Magnetic Fields from Cosmological Perturbations

Keitaro Takahashi (Nagoya University, Japan) 1. Introduction

Electromagnetic properties of the early universe
 Magnetogenesis & tight coupling approximation

1. Introduction

primordial fluctuations

observation

- CMB
- galaxy distribution

theory

- inflation

 (initial condition)
- cosmological perturbation theory (linear)

magnetogenesis

magnetogenesis from cosmological perturbations before recombination

Hogan (2000) Berezhiani & Dolgov (2004) Matarrese et al. (2005) Gopal & Sethi (2005) KT et al. (2005, 2006, 2007, 2008) Siegel & Fry (2006) Hollenstein et al. (2008) Maeda et al. (2009)

based on

- cosmological perturbation theory (nonlinear)
- observational facts
- no physical assumption

extensions to the conventional formalism

What do we need for magnetogenesis?

$$\partial_t \vec{B} = -\nabla \times \vec{E}$$

electric field and its rotation

electric field

Conventionally, baryons

• Separate treatment of p and e is necessary. rotational part (Roy's talk)

- No rotational part at the linear order
- generated by nonlinear effect
 Linear order is sufficient for CMB
 but insufficient for B.

Two extensions are needed for magnetogenesis.

this talk

understanding the physics of magnetogenesis from cosmological perturbations

Output the end of t

- solve Maxwell and Ohm
- Newtonian
- neglect anisotropic stress
- tight coupling approximation
 - express B by familiar quantities ($\delta \gamma$)
 - compare with another approach

2. Electromagnetic properties of the early universe

KT, Ichiki & Sugiyama, PRD 77 (2008) 124028

(Newtonian) EOMs for photons, protons & electrons, neglecting the anisotropic stress of photons.

$$\begin{aligned} \frac{4}{3}\rho_{\gamma} \left[\partial_{t}\vec{v}_{\gamma} + H\vec{v}_{\gamma} + \left(\vec{v}_{\gamma} \cdot \frac{\nabla}{a}\right)\vec{v}_{\gamma}\right] & \text{Thomson} \\ &= -\frac{1}{3a}\nabla\rho_{\gamma} \left[-\frac{m_{e}^{2}}{m_{p}^{2}}\sigma_{T}n_{p}\rho_{\gamma}(\vec{v}_{\gamma} - \vec{v}_{p}) - \sigma_{T}n_{e}\rho_{\gamma}(\vec{v}_{\gamma} - \vec{v}_{e}) - \frac{4\rho_{\gamma}}{3a}\nabla\Phi \right] \\ &= n_{p}\left[\partial_{t}\vec{v}_{p} + H\vec{v}_{p} + \left(\vec{v}_{p} \cdot \frac{\nabla}{a}\right)\vec{v}_{p}\right] \\ &= en_{p}(\vec{E} + \vec{v}_{p} \times \vec{B}) \left[-e^{2}n_{p}n_{e}\eta(\vec{v}_{p} - \vec{v}_{e}) + \frac{m_{e}^{2}}{m_{p}^{2}}\sigma_{T}n_{p}\rho_{\gamma}(\vec{v}_{\gamma} - \vec{v}_{p}) - \frac{m_{p}n_{p}}{a}\nabla\Phi \right] \\ &= n_{e}\left[\partial_{t}\vec{v}_{e} + H\vec{v}_{e} + \left(\vec{v}_{e} \cdot \frac{\nabla}{a}\right)\vec{v}_{e}\right] \text{ Coulomb } \\ &= -en_{e}(\vec{E} + \vec{v}_{e} \times \vec{B}) \left[+e^{2}n_{p}n_{e}\eta(\vec{v}_{p} - \vec{v}_{e}) + \sigma_{T}n_{e}\rho_{\gamma}(\vec{v}_{\gamma} - \vec{v}_{e}) - \frac{m_{e}n_{e}}{a}\nabla\Phi \right] \end{aligned}$$

