pmatrix}\in SL(2,{f R})$ とおき, ${f R}^2$ 上の非退化交代形式 \langle,\rangle_J を $\langle r,r'\rangle_J=rJ^tr'\;(r,r'\in{f R}^2)$ で定義する.このとき, $\sigma\in SL(2,{f R})$ に対して,

$$\langle r\sigma, r'\sigma \rangle_J = \langle r, r' \rangle_J \qquad (\sigma \in SL(2, \mathbf{R}))$$

が成立する.また, $Q\in M_n(\mathbf{Q})$ を符号 (p,q) の非退化な対称行列,つまり,ある $g_Q\in GL(n,\mathbf{Q})$ が存在して $Q=g_Q\begin{pmatrix}1_p\\-1_q\end{pmatrix}{}^tg_Q$ が成立するものとし,p>0 と仮定する. \mathbf{R}^n 上に非退化対称形式 $(,)_Q$ を $(x,x')_Q=xQ^tx'$ $(x,x'\in\mathbf{R}^n)$ で定義し, $(,)_Q$ に関する直交群 O(Q) を

$$O(Q) = \{ g \in GL(n, \mathbf{R}) \mid (xg, x'g)_Q = (x, x')_Q \ (\forall x, x' \in \mathbf{R}^n) \}$$

$$= \{ g \in GL(n, \mathbf{R}) \mid gQ^tg = Q \}$$

で定義する.

基本的に,この章では前章と同じ記号を用いるが, $W,\ \langle,\rangle,\ X,\ X^*,\ e_i,\ e_i^*$ は次のように具体的にとる. $W={f R}^n\otimes_{f R}{f R}^2$ とし,W 上の非退化交代形式 \langle,\rangle を

$$\langle x \otimes r, x' \otimes r' \rangle = (x, x')_Q \langle r, r' \rangle_J \qquad (x \otimes r, x' \otimes r' \in W)$$

で定義する . W の偏極 $W = X \oplus X^*$ を

$$X = \mathbf{R}^n \otimes_{\mathbf{R}} (1,0), \qquad X^* = \mathbf{R}^n \otimes_{\mathbf{R}} (0,1).$$

として固定し, R上のベクトル空間としての同型写像

$$X \ni x \otimes (1,0) \mapsto x \in \mathbf{R}^n, \qquad X^* \ni x \otimes (0,1) \mapsto x \in \mathbf{R}^n$$

によって X,X^* を共に \mathbf{R}^n と同一視する.この同一視の下で,X の基底 $\{e_1,e_2,\cdots,e_n\}$ は \mathbf{R}^n の標準基底(つまり, e_i は第 i 成分が 1 で他の成分が 0 である \mathbf{R}^n の元)とし, X^* の基底 $\{e_1^*,e_2^*,\cdots,e_n^*\}$ を $e_i^*=e_iQ^{-1}$ によって定める.このとき,dx は \mathbf{R}^n 上の通常の Lebesgue 測度であり, $d^*x=|\det Q|dx$ となる. $L^2(X)$ 上の Weil 表現は Q のとり方に依存して決まるため,今後, $\omega(\tilde{\sigma})$, $r_0(\sigma)$ をそれぞれ $\omega(\tilde{\sigma},Q)$, $r_0(\sigma,Q)$ と書く事にする.

 $SL(2, \mathbf{R})$ とO(Q) は,それぞれ

$$(x \otimes r)\sigma = x \otimes (r\sigma)$$
 $(x \otimes r) \in W, \ \sigma \in SL(2, \mathbf{R}),$ $(x \otimes r)g = (xg) \otimes r$ $(x \otimes r) \in W, \ g \in O(Q)$

によって定まる W への作用によって Sp(W) の部分群と見なせる . このとき , $(SL(2,{\bf R}),O(Q))$ は Sp(W) に含まれる簡約双対ペア , すなわち ,

$$SL(2, \mathbf{R}) = \{ \sigma \in Sp(W) \mid \sigma g = g\sigma \ (\forall g \in O(Q)) \},$$
$$O(Q) = \{ g \in Sp(W) \mid \sigma g = g\sigma \ (\forall \sigma \in SL(2, \mathbf{R})) \}$$

をみたす.ここで, $SO(Q)=SL(n,\mathbf{R})\cap O(Q)$ とおく.この章の目標は, $\varpi^{-1}(SL(2,\mathbf{R}))$ と $\varpi^{-1}(SO(Q))$ の構造を明らかにする事と,テータ関数 $\vartheta_f(\tilde{\sigma};\mu)$ を $SL(2,\mathbf{R})SO(Q)(\subset Sp(W))$ の被覆群に制限した場合についてテータ関数の変換公式をより具体的な形に書き下す事である.

