Magnetic Fields

 from
Cosmological Perturbations

Keitaro Takahashi (Nagoya University, Japan)

1. Introduction
2. Electromagnetic properties of the early universe
3. Magnetogenesis \& tight coupling approximation

1. Introduction

primordial fluctuations

observation

- CMB
- galaxy distribution theory
- inflation
(initial condition)
- cosmological perturbation theory (linear)

magnetogenesis

magnetogenesis from cosmological perturbations before recombination
Hogan (2000)
Berezhiani \& Dolgov (2004)
Matarrese et al. (2005)
Gopal \& Sethi (2005)
KT et al. $(2005,2006,2007,2008)$
Siegel \& Fry (2006)
Hollenstein et al. (2008)
Maeda et al. (2009)
based on

- cosmological perturbation theory (nonlinear)
- observational facts
- no physical assumption

basic idea

Thomson scattering

Thomson scattering
\rightarrow deviation in motion due to mass difference
\rightarrow net electric charge density and electric current
\rightarrow magnetic fields

extensions to the conventional formalism

What do we need for magnetogenesis?

electric field and its rotation

electric field

- Conventionally, baryons
- Separate treatment of p and e is necessary. rotational part (Roy's talk)
- No rotational part at the linear order
- generated by nonlinear effect Linear order is sufficient for CMB but insufficient for B.

Two extensions are needed for magnetogenesis.

this talk

understanding the physics of magnetogenesis from cosmological perturbations

Oelectromagnetic properties of the early universe

- solve Maxwell and Ohm
- Newtonian
- neglect anisotropic stress
tight coupling approximation
- express B by familiar quantities ($\delta \gamma$)
- compare with another approach

2. Electromagnetic properties of the early universe

KT, Ichiki \& Sugiyama, PRD 77 (2008) 124028

EOMs

(Newtonian) EOMs for photons, protons \& electrons, neglecting the anisotropic stress of photons.

$$
\begin{aligned}
& \frac{4}{3} \rho_{\gamma}\left[\partial_{t} \vec{v}_{\gamma}+H \vec{v}_{\gamma}+\left(\vec{v}_{\gamma} \cdot \frac{\nabla}{a}\right) \vec{v}_{\gamma}\right] \text { Thomson } \\
& \quad=-\frac{1}{3 a} \nabla \rho_{\gamma}-\frac{m_{e}^{2}}{m_{p}^{2}} \sigma_{T} n_{p} \rho_{\gamma}\left(\vec{v}_{\gamma}-\vec{v}_{p}\right)-\sigma_{T} n_{e} \rho_{\gamma}\left(\vec{v}_{\gamma}-\vec{v}_{e}\right)-\frac{4 \rho_{\gamma}}{3 a} \nabla \Phi \\
& m_{p} n_{p}\left[\partial_{t} \vec{v}_{p}+H \vec{v}_{p}+\left(\vec{v}_{p} \cdot \frac{\nabla}{a}\right) \vec{v}_{p}\right] \\
& \quad=e n_{p}\left(\vec{E}+\vec{v}_{p} \times \vec{B}\right)-e^{2} n_{p} n_{e} \eta\left(\vec{v}_{p}-\vec{v}_{e}\right)+\frac{m_{e}^{2}}{m_{p}^{2}} \sigma_{T} n_{p} \rho_{\gamma}\left(\vec{v}_{\gamma}-\vec{v}_{p}\right)-\frac{m_{p} n_{p}}{a} \nabla \Phi
\end{aligned}
$$

$$
m_{e} n_{e}\left[\partial_{t} \vec{v}_{e}+H \vec{v}_{e}+\left(\vec{v}_{e} \cdot \frac{\nabla}{a}\right) \vec{v}_{e}\right] \text { Coulomb } \quad \text { Thomson }
$$