simplifying EOMs

relative and center-of-mass quantities

$$n_b \equiv \frac{m_p n_p + m_e n_e}{m_p + m_e}, \qquad \delta n_{pe} \equiv n_p - n_e,$$

$$\vec{v}_b \equiv \frac{m_p n_p \vec{v}_p + m_e n_e \vec{v}_e}{m_p n_p + m_e n_e}, \qquad \delta \vec{v}_{pe} \equiv \vec{v}_p - \vec{v}_e,$$

cosmological perturbations up to 2nd order

$$\begin{split} \rho_{\gamma}(t,\vec{x}) &= \rho_{\gamma}^{(0)}(t) + \rho_{\gamma}^{(1)}(t,\vec{x}) + \rho_{\gamma}^{(2)}(t,\vec{x}) + \cdots, \\ n_{b}(t,\vec{x}) &= n_{b}^{(0)}(t) + n_{b}^{(1)}(t,\vec{x}) + n_{b}^{(2)}(t,\vec{x}) + \cdots, \\ \vec{V}(t,\vec{x}) &= \vec{V}^{(1)}(t,\vec{x}) + \vec{V}^{(2)}(t,\vec{x}) + \cdots, \quad \nabla \times \vec{V}^{(1)} = 0 \\ \vec{B}(t,\vec{x}) &= \vec{B}^{(2)}(t,\vec{x}) + \cdots, \end{split}$$

 \rightarrow Hall term and Lorentz force are higher order.

rewriting EOMs

p-e relative motion, γ , γ -baryon relative motion

$$\begin{split} \frac{m_e}{e} \left[\partial_t \delta \vec{v}_{pe} + H \delta \vec{v}_{pe} + \left(\vec{v}_b \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{pe} + \left(\delta \vec{v}_{pe} \cdot \frac{\nabla}{a} \right) \vec{v}_b \right] \\ &= \vec{E} - \left(en_b \eta + \frac{\sigma_T \rho_\gamma}{e} \right) \delta \vec{v}_{pe} - \frac{\sigma_T \rho_\gamma}{e} \delta \vec{v}_{\gamma b} \\ \partial_t \vec{v}_\gamma + H \vec{v}_\gamma + \left(\vec{v}_\gamma \cdot \frac{\nabla}{a} \right) \vec{v}_\gamma \qquad \text{generalized Ohm's law} \\ &= -\frac{1}{4a} \frac{\nabla \rho_\gamma}{\rho_\gamma} - \frac{3}{4} \sigma_T n_b \left(\delta \vec{v}_{\gamma b} + \delta \vec{v}_{pe} \right) - \frac{1}{a} \nabla \Phi \\ \partial_t \delta \vec{v}_{\gamma b} + H \delta \vec{v}_{\gamma b} + \left(\vec{v} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} + \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \vec{v} - \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} \\ &= -\frac{1}{4a} \frac{\nabla \rho_\gamma}{\rho_\gamma} - \frac{\sigma_T \rho_\gamma}{m_p} \left(\delta \vec{v}_{\gamma b} + \delta \vec{v}_{pe} \right) \end{split}$$

conventional CMB

Conventionally, we deal with photons and baryons.

Solving Maxwell + Ohm

basic equations

- EOM of photons
- EOM of relative motion between photons and baryons
- generalized Ohm's law
- Maxwell equations

- solve in this section

how to solve

- up to 2nd order in cosmological perturbations
- regard Thomson term as an external source
 - → Electric charge, current and EM fields are expressed as functions of Thomson term.

basic equations

-1

Thomson term (source) effective resistivity

$$\vec{C} = \frac{\sigma_T \rho_\gamma}{e} \delta \vec{v}_{\gamma k}$$

$$\eta_{\rm eff} = \eta \left(1 + \frac{\tau_{\rm C}}{\tau_{\rm T}} + H \tau_{\rm C} \right)$$

B = 0 at the 1st order in CP.