注意 3.1. 本稿では , 簡単のためにテータ関数 $\vartheta_f(\tilde{\sigma};\mu)$ を $SL(2,\mathbf{R})SO(Q)$ の被覆群に制限した場合について考えるが , テータリフトの一般論に従うならば $SL(2,\mathbf{R})O(Q)$ の被覆群に制限した場合について考えるべきである .

3.2 準備

 X,X^* と \mathbf{R}^n の同一視によって, $\operatorname{End}_{\mathbf{R}}(X),\operatorname{Hom}_{\mathbf{R}}(X,X^*),\operatorname{Hom}_{\mathbf{R}}(X^*,X),\operatorname{End}_{\mathbf{R}}(X^*)$ を全て $M_n(\mathbf{R})$ と同一視する.これにより, $\sigma=\left(egin{array}{c}a&b\\c&d\end{array}
ight)\in SL(2,\mathbf{R})$ と $g\in O(Q)$ の Sp(W) の元としての行列表示はそれぞれ

$$\begin{bmatrix} a1_n & b1_n \\ c1_n & d1_n \end{bmatrix}, \qquad \begin{bmatrix} g & O_n \\ O_n & g \end{bmatrix}$$

となる.また, $c\in M_n(\mathbf{R})$ に対して, $\det^*c=(\det Q)^{-1}\det c$ となる.これを踏まえると, $c\neq 0$ となる $\sigma=\left(egin{array}{cc} a & b \\ c & d \end{array}\right)\in SL(2,\mathbf{R})$ と $f\in\mathcal{S}(X)$ に対して,

$$(\mathbf{r}_0(\sigma, Q)f)(x) = |c|^{-\frac{n}{2}} \sqrt{|\det Q|} \int_{\mathbf{R}^n} \mathbf{e} \left[\frac{a(x, x)_Q - 2(x, y)_Q + d(y, y)_Q}{2c} \right] f(y) dy$$

となる事が簡単な変数変換によって分かる.また, $\sigma=\left(egin{array}{cc}a&b\\0&d\end{array}
ight)\in SL(2,{f R})$ と $g\in O(Q)$ に対して, ${\bf r}_0(\sigma,Q)$ と ${\bf r}_0(q,Q)$ を

$$\mathbf{r}_{0}(\sigma,Q) = \mathbf{r}_{0}\left(\sigma J,Q\right)\mathbf{r}_{0}\left(J^{-1},Q\right), \qquad \qquad \mathbf{r}_{0}(g,Q) = \mathbf{r}_{0}\left(gJ,Q\right)\mathbf{r}_{0}\left(J^{-1},Q\right)$$

で定義すると, Fourier 反転公式より, $f \in \mathcal{S}(X)$ に対して,

$$(\mathbf{r}_0(\sigma, Q)f)(x) = |a|^{\frac{n}{2}} \mathbf{e} \left[\frac{ab}{2}(x, x)_Q \right] f(xa), \qquad (\mathbf{r}_0(g, Q)f)(x) = f(xg)$$

となる.

一般線型群 $GL(n, \mathbf{R})$ の $L^2(X)$ への作用 R を

$$(R(g)f)(x) = \sqrt{|\det g|}f(xg) \qquad (g \in GL(n, \mathbf{R}), f \in L^2(X))$$

で定義する.このとき, $\mathbf{r}_0(g,Q)=R(g)\;(\forall g\in O(Q))\;$ が成立する.また, $\sigma\in SL(2,\mathbf{R})$ に対して,上記の $\mathbf{r}_0(\sigma,Q)$ の作用の式より,

$$r_0(\sigma, gQ^t g)R(g) = R(g)r_0(\sigma, Q) \qquad (g \in GL(n, \mathbf{R}))$$
(3.1)

が成立する事も分かる.