$$
=-e n_{e}\left(\vec{E}+\vec{v}_{e} \times \vec{B}\right)+e^{2} n_{p} n_{e} \eta\left(\vec{v}_{p}-\vec{v}_{e}\right)+\sigma_{T} n_{e} \rho_{\gamma}\left(\vec{v}_{\gamma}-\vec{v}_{e}\right)-\frac{m_{e} n_{e}}{a} \nabla \Phi
$$

simplifying EOMs

relative and center-of-mass quantities

$$
\begin{aligned}
n_{b} & \equiv \frac{m_{p} n_{p}+m_{e} n_{e}}{m_{p}+m_{e}}, \quad \delta n_{p e} \equiv n_{p}-n_{e} \\
\vec{v}_{b} & \equiv \frac{m_{p} n_{p} \vec{v}_{p}+m_{e} n_{e} \vec{v}_{e}}{m_{p} n_{p}+m_{e} n_{e}}, \quad \delta \vec{v}_{p e} \equiv \vec{v}_{p}-\vec{v}_{e}
\end{aligned}
$$

cosmological perturbations up to 2 nd order

$$
\begin{aligned}
& \rho_{\gamma}(t, \vec{x})=\rho_{\gamma}^{(0)}(t)+\rho_{\gamma}^{(1)}(t, \vec{x})+\rho_{\gamma}^{(2)}(t, \vec{x})+\cdots, \\
& n_{b}(t, \vec{x})=n_{b}^{(0)}(t)+n_{b}^{(1)}(t, \vec{x})+n_{b}^{(2)}(t, \vec{x})+\cdots, \\
& \vec{V}(t, \vec{x})=\vec{V}^{(1)}(t, \vec{x})+\vec{V}^{(2)}(t, \vec{x})+\cdots, \quad \nabla \times \vec{V}^{(1)}=0 \\
& \vec{B}(t, \vec{x})=\vec{B}^{(2)}(t, \vec{x})+\cdots,
\end{aligned}
$$

\rightarrow Hall term and Lorentz force are higher order.

rewriting EOMs

p -e relative motion, γ, γ-baryon relative motion

$$
\begin{aligned}
& \frac{m_{e}}{e}\left[\partial_{t} \delta \vec{v}_{p e}+H \delta \vec{v}_{p e}+\left(\vec{v}_{b} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{p e}+\left(\delta \vec{v}_{p e} \cdot \frac{\nabla}{a}\right) \vec{v}_{b}\right] \\
& \quad=\vec{E}-\left(e n_{b} \eta+\frac{\sigma_{T} \rho_{\gamma}}{e}\right) \delta \vec{v}_{p e}-\frac{\sigma_{T} \rho_{\gamma}}{e} \delta \vec{v}_{\gamma b} \\
& \quad \partial_{t} \vec{v}_{\gamma}+H \vec{v}_{\gamma}+\left(\vec{v}_{\gamma} \cdot \frac{\nabla}{a}\right) \vec{v}_{\gamma} \quad \text { generalized Ohm's law } \\
& \quad=-\frac{1}{4 a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}}-\frac{3}{4} \sigma_{T} n_{b}\left(\delta \vec{v}_{\gamma b}+\delta \vec{v}_{p e}\right)-\frac{1}{a} \nabla \Phi \\
& \partial_{t} \delta \vec{v}_{\gamma b}+H \delta \vec{v}_{\gamma b}+\left(\vec{v} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b}+\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \vec{v}-\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b} \\
& \quad=-\frac{1}{4 a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}}-\frac{\sigma_{T} \rho_{\gamma}}{m_{p}}\left(\delta \vec{v}_{\gamma b}+\delta \vec{v}_{p e}\right)
\end{aligned}
$$

conventional CMB

Conventionally, we deal with photons and baryons.