$$\begin{split} &\frac{1}{a}\nabla\cdot\vec{E}^{(1)} = e\delta n_{pe}^{(1)},\\ &\partial_t\vec{E}^{(1)} + 2H\vec{E}^{(1)} = -en_b^{(0)}\delta\vec{v}_{pe}^{(1)},\\ &\partial_t\delta n_{pe}^{(1)} + 3H\delta n_{pe}^{(1)} + \frac{n_b^{(0)}}{a}\nabla\cdot\delta\vec{v}_{pe}^{(1)} = 0,\\ &\vec{E}^{(1)} = \frac{m_e}{e(1+\beta)}\partial_t\delta\vec{v}_{pe}^{(1)} + en_b^{(0)}\eta_{\text{eff}}^{(0)}\delta\vec{v}_{pe}^{(1)} + \vec{C}^{(1)}. \end{split}$$

First, take the divergence of the Ohm's law.

charge density

divergence of the generalized Ohm's law

$$\frac{1}{\omega_p^2} \partial_t^2 \rho^{(1)} + \eta_{\text{eff}}^{(0)} \partial_t \rho^{(1)} + \rho^{(1)} = \frac{1}{a} \nabla \cdot \vec{C}^{(1)} \quad \text{damped oscillation with a source}$$

$$\omega_p^{-1} \equiv \sqrt{\frac{m_e}{e^2 n^{(0)}}} = 2 \times 10^{-9} \sec\left(\frac{1+z}{10^5}\right)^{-3/2}$$

$$\tau_{\text{C}} = \frac{1}{\omega_p^2 \eta} = 4 \times 10^{-3} \sec\left(\frac{1+z}{10^5}\right)^{-3/2}$$

$$\rho^{(1)} = \nabla \cdot \vec{C}^{(1)}$$
In cosmological timescale, plasma oscillation damps. The equilibrium is nonzero due to the source.

solutions for the 1st order in CP

$$\begin{split} \delta n_{pe}^{(1)} &= \frac{1}{ea} \nabla \cdot \vec{C}^{(1)} \\ \delta \vec{v}_{pe}^{(1)} &= -\frac{1}{en_b^{(0)}} (\partial_t + 2H) \vec{C}^{(1)} \\ \vec{E}^{(1)} &= \vec{C}^{(1)}, \end{split}$$

$$\rho^{(1)} = \frac{1}{a} \nabla \cdot \vec{C}^{(1)}$$
$$\vec{j}^{(1)} = -(\partial_t + 2H)\vec{C}^{(1)}$$

Electric charge, current and E field are expressed by the Thomson term.

second order in CP

B field joins at the second order.

$$\begin{aligned} \nabla \cdot \vec{E}^{(2)} &= e \delta n_{pe}^{(2)}, \\ \partial_t \vec{E}^{(2)} &= \nabla \times \vec{B}^{(2)} - e \left(n_b^{(0)} \delta \vec{v}_{pe}^{(2)} + n_b^{(1)} \delta \vec{v}_{pe}^{(1)} + \delta n_{pe}^{(1)} \vec{v}_b^{(1)} \right), \\ \partial_t \vec{B}^{(2)} &= -\nabla \times \vec{E}^{(2)}, \\ \partial_t \delta n_{pe}^{(2)} &+ \nabla \cdot \left(n_b^{(0)} \delta \vec{v}_{pe}^{(2)} + n_b^{(1)} \delta \vec{v}_{pe}^{(1)} + \delta n_{pe}^{(1)} \vec{v}_b^{(1)} \right) = 0, \\ \vec{E}^{(2)} &= \frac{m_e}{e(1+\beta)} \left[\partial_t \delta \vec{v}_{pe}^{(2)} + \left(\vec{v}_b^{(1)} \cdot \nabla \right) \delta \vec{v}_{pe}^{(1)} + \left(\delta \vec{v}_{pe}^{(1)} \cdot \nabla \right) \vec{v}_b^{(1)} \right] \\ &+ e n_b^{(0)} \eta_{\text{eff}}^{(0)} \left(\delta \vec{v}_{pe}^{(2)} + \frac{n_b^{(1)}}{n_b^{(0)}} \delta \vec{v}_{pe}^{(1)} + \frac{\eta_{\text{eff}}^{(1)}}{\eta_{\text{eff}}^{(0)}} \delta \vec{v}_{pe}^{(1)} \right) + \vec{C}^{(2)}. \end{aligned}$$