3.3 $\varpi^{-1}(SL(2,\mathbf{R}))$ と $\varpi^{-1}(SO(Q))$ の構造

まず, $\varpi^{-1}(SL(2,\mathbf{R}))$ の明示的な記述を与えよう.そのために,少し準備をする.複素上半平面を $\mathfrak{H}=\{z=u+\sqrt{-1}v\mid u,v\in\mathbf{R},\ v>0\}$ と書く. $\sigma=\left(egin{array}{cc}a&b\\c&d\end{array}
ight)\in SL(2,\mathbf{R})$ と $z\in\mathfrak{H}$

に対して,

$$j(\sigma,z)=cz+d, \qquad \sigma\langle z\rangle=rac{az+b}{cz+d}, \qquad \epsilon(\sigma)=\left\{egin{array}{ll} (\sqrt{-1})^{rac{1}{2}} & (c>0\, {
m o}$$
とき), $(\sqrt{-1})^{rac{1}{2}} & (c<0\, {
m o}$ とき), $(\sqrt{-1})^{-rac{1}{2}} & (c<0\, {
m o}$ とき).

と定義しておく. $Q=g_Q\left(\begin{array}{cc} 1_p \\ -1_q \end{array}\right){}^tg_Q$ となるような $g_Q\in GL(n,{f R})$ をとり,正定値対称行列 R を $R=g_Q{}^tg_Q$ で定義する. $z=u+\sqrt{-1}v\in \mathfrak{H}$ に対して, $Q_z=uQ+\sqrt{-1}vR$ とおく.0 以上の整数 k に対して, $P_k(x)$ を次のような表示を持つ X 上の k 次同次多項式とする:

$$\begin{cases} 1 & k = 0 \text{ のとき}, \\ rQ^{t}x & (r \in \mathbf{C}^{n} \text{ s.t. } r(Q - R) = 0) & k = 1 \text{ のとき}, \\ \sum_{r} c_{r}(rQ^{t}x)^{k} & (c_{r} \in \mathbf{C}, \ r \in \mathbf{C}^{n} \text{ s.t. } r(Q - R) = 0, \ rQ^{t}r = 0) & k \geq 2 \text{ のとき}. \end{cases}$$
(3.2)

(ただし,p=1のときはk < 1と仮定する.)

補題 3.2. $F_z(x)=\mathbf{e}\left[\frac{1}{2}xQ_z^{\ t}x
ight]P_k(x)\in\mathcal{S}(X)$ とおく . このとき ,

$$r_0(\sigma, Q)F_z(x) = \epsilon(\sigma)^{p-q}j(\sigma, z)^{\frac{q-p}{2}-k}|j(\sigma, z)|^{-q}F_{\sigma\langle z\rangle}(x)$$

が任意の $\sigma \in SL(2, \mathbf{R})$ に対して成立する.

証明、 $g\in GL(n,{\bf R})$ に対して, $R(g)F_z(x)$ は (3.2) の形の表示を持つある k 次同次多項式 $P_k'(x)$ を用いて, $R(g)F_z(x)={\bf e}\left[\frac{1}{2}x(gQ^tg)_z{}^tx\right]\sqrt{|\det g|}P_k'(x)$ と表せる.よって,(3.1) より, $Q=\left(\begin{array}{cc} 1_p & \\ & -1_g \end{array}\right)$, $R=1_n$ と仮定して良い.

 $\sigma=\left(egin{array}{c} a & b \\ c & d \end{array}
ight)$ とおく.c=0 のときは, $\S 3.2$ の ${
m r}_0(\sigma,Q)$ の作用の式より,直ちに主張が得られる.また,c
eq 0 のときは $\S 3.2$ の ${
m r}_0(\sigma,Q)$ の作用の式より,

$$|c|^{-\frac{n}{2}} \int_{\mathbf{R}^{n}} \mathbf{e} \left[\frac{a(x,x)_{Q} - 2(x,y)_{Q} + d(y,y)_{Q}}{2c} \right] F_{z}(y) dy$$

$$= |c|^{-\frac{n}{2}} (v - \sqrt{-1}u - \sqrt{-1}d/c)^{-\frac{p}{2}} (v + \sqrt{-1}u + \sqrt{-1}d/c)^{-\frac{q}{2}} j(\sigma,z)^{-k} F_{\sigma(z)}(x)$$
(3.3)