Solving Maxwell + Ohm

basic equations

- EOM of photons
- EOM of relative motion between photons and baryons
- generalized Ohm's law
- Maxwell equations
how to solve
- up to 2nd order in cosmological perturbations
- regard Thomson term as an external source \rightarrow Electric charge, current and EM fields are expressed as functions of Thomson term.

basic equations

$\frac{1}{a} \nabla \cdot \vec{E}=e \delta n_{p e}$
$\partial_{t} \vec{E}+2 H \vec{E}=\frac{1}{a} \nabla \times \vec{B}-e\left(n_{b} \delta \vec{v}_{p e}+\delta n_{p e} \vec{v}_{b}\right)$,
$\partial_{t} \vec{B}+2 H \vec{B}=-\frac{1}{a} \nabla \times \vec{E}$
$\partial_{t} \delta n_{p e}+3 H \delta n_{p e}+\frac{1}{a} \nabla \cdot\left(n_{b} \delta \vec{v}_{p e}+\delta n_{p e} \vec{v}_{b}\right)=0$

EOM of Vpe

Ohm's law

$\vec{E}=\frac{m_{e}}{e(1+\beta)}\left[\partial_{t} \delta \vec{v}_{p e}+\left(\vec{v}_{b} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{p e}+\left(\delta \vec{v}_{p e} \cdot \frac{\nabla}{a}\right) \vec{v}_{b}\right]+e n_{b} \eta_{\mathrm{eff}} \delta \vec{v}_{p e}+\vec{C}$

Thomson term (source)

$$
\vec{C}=\frac{\sigma_{T} \rho_{\gamma}}{e} \delta \vec{v}_{\gamma b}
$$

effective resistivity

$$
\eta_{\mathrm{eff}}=\eta\left(1+\frac{\tau_{\mathrm{C}}}{\tau_{\mathrm{T}}}+H \tau_{\mathrm{C}}\right)
$$

first order in CP

$B=0$ at the 1 st order in CP.

$$
\begin{aligned}
& \frac{1}{a} \nabla \cdot \vec{E}^{(1)}=e \delta n_{p e}^{(1)}, \\
& \partial_{t} \vec{E}^{(1)}+2 H \vec{E}^{(1)}=-e n_{b}^{(0)} \delta \vec{v}_{p e}^{(1)} \\
& \partial_{t} \delta n_{p e}^{(1)}+3 H \delta n_{p e}^{(1)}+\frac{n_{b}^{(0)}}{a} \nabla \cdot \delta \vec{v}_{p e}^{(1)}=0, \\
& \vec{E}^{(1)}=\frac{m_{e}}{e(1+\beta)} \partial_{t} \delta \vec{v}_{p e}^{(1)}+e n_{b}^{(0)} \eta_{\mathrm{eff}}^{(0)} \delta \vec{v}_{p e}^{(1)}+\vec{C}^{(1)}
\end{aligned}
$$

First, take the divergence of the Ohm's law.

charge density

divergence of the generalized Ohm's law
$\frac{1}{\omega_{p}^{2}} \partial_{t}^{2} \rho^{(1)}+\eta_{\text {eff }}^{(0)} \partial_{t} \rho^{(1)}+\rho^{(1)}=\frac{1}{a} \nabla \cdot \vec{C}^{(1)}$
damped oscillation with a source

$$
\omega_{p}^{-1} \equiv \sqrt{\frac{m_{e}}{e^{2} n^{(0)}}}=2 \times 10^{-9} \sec \left(\frac{1+z}{10^{5}}\right)^{-3 / 2}
$$

$$
\tau_{\mathrm{C}}=\frac{1}{\omega_{p}^{2} \eta}=4 \times 10^{-3} \sec \left(\frac{1+z}{10^{5}}\right)^{-3 / 2}
$$

In cosmological timescale, plasma oscillation damps. The equilibrium is nonzero due to the source.

solutions for the 1st order in CP

$$
\begin{aligned}
& \delta n_{p e}^{(1)}=\frac{1}{e a} \nabla \cdot \vec{C}^{(1)} \\
& \delta \vec{v}_{p e}^{(1)}=-\frac{1}{e n_{b}^{(0)}}\left(\partial_{t}+2 H\right) \vec{C}^{(1)} \\
& \vec{E}^{(1)}=\vec{C}^{(1)},
\end{aligned}
$$

$$
\rho^{(1)}=\frac{1}{a} \nabla \cdot \vec{C}^{(1)}
$$

Electric charge, current and E field

$$
\vec{j}^{(1)}=-\left(\partial_{t}+2 H\right) \vec{C}^{(1)}
$$ are expressed by the Thomson term.