solutions up to second order in CP

$$\begin{split} \vec{E} &= \vec{C}, \\ \vec{B} &= -\frac{1}{a^2} \int dt \ a \nabla \times \vec{C}, \\ \rho &= \frac{1}{a} \nabla \cdot \vec{C}, \\ \vec{j} &= -(\partial_t + 2H) \vec{C} - \frac{1}{a^3} \int dt \ a \nabla \times \nabla \times \vec{C} \end{split}$$

interpretation

elec

E field

proton

hoton
ressure

$$\vec{E} = \vec{C},$$

 $\vec{B} = -\frac{1}{a^2} \int dt \ a \nabla \times \vec{C},$
 $\rho = \frac{1}{a} \nabla \cdot \vec{C},$
 $\vec{j} = -(\partial_t + 2H)\vec{C} - \frac{1}{a^3} \int dt \ a \nabla \times \nabla \times \vec{C}$

• electric current term is not important in Ohm's law \rightarrow photon pressure balances with E field

- current \rightarrow (displacement current) + (B field)
- E and charge vanish when Thomson term disappear. B and current do not because they are integral.

summary of section 2

solving Maxwell + Ohm

- up to second order in CP
- Thomson term was treated as an external source
 → Electromagnetic quantities are expressed
 by the Thomson term.
- We need the Thomson term (photon-baryon relative velocity) to evaluate B.

3. Magnetogenesis & tight coupling approximation

magnetogenesis

B field and Thomson term

$$\vec{B} = -\frac{1}{a^2} \int dt \ a \nabla \times \vec{C}$$

$$\vec{C} = \frac{\sigma_T \rho_\gamma}{e} \delta \vec{v}_{\gamma b}$$

vector product of density gradient of photons and velocity difference

$$\nabla \times \vec{C}^{(2)} = \frac{\sigma_T \rho_{\gamma}^{(0)}}{e} \left[\frac{\nabla \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \times \delta \vec{v}_{\gamma b}^{(1)} + \nabla \times \delta \vec{v}_{\gamma b}^{(2)} \right]$$

vorticity difference

We solve for δ v by tight coupling approximation. (Peebles & Yu, 1970; Kobayashi, Maartens, Shiromizu & KT, 2007)

EOM for γ -b relative motion

$$\begin{aligned} \partial_t \delta \vec{v}_{\gamma b} + H \delta \vec{v}_{\gamma b} + \left(\vec{v} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} + \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \vec{v} - \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} \\ &= -\frac{1}{4a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}} - \frac{\sigma_T \rho_{\gamma}}{m_p} \left(\delta \vec{v}_{\gamma b} + \delta \vec{v}_{pe} \right) \end{aligned}$$

Electric current has a negligible effect on the dynamics of the γ -b relative motion.

$$\frac{|\delta \vec{v}_{pe}|}{|\delta \vec{v}_{\gamma b}|} \sim \frac{\sigma_T \rho_\gamma k}{e^2 a n_b} = \frac{k}{a \omega_p^2 \tau_T} \sim 1.5 \times 10^{-27} \left(\frac{k}{aH}\right) \left(\frac{1+z}{10^5}\right)^3$$

tight coupling approximation (TCA)

$$\frac{m_p}{\sigma_T \rho_\gamma} \frac{k}{a} = 2.4 \times 10^{-6} \left(\frac{k}{aH}\right) \left(\frac{1+z}{10^5}\right)^{-2}$$
$$\delta \vec{v}_{\gamma b} = \delta \vec{v}_{\gamma b}^{(I)} + \delta \vec{v}_{\gamma b}^{(II)} + \cdots$$

Time derivative is less important.