を示せば良い事が分かる . k=0 のときは (3.3) の左辺を変数変換し , さらに Cauchy の積分 定理によって積分路を変える事により , (3.3) の証明はよく知られた公式

$$\int_{-\infty}^{\infty} e^{-\pi t^2} dt = 1$$

に帰着される. k > 0 での (3.3) は, k = 0 での (3.3) の両辺に

$$\frac{1}{(2\pi\sqrt{-1})^k(az+b)^k}P_k\left(\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\cdots,\frac{\partial}{\partial x_n}\right) \qquad (x=(x_1,x_2,\cdots,x_n) \ \texttt{とする})$$

を作用させる事で得られる . (左辺の計算では,部分積分を用いる.)

$$c
eq 0$$
 である $\sigma = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL(2,{f R})$ に対して, $\{\epsilon(\sigma)^{p-q}\}^2 = (\sqrt{-1})^n rac{\det^*(c1_n)}{|\det^*(c1_n)|}$ であ

るから, Ψ の性質 (1),(2) より, $(\sigma,\epsilon(\sigma)^{q-p}\mathbf{r}_0(\sigma,Q))\in\widetilde{Sp}(W)=\mathrm{Ker}\,\Psi$ となる事が分かる.また,Schur の補題より, $\sigma,\tau\in SL(2,\mathbf{R})$ に対して,

$$(\epsilon(\sigma)^{q-p} \mathbf{r}_0(\sigma, Q)) \circ (\epsilon(\tau)^{q-p} \mathbf{r}_0(\tau, Q)) = c(\sigma, \tau) \epsilon(\sigma \tau)^{q-p} \mathbf{r}_0(\sigma \tau, Q)$$

となる定数 $c(\sigma, \tau)$ が存在する.このとき,上の補題より,

$$c(\sigma,\tau) = \left\{ \frac{j(\sigma\tau, \sqrt{-1})^{\frac{1}{2}}}{j(\sigma, \tau\langle\sqrt{-1}\rangle)^{\frac{1}{2}}j(\tau, \sqrt{-1})^{\frac{1}{2}}} \right\}^{p-q}$$

となる事が分かる.

以上により,次の命題が得られた.

命題 **3.3.** 半直積 *SL*(2, **R**) ⋉ {±1} に群演算を

$$(\sigma, t) \cdot (\sigma', t') = (\sigma \sigma', tt'c(\sigma, \sigma'))$$
 $((\sigma, t), (\sigma', t') \in SL(2, \mathbf{R}) \ltimes \{\pm 1\})$

で定義する .(n) が偶数のときは , 普通の直積になる .) このとき ,

$$\iota_1 \colon SL(2,\mathbf{R}) \ltimes \{\pm 1\} \ni (\sigma,t) \mapsto (\sigma, t\epsilon(\sigma)^{q-p} \mathbf{r}_0(\sigma,Q)) \in \widetilde{SL}(2,\mathbf{R})$$

は群同型写像になる.

次に , $\varpi^{-1}(SO(Q))$ について考える . Ψ の性質 (2) より , $g \in O(Q)$ に対して ,

$$\Psi(g, \mathbf{r}_{0}(g, Q)) = \Psi(gJ, \mathbf{r}_{0}(gJ, Q))\Psi(J^{-1}, \mathbf{r}_{0}(J^{-1}, Q))$$

$$= \left\{ (\sqrt{-1})^{n} \frac{\det^{*}(-g)}{|\det^{*}(-g)|} \right\} \left\{ (\sqrt{-1})^{n} \frac{\det^{*} \mathbf{1}_{n}}{|\det^{*} \mathbf{1}_{n}|} \right\} = \det g$$

が成立する.これより,次の命題が得られる.

命題 3.4. $g\in SO(Q)$ に対して, $(g,\mathbf{r}_0(g,Q))\in \widetilde{Sp}(W)=\mathrm{Ker}\,\Psi$ が成立する.また,群準同型写像

$$\iota_2 \colon SO(Q) \ni g \mapsto (g, \mathbf{r}_0(g, Q)) \in \widetilde{Sp}(W)$$

は被覆写像 $\varpi\colon \widetilde{Sp}(W) o Sp(W)$ の SO(Q) 上での切断である.