second order in CP

B field joins at the second order.

$$
\begin{aligned}
& \nabla \cdot \vec{E}^{(2)}= e \delta n_{p e}^{(2)} \\
& \partial_{t} \vec{E}^{(2)}= \nabla \times \vec{B}^{(2)}-e\left(n_{b}^{(0)} \delta \vec{v}_{p e}^{(2)}+n_{b}^{(1)} \delta \vec{v}_{p e}^{(1)}+\delta n_{p e}^{(1)} \vec{v}_{b}^{(1)}\right) \\
& \partial_{t} \vec{B}^{(2)}=-\nabla \times \vec{E}^{(2)} \\
& \partial_{t} \delta n_{p e}^{(2)}+\nabla \cdot\left(n_{b}^{(0)} \delta \vec{v}_{p e}^{(2)}+n_{b}^{(1)} \delta \vec{v}_{p e}^{(1)}+\delta n_{p e}^{(1)} \vec{v}_{b}^{(1)}\right)=0, \\
& \vec{E}^{(2)}= \frac{m_{e}}{e(1+\beta)}\left[\partial_{t} \delta \vec{v}_{p e}^{(2)}+\left(\vec{v}_{b}^{(1)} \cdot \nabla\right) \delta \vec{v}_{p e}^{(1)}+\left(\delta \vec{v}_{p e}^{(1)} \cdot \nabla\right) \vec{v}_{b}^{(1)}\right] \\
&+e n_{b}^{(0)} \eta_{\mathrm{eff}}^{(0)}\left(\delta \vec{v}_{p e}^{(2)}+\frac{n_{b}^{(1)}}{n_{b}^{(0)}} \delta \vec{v}_{p e}^{(1)}+\frac{\eta_{\mathrm{eff}}^{(1)}}{\eta_{\mathrm{eff}}^{(0)}} \delta \vec{v}_{p e}^{(1)}\right)+\vec{C}^{(2)}
\end{aligned}
$$

solutions up to second order in CP

$$
\begin{array}{ll}
\vec{E}=\vec{C}, & \\
\vec{B}=-\frac{1}{a^{2}} \int d t a \nabla \times \vec{C}, \\
\rho=\frac{1}{a} \nabla \cdot \vec{C}, & \text { zero at the 1st } \\
\vec{j}=-\left(\partial_{t}+2 H\right) \vec{C}-\frac{1}{a^{3}} \int d t a \nabla \times \nabla \times \vec{C}
\end{array}
$$

interpretation

- electric current term is not important in Ohm's law $\rightarrow \quad$ photon pressure balances with E field
- current \rightarrow (displacement current) + (B field)
- E and charge vanish when Thomson term disappear. B and current do not because they are integral.

summary of section 2

solving Maxwell + Ohm

- up to second order in CP
- Thomson term was treated as an external source \rightarrow Electromagnetic quantities are expressed by the Thomson term.
- We need the Thomson term (photon-baryon relative velocity) to evaluate B.

3. Magnetogenesis \& tight coupling approximation

magnetogenesis

B field and Thomson term

$$
\vec{B}=-\frac{1}{a^{2}} \int d t a \nabla \times \vec{C}
$$

$$
\vec{C}=\frac{\sigma_{T} \rho_{\gamma}}{e} \delta \vec{v}_{\gamma b}
$$

vector product of
density gradient of photons and velocity difference

We solve for $\delta \mathrm{v}$ by tight coupling approximation. (Peebles \& Yu, 1970; Kobayashi, Maartens, Shiromizu \& KT, 2007)