 $(\mathrm{I},1) \rightarrow \mathrm{TCA} \ \mathrm{I} \ \& \ \mathrm{CP} \ 1, \ (\mathrm{I},2) \rightarrow \mathrm{TCA} \ \mathrm{I} \ \& \ \mathrm{CP} \ 2$

However, the source of B is zero at TCA I.

$$\nabla \times \vec{C}^{(2)} = \frac{\sigma_T \rho_{\gamma}^{(0)}}{e} \left[\frac{\nabla \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \times \delta \vec{v}_{\gamma b}^{(1)} + \nabla \times \delta \vec{v}_{\gamma b}^{(2)} \right]$$

We must go on to TCA II.

$$\delta \vec{v}_{\gamma b}^{(II,1)} = -\frac{1}{4\bar{\nu}^{(0)}} \nabla \Delta_{\gamma}^{(I,1)} + \frac{1}{4(\bar{\nu}^{(0)})^2} \frac{\partial_t \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}$$

This is not parallel to $\nabla \rho$ in general.

$$\begin{split} \delta \vec{v}_{\gamma b}^{(II,2)} &= -\frac{1}{4\bar{\nu}^{(0)}} \left[\nabla \Delta_{\gamma}^{(I,2)} - \frac{\bar{\nu}^{(1)}}{\bar{\nu}^{(0)}} \Delta_{\gamma}^{(I,1)} - \frac{\nu^{(I,1)}}{\bar{\nu}^{(0)}} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \right] \\ &+ \frac{1}{4(\bar{\nu}^{(0)})^2} \left[\frac{\partial_t \nabla \bar{\rho}_{\gamma}^{(2)}}{\bar{\rho}_{\gamma}^{(0)}} - \left(\frac{\bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} + \frac{2\bar{\nu}^{(1)}}{\bar{\nu}^{(0)}} \right) \frac{\partial_t \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} - \left(\frac{\partial_t \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} + \frac{\partial_t \bar{\nu}^{(1)}}{\bar{\nu}^{(0)}} \right) \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \\ &+ (\vec{v} \cdot \nabla) \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} + \left(\frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \cdot \nabla \right) \vec{v} \right], \end{split}$$

B is generated at TCA II.

$$\rho^{(1)} = -\frac{1}{4} \frac{m_p}{e} \frac{\nabla^2 \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}},$$

$$\vec{j}^{(1)} = \frac{1}{4} \frac{m_p}{e} \frac{\partial_t \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}},$$

$$\vec{E}^{(1)} = -\frac{1}{4} \frac{m_p}{e} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}},$$

All EM quantities are expressed by familiar quantities.

$$\vec{B}^{(2)} = -\frac{1}{16} \bar{R}^{(0)} \frac{m_p^2}{e\sigma_T \bar{\rho}_{\gamma}^{(0)}} \int dt \; \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \times \left[\frac{\partial_t \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} + \int dt \; \frac{\nabla (\nabla^2 \bar{\rho}_{\gamma}^{(1)})}{\bar{\rho}_{\gamma}^{(0)}} \right]$$

Evaluation of B spectrum is now in progress, but the anisotropic stress must be included to be complete.

another approach

Ichiki, KT et al. (2006)

• derive the source term (relativistic)

$$\partial_t B^i = \frac{8\sigma_T \rho_{\gamma}^{(0)}}{3e} \epsilon^{ijk} \left[\frac{\rho_{\gamma,k}^{(1)}}{\rho_{\gamma}^{(0)}} \delta v_{b\gamma \, j}^{(1)} + \delta v_{b\gamma \, j,k}^{(2)} + \frac{1}{8} \left(v_{b \, l}^{(1)} \Pi_{\gamma \, j}^{(1)l} \right)_{,k} \right]$$

 numerically calculate the spectrum contributed from (1st order) × (1st order), neglecting the vorticity (purely 2nd order) spectrum

toward the complete evaluation

numerical approach

- numerically cancel TCA I
- include vorticity (purely 2nd order)
- confirm the validity of TCA

TCA approach

- TCA I already canceled by hand
- include anisotropic stress

These two approaches are necessary to cross check and evaluate the spectrum.