注意 3.5. 上の計算から分かるように,被覆写像 ϖ は SO(Q) 上では自明であるが,O(Q) 上では自明でない.

3.4 テータ関数の変換公式

L を \mathbf{R}^n の \mathbf{Z} -格子, $L^*=\{l'\in\mathbf{R}^n\mid (l,l')_Q\in\mathbf{Z}\; (orall l\in L)\}$ をその双対格子とし. $L^*\supset L$ であると仮定する.今, X,X^* を共に \mathbf{R}^n と同一視しているため,L は前章での L と M^* , L^* は前章での L^* と M にあたる \mathbf{Z} -格子であると解釈できる. $f\in\mathcal{S}(X)$ と $\mu\in L^*/L$ に対して,

$$\vartheta_f(\tilde{\sigma}, g; \mu) = \sum_{l \in L} \omega(\iota_1(\tilde{\sigma})\iota_2(g)) f(\mu + l) \qquad (\tilde{\sigma} \in \widetilde{SL}(2, \mathbf{R}), g \in SO(Q))$$

と定義する.このとき,定理2.5と若干の計算により次が得られる:

定理 3.6. (1) $\gamma_2 \in SO(Q) \cap GL(n, \mathbf{Z})$ に対して,

$$\vartheta_f(\tilde{\sigma}, \gamma_2 g; \mu) = \vartheta_f(\tilde{\sigma}, g; \mu \gamma_2).$$

(2) $\gamma_1=\left(egin{array}{cc} a & b \\ c & d \end{array}
ight)\in SL(2,{f Z})$ が $ab(l,l)_Q\equiv cd(l,l)_Q\equiv 0\mod 2 \pmod 2 \pmod E$ 、 このとき , $\tilde{\gamma}_1=(\gamma_1,arepsilon)\in \widetilde{SL}(2,{f R})$ に対して ,

$$\vartheta_f(\tilde{\gamma}_1\tilde{\sigma},g;\mu) = \sum_{\nu \in L^*/L} C_{\tilde{\gamma}_1}(\mu,\nu) \vartheta_f(\tilde{\sigma},g;\nu)$$

が $\forall f \in \mathcal{S}(X)$ で成立する.ここで, $C_{\tilde{\gamma}_1}(\mu,\nu)$ は以下で与えられる定数である:

$$\begin{split} C_{\tilde{\gamma}_1}(\mu,\nu) \\ &= \left\{ \begin{array}{l} \frac{\varepsilon(\sqrt{-1})^{(q-p)\frac{\operatorname{sgn} c}{2}}}{|c|^{\frac{n}{2}}\sqrt{|\det Q|}\operatorname{vol}(\mathbf{R}^n/L)} \sum_{l\in L/cL} \mathbf{e} \left[\frac{a(\mu+l,\mu+l)_Q - 2(\mu+l,\nu)_Q + d(\nu,\nu)_Q}{2c} \right] \\ &\qquad \qquad (c \neq 0 \text{ のとき}), \\ \varepsilon\delta_{\mu,a\nu}(\sqrt{-1})^{(q-p)\frac{1-\operatorname{sgn} d}{2}} \mathbf{e} \left[\frac{ab}{2}(\mu,\mu)_Q \right] &\qquad (c = 0 \text{ octs}). \\ \end{split} \right. \end{split}$$

ここで,
$$\delta_{\mu,\mu'}=\left\{egin{array}{ll} 1 & (\mu=\mu'\mathfrak{O}$$
とき), $0 & (\mu
eq\mu'\mathfrak{O}$ とき)

さらに計算を行う事で,次のような $C_{\tilde{\gamma}_1}(\mu,\nu)$ の表示が得られる:

系 3.7. L の \mathbf{Z} -基底 $\{l_1,l_2,\cdots,l_n\}$ をとり, $D=\det((l_i,l_j)_Q)$ とおく.定理 $3.6(\mathrm{ii})$ で,さらに $c\in 2\mathbf{Z},\ cL^*\subset L,\ cd\neq 0,\ c(l,l)_Q\equiv 0\mod 2\ (orall l\in L^*)$ と仮定すると,

$$\varepsilon(\sqrt{-1})^{(p-q)\frac{1-\operatorname{sgn} d}{2}\operatorname{sgn} c}C_{\tilde{\gamma}_{1}}(\mu,\nu)$$

$$= \begin{cases} \delta_{\mu,d\nu}\mathbf{e}\left[\frac{ab}{2}(\mu,\nu)_{Q}\right]\varepsilon_{d}^{-n}(\sqrt{-1}\operatorname{sgn} c)^{n}\left(\frac{2c}{d}\right)^{n}\left(\frac{D}{-d}\right) & (d<0\,\mathrm{のとき}), \\ \delta_{\mu,d\nu}\mathbf{e}\left[\frac{ab}{2}(\mu,\nu)_{Q}\right]\varepsilon_{d}^{n}\left(\frac{-2c}{d}\right)^{n}\left(\frac{D}{d}\right) & (d>0\,\mathrm{obe}), \end{cases}$$

が成立する.ここで, $\varepsilon_d=\left\{egin{array}{ll} 1&(d\equiv 1\mod 4\ \mathfrak{O}$ とき),とし, $\left(\dfrac{\cdot}{\cdot}\right)$ は志村氏が定義した平方剰余記号 ([Shm] 参照) とする.

3.5 $\mathfrak{H} \times SO(Q)$ 上のテータ関数

最後に, $\S 3.4$ の結果を新谷氏の原論文 $[\operatorname{Shn}]$ にある形に書き直しておこう. $\widetilde{SL}(2,\mathbf{R})$ の極大コンパクト部分群 $\widetilde{SO}(2)$ を

$$\widetilde{SO}(2) = \{ (\kappa_t, \varepsilon) \mid t \in \mathbf{R}, \ \varepsilon \in \{\pm 1\} \}$$

で定義する.ここで, $\kappa_t = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \in SO(2)$ とする.また, $z = u + \sqrt{-1}v \in \mathfrak{H}$ に対して, $\tilde{\sigma}_z = \begin{pmatrix} \begin{pmatrix} \sqrt{v} & u/\sqrt{v} \\ 1/\sqrt{v} \end{pmatrix}, 1 \end{pmatrix}$ とおく.整数 m と $f \in \mathcal{S}(X)$ を

$$\omega(\iota_1(\kappa_t,\varepsilon))f = \varepsilon(e^{-\sqrt{-1}t})^{-\frac{m}{2}}f \qquad (\forall (\kappa_t,\varepsilon) \in \widetilde{SO}(2))$$
(3.4)

をみたすをみたすようにとり, $\mu\in L^*/L$ をとる.(例えば,m=p-q+2k と $f=F_z$ は (3.4) をみたす.) このとき, $\mathfrak{H} imes SO(Q)$ 上のテータ関数 $heta_f^{\mathfrak{H}}(z,g;\mu)$ を

$$\theta_f^{\mathfrak{H}}(z,g;\mu) = v^{-\frac{m}{2}}\theta_f(\tilde{\sigma}_z, {}^tg^{-1};\mu)$$

で定義する.

系 3.8. $\gamma_2 \in SO(Q) \cap GL(n,{\bf Z})$ と定理 3.6~(2) の仮定をみたす $\gamma_1 \in SL(2,{\bf Z})$ に対して ,

$$j(\gamma_1, z)^{-\frac{m}{2}} \theta_f^{\mathfrak{H}}(\gamma_1 z, \gamma_2 g; \mu) = \sum_{\nu \in L^*/L} C_{(\gamma_1, 1)}(\mu, \nu) \theta_f^{\mathfrak{H}}(z, g; \nu^t \gamma_2^{-1})$$

が成立する.

参考文献

[Ma] 松本久義. Weil 表現と Howe duality. (本報告集)

[Shm] Goro Shimura. On modular forms of half integral weight. *Ann. of Math. 97*, pp. 440–481, 1973.

[Shn] Takuro Shintani. On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J., Vol. 58, pp. 83–126, 1975.

[Su] 菅野孝史. Oda lift. (本報告集)

[Ta] 高瀬幸一. Weil 表現と古典的 theta 級数. 第 4 回整数論サマースクール報告集, pp. 44-62, 1996.