EOM for $\gamma-\mathrm{b}$ relative motion

$$
\begin{aligned}
& \partial_{t} \delta \vec{v}_{\gamma b}+H \delta \vec{v}_{\gamma b}+\left(\vec{v} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b}+\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \vec{v}-\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b} \\
& \quad=-\frac{1}{4 a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}}-\frac{\sigma_{T} \rho_{\gamma}}{m_{p}}\left(\delta \vec{v}_{\gamma b}+\delta \vec{v}_{p e}\right)
\end{aligned}
$$

Electric current has a negligible effect on the dynamics of the γ-b relative motion.

$$
\frac{\left|\delta \vec{v}_{p e}\right|}{\left|\delta \vec{v}_{\gamma b}\right|} \sim \frac{\sigma_{T} \rho_{\gamma} k}{e^{2} a n_{b}}=\frac{k}{a \omega_{p}^{2} \tau_{\mathrm{T}}} \sim 1.5 \times 10^{-27}\left(\frac{k}{a H}\right)\left(\frac{1+z}{10^{5}}\right)^{3}
$$

tight coupling approximation (TCA)

$$
\frac{m_{p}}{\sigma_{T} \rho_{\gamma}} \frac{k}{a}=2.4 \times 10^{-6}\left(\frac{k}{a H}\right)\left(\frac{1+z}{10^{5}}\right)^{-2}
$$

Time derivative is less important.

$$
\delta \vec{v}_{\gamma b}=\delta \vec{v}_{\gamma b}^{(I)}+\delta \vec{v}_{\gamma b}^{(I I)}+\cdots
$$

TCA I

$(\mathrm{I}, 1) \rightarrow \mathrm{TCA} I \& \mathrm{CP} 1,(\mathrm{I}, 2) \rightarrow \mathrm{TCA}$ I \& CP 2

$$
\begin{aligned}
& \delta \vec{v}_{\gamma b}^{(I, 1)}=-\frac{1}{4} \frac{m_{p}}{\sigma_{T} \bar{\rho}_{\gamma}^{(0)}} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}, \\
& \delta \vec{v}_{\gamma b}^{(I, 2)}=-\frac{1}{4} \frac{m_{p}}{\sigma_{T} \bar{\rho}_{\gamma}^{(0)}}\left[\frac{\nabla \bar{\rho}_{\gamma}^{(2)}}{\bar{\rho}_{\gamma}^{(0)}}-2 \frac{\bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}\right]
\end{aligned}
$$

However, the source of B is zero at TCA I.

$$
\nabla \times \vec{C}^{(2)}=\frac{\sigma_{T} \rho_{\gamma}^{(0)}}{e}\left[\frac{\nabla \rho_{\gamma}^{(1)}}{\rho_{\gamma}^{(0)}} \times \delta \vec{v}_{\gamma b}^{(1)}+\nabla \times \delta \vec{v}_{\gamma b}^{(2)}\right]
$$

We must go on to TCA II.

TCA II

$\delta \bar{v}_{\gamma b}^{(I I, 1)}=-\frac{1}{4 \bar{\nu}^{(0)}} \nabla \Delta_{\gamma}^{(I, 1)}+\frac{1}{4\left(\bar{\nu}^{(0)}\right)^{2}} \frac{\partial_{t} \nabla \overline{\rho_{\gamma}^{(1)}}}{\bar{\rho}_{\gamma}^{(0)}}$
This is not parallel to $\nabla \rho$ in general.

$$
\begin{aligned}
\delta \vec{v}_{\gamma b}^{(I I, 2)}= & -\frac{1}{4 \bar{\nu}^{(0)}}\left[\nabla \Delta_{\gamma}^{(I, 2)}-\frac{\bar{\nu}^{(1)}}{\bar{\nu}^{(0)}} \Delta_{\gamma}^{(I, 1)}-\frac{\nu^{(I, 1)}}{\bar{\nu}^{(0)}} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}\right] \\
& +\frac{1}{4\left(\bar{\nu}^{(0)}\right)^{2}}\left[\frac{\partial_{t} \nabla \bar{\rho}_{\gamma}^{(2)}}{\bar{\rho}_{\gamma}^{(0)}}-\left(\frac{\bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}+\frac{2 \bar{\nu}^{(1)}}{\bar{\nu}^{(0)}}\right) \frac{\partial_{t} \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}-\left(\frac{\partial_{t} \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}+\frac{\partial_{t} \bar{\nu}^{(1)}}{\bar{\nu}^{(0)}}\right) \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}\right. \\
& \left.\quad+(\vec{v} \cdot \nabla) \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}+\left(\frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \cdot \nabla\right) \vec{v}\right]
\end{aligned}
$$