 $\tau_{\rm C} = \frac{1}{\omega_p^2 \eta} = 4 \times 10^{-3} \sec\left(\frac{1+z}{10^5}\right)^{-\frac{3}{2}}$ $\tau_{\rm T} = \frac{m_p}{\sigma_T \rho_\gamma} = 10^3 \sec\left(\frac{1+z}{10^5}\right)^{-4}$ $H^{-1} = 4.5 \times 10^9 \sec\left(\frac{1+z}{10^5}\right)^{-2}$

Because H $\tau \ll 1$, we will use tight coupling approximation.

timescales

tight coupling approximation (TCA)

We need the velocity difference.

$$\partial_t \delta \vec{v} = -\frac{1}{\tau} \delta \vec{v} + \vec{A}$$

If (scattering time) << (dynamical timescale) $\tau \partial_t \sim \tau H \ll 1$

tight coupling expansion is good. (Peebles & Yu, 1970)

$$\delta \vec{v} = \delta \vec{v}^{(I)} + \delta \vec{v}^{(II)} + \cdots \quad \vec{A} = \vec{A}^{(0)} + \vec{A}^{(I)} + \cdots$$

TCA I
$$0 = -\frac{1}{\tau}\delta\vec{v}^{(I)} + \vec{A}^{(0)}$$

TCA II
$$\partial_t \delta \vec{v}^{(I)} = -\frac{1}{\tau} \delta \vec{v}^{(II)} + \vec{A}^{(I)}$$

$$\left|\delta \vec{v}^{(I)}\right| \sim H\tau v$$
$$\left|\delta \vec{v}^{(II)}\right| \sim (H\tau)^2 v$$

EOM of photon-baryon relative motion

$$\begin{aligned} \partial_t \delta \vec{v}_{\gamma b} + H \delta \vec{v}_{\gamma b} + \left(\vec{v} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} + \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \vec{v} - \frac{1 - R}{1 + R} \left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a} \right) \delta \vec{v}_{\gamma b} \\ = -\frac{1}{4a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}} - \frac{1 + R}{1 + \beta} \frac{\sigma_T \rho_{\gamma}}{m_p} \left[(1 + \beta^2) \delta \vec{v}_{\gamma b} + \frac{1 - \beta^3}{1 + \beta} \delta \vec{v}_{pe} \right]. \end{aligned}$$

contribution from electric current

$$\frac{|\delta \vec{v}_{pe}|}{|\delta \vec{v}_{\gamma b}|} \sim \frac{\sigma_{\rm T} \rho_{\gamma} k}{e^2 a n_b} = \frac{k}{a \omega_p^2 \tau_{\rm T}} \sim 1.5 \times 10^{-27} \left(\frac{k}{a H}\right) \left(\frac{1+z}{10^5}\right)^3$$

Electric current is negligible. Protons and electrons can be treated as one fluid.

order estimation

deviation between photons and baryons

$$\Delta^{(I,1)} \sim \left| \delta \vec{v}_{\gamma b}^{(1)} \right| \sim \frac{1}{4} \frac{m_p}{\sigma_T \rho_{\gamma}^{(0)}} \frac{k^2}{a^2 H} \delta_{\gamma} = \frac{1}{4} \frac{k^2 \tau_T}{a^2 H} \delta_{\gamma}$$
$$\sim 7 \times 10^{-13} \left(\frac{k}{aH}\right)^2 \left(\frac{1+z}{10^5}\right)^{-1}$$

deviation between protons and electrons

$$\left| \frac{\rho^{(1)}}{e n_b^{(0)}} \right| \sim \left| \delta \vec{v}_{pe}^{(1)} \right| \sim \frac{m_p}{4e^2 n_b^{(0)}} \frac{k^2}{a^2} \delta_\gamma = \frac{1}{4\beta} \frac{k^2}{a^2 \omega_p^2} \delta_\gamma$$
$$\sim 9 \times 10^{-40} \left(\frac{k}{aH}\right)^2 \left(\frac{1+z}{10^5}\right)^3$$