B is generated at TCA II.

results

$\rho^{(1)}=-\frac{1}{4} \frac{m_{p}}{e} \frac{\nabla^{2} \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}$,
$\vec{j}^{(1)}=\frac{1}{4} \frac{m_{p}}{e} \frac{\partial_{t} \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}$,
$\vec{E}^{(1)}=-\frac{1}{4} \frac{m_{p}}{e} \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}$,
All EM quantities are expressed by familiar quantities.
$\vec{B}^{(2)}=-\frac{1}{16} \bar{R}^{(0)} \frac{m_{p}^{2}}{e \sigma_{T} \bar{\rho}_{\gamma}^{(0)}} \int d t \frac{\nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}} \times\left[\frac{\partial_{t} \nabla \bar{\rho}_{\gamma}^{(1)}}{\bar{\rho}_{\gamma}^{(0)}}+\int d t \frac{\nabla\left(\nabla^{2} \bar{\rho}_{\gamma}^{(1)}\right)}{\bar{\rho}_{\gamma}^{(0)}}\right]$
Evaluation of B spectrum is now in progress, but the anisotropic stress must be included to be complete.

another approach

Ichiki, KT et al. (2006)

- derive the source term (relativistic)

$$
\partial_{t} B^{i}=\frac{8 \sigma_{T} \rho_{\gamma}^{(0)}}{3 e} \epsilon^{i j k}\left[\frac{\rho_{\gamma, k}^{(1)}}{\rho_{\gamma}^{(0)}} \delta v_{b \gamma j}^{(1)}+\delta v_{b \gamma j, k}^{(2)}+\frac{1}{8}\left(v_{b l}^{(1)} \Pi_{\gamma j}^{(1) l}\right)_{, k}\right]
$$

- numerically calculate the spectrum contributed from (1st order) \times (1st order) neglecting the vorticity (purely 2 nd order)
spectrum $\partial_{t} B^{i}=\frac{8 \sigma_{T} \rho_{\gamma}^{(0)}}{3 e} \epsilon^{i j k}\left[\frac{\rho_{\gamma, k}^{(1)}}{\rho_{\gamma}^{(0)}} \delta v_{b \gamma j}^{(1)}+\delta v_{b \gamma j, k}^{(2)}+\frac{1}{8}\left(v_{b l}^{(1)} \Pi_{\gamma j}^{(1) l}\right)_{, k}\right]$

toward the complete evaluation

numerical approach

- numerically cancel TCA I
- include vorticity (purely 2nd order)
- confirm the validity of TCA

TCA approach

- TCA I already canceled by hand
- include anisotropic stress

These two approaches are necessary to cross check and evaluate the spectrum.

3 components

proton
electron
photon
electric current
baryon
center of mass
timescales

$$
\begin{aligned}
& \tau_{\mathrm{C}}=\frac{1}{\omega_{p}^{2} \eta}=4 \times 10^{-3} \sec \left(\frac{1+z}{10^{5}}\right)^{-\frac{3}{2}} \\
& \tau_{\mathrm{T}}=\frac{m_{p}}{\sigma_{T} \rho_{\gamma}}=10^{3} \sec \left(\frac{1+z}{10^{5}}\right)^{-4} \\
& H^{-1}=4.5 \times 10^{9} \sec \left(\frac{1+z}{10^{5}}\right)^{-2}
\end{aligned}
$$

Because $\mathrm{H} \tau \ll 1$, we will use tight coupling approximation.

tight coupling approximation (TCA)

We need the velocity difference.

$$
\partial_{t} \delta \vec{v}=-\frac{1}{\tau} \delta \vec{v}+\vec{A}
$$

If (scattering time) << (dynamical timescale)

$$
\tau \partial_{t} \sim \tau H \ll 1
$$

tight coupling expansion is good. (Peebles \& Yu, 1970)

$$
\delta \vec{v}=\delta \vec{v}^{(I)}+\delta \vec{v}^{(I I)}+\cdots \vec{A}=\vec{A}^{(0)}+\vec{A}^{(I)}+\cdots
$$

TBA I

$$
0=-\frac{1}{\tau} \delta \vec{v}^{(I)}+\vec{A}^{(0)}
$$

TVA II

$$
\partial_{t} \delta \vec{v}^{(I)}=-\frac{1}{\tau} \delta \vec{v}^{(I I)}+\vec{A}^{(I)}
$$

$$
\begin{aligned}
& \left|\delta \vec{v}^{(I)}\right| \sim H \tau v \\
& \left|\delta \vec{v}^{(I I)}\right| \sim(H \tau)^{2} v
\end{aligned}
$$

EOM of photon-baryon relative motion

$$
\begin{aligned}
& \partial_{t} \delta \vec{v}_{\gamma b}+H \delta \vec{v}_{\gamma b}+\left(\vec{v} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b}+\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \vec{v}-\frac{1-R}{1+R}\left(\delta \vec{v}_{\gamma b} \cdot \frac{\nabla}{a}\right) \delta \vec{v}_{\gamma b} \\
& =-\frac{1}{4 a} \frac{\nabla \rho_{\gamma}}{\rho_{\gamma}}-\frac{1+R}{1+\beta} \frac{\sigma_{T} \rho_{\gamma}}{m_{p}}\left[\left(1+\beta^{2}\right) \delta \vec{v}_{\gamma b}+\frac{1-\beta^{3}}{1+\beta} \delta \vec{v}_{p e}\right] .
\end{aligned}
$$

contribution from electric current

$$
\frac{\left|\delta \vec{v}_{p e}\right|}{\left|\delta \vec{v}_{\gamma b}\right|} \sim \frac{\sigma_{T} \rho_{\gamma} k}{e^{2} a n_{b}}=\frac{k}{a \omega_{p}^{2} \tau_{\mathrm{T}}} \sim 1.5 \times 10^{-27}\left(\frac{k}{a H}\right)\left(\frac{1+z}{10^{5}}\right)^{3}
$$

Electric current is negligible.
Protons and electrons can be treated as one fluid.

order estimation

deviation between photons and baryons

$$
\begin{aligned}
\Delta^{(I, 1)} & \sim\left|\delta \vec{v}_{\gamma b}^{(1)}\right| \sim \frac{1}{4} \frac{m_{p}}{\sigma_{T} \rho_{\gamma}^{(0)}} \frac{k^{2}}{a^{2} H} \delta_{\gamma}=\frac{1}{4} \frac{k^{2} \tau_{\mathrm{T}}}{a^{2} H} \delta_{\gamma} \\
& \sim 7 \times 10^{-13}\left(\frac{k}{a H}\right)^{2}\left(\frac{1+z}{10^{5}}\right)^{-1}
\end{aligned}
$$

deviation between protons and electrons

$$
\begin{aligned}
\left|\frac{\rho^{(1)}}{e n_{b}^{(0)}}\right| & \sim\left|\delta \vec{v}_{p e}^{(1)}\right| \sim \frac{m_{p}}{4 e^{2} n_{b}^{(0)}} \frac{k^{2}}{a^{2}} \delta_{\gamma}=\frac{1}{4 \beta} \frac{k^{2}}{a^{2} \omega_{p}^{2}} \delta_{\gamma} \\
& \sim 9 \times 10^{-40}\left(\frac{k}{a H}\right)^{2}\left(\frac{1+z}{10^{5}}\right)^{3}
\end{aligned}
$$

