宇宙磁場の生成と観測

高橋慶太郎(名古屋大学) 12月18日@早稲田大学

目次 1、宇宙磁場へのイントロ 2、ゆらぎによる磁場生成 3、他の磁場生成理論 4、高エネルギー天体を用いた 微弱な磁場の観測

1、宇宙磁場へのイントロ

ポリトロープでないガスで 密度と圧力の分布がずれる 時系列 インフレーション 相転移 ゆらぎによる生成 (第1世代星) (原始銀河) 再イオン化

銀河や銀河団 からの流れ込み

モチベーション

磁場の起源

特に銀河や銀河団。弱い種磁場があればダイナモで 増幅されるだろう。種磁場はどこから来た?

構造形成以前の宇宙を探る

構造形成以前のいろんな現象の名残が磁場として ボイドに現在まで残っているかもしれない。

構造形成への影響

第1世代星、原始銀河の形成に影響?

超高エネルギー宇宙線の伝搬

超高エネルギー宇宙線の軌道が曲げられてしまう。

ボイドの物理的状態

ボイドの中はどうなっている?銀河・銀河団との 相互作用は?

今日の話

ゆらぎによる磁場生成

- ・初期宇宙での光子、電子、陽子、電磁場のふるまい
- ・2次摂動まで考える
- ・宇宙全体を微弱な磁場が満たす
- ・余分な仮定やパラメータがない

pair echoによる磁場観測

- ・TeV放射をしている天体からのGeV領域の遅延放射
- ・ボイド領域の微弱な磁場を検出できる可能性

2、ゆらぎによる磁場生成

KT, K. Ichiki, N. Sugiyama 05, 06, 07, 08 KT, T. Kobayashi, R. Maartens, T. Shiromizu, 07

宇宙論的摂動

摂動 = 一様等方宇宙からのずれ

- ・インフレーションで量子的に生成
 → 密度ゆらぎ、重力波
- ・インフレーション後、線形に成長
 - → CMBゆらぎ、構造 形成

原始ゆらぎ

観測

- ·宇宙背景放射
- ·銀河分布

理論

- ・インフレーション (初期条件)
- · 宇宙論的摂動論 (線形)

再結合以前でのゆらぎによる 磁場生成 Hogan (2000) Berezhiani & Dolgov (2004) Matarrese et al. (2005) Gopal & Sethi (2005) KT et al. (2005, 2006, 2007, 2008) Siegel & Fry (2006) Hollenstein et al. (2008) Maeda et al. (2009)

- これは以下に基づいている
 - · 宇宙論的摂動論
 - (非線形)
 - ·観測的事実
 - ・物理的仮定なし

アイデア

ドリオン

陽子

光子

 $\rightarrow CMB$

トムソン散乱 → 質量の違いにより陽子と電子の

運動に差が出る

トムソン散乱

→ 電荷と電流の生成

→ 電場と磁場の生成

これまでの枠組みの拡張

磁場生成には何が必要か?

$$\partial_t \vec{B} = -\nabla \times \vec{E}$$
 電場とその回転

電場

- ・従来はバリオン
- ・陽子と電子を別々に扱う

回転成分

- ・線形では回転成分はない
- ・非線形効果で回転成分が生成
 (CMBゆらぎには線形で十分だが磁場生成には
 十分でない)

2つの点でこれまでの枠組みを拡張

一般化オームの法則

陽子と電子の(特殊相対論的)運動方程式

$$\begin{split} m_{p}n_{p}\left[\partial_{t}\vec{v}_{p}+\left(\vec{v}_{p}\cdot\nabla\right)\vec{v}_{p}\right] \\ &=en_{p}(\vec{E}+\vec{v}_{p}\times\vec{B})-e^{2}n_{p}n_{e}\eta(\vec{v}_{p}-\vec{v}_{e})+\frac{m_{e}^{2}}{m_{p}^{2}}\sigma_{T}n_{p}\rho_{\gamma}(\vec{v}_{\gamma}-\vec{v}_{p})-m_{p}n_{p}\nabla\Phi, \\ m_{e}n_{e}\left[\partial_{t}\vec{v}_{e}+\left(\vec{v}_{e}\cdot\nabla\right)\vec{v}_{e}\right] & \text{Coulomb} & \text{Thomson} \\ &=-en_{e}(\vec{E}+\vec{v}_{e}\times\vec{B})+e^{2}n_{p}n_{e}\eta(\vec{v}_{p}-\vec{v}_{e})+\sigma_{T}n_{e}\rho_{\gamma}(\vec{v}_{\gamma}-\vec{v}_{e})-m_{e}n_{e}\nabla\Phi, \\ &\frown \Re\mathcal{U}, \mathcal{I}=\mathcal{L}\mathcal{O}, \mathcal{I} \oplus \mathbb{I} & \mathcal{K}\mathcal{I}\mathcal{O} \quad \left[\mathbb{R}\right] \end{split}$$

$$\frac{1}{\omega_p^2}\partial_t \vec{j} = \vec{E} - \eta_{\text{eff}}\vec{j} + \vec{C}$$

$$\vec{C} \equiv \frac{1-\beta^3}{1+\beta} \frac{\sigma_T \rho_\gamma}{e} \left(\delta \vec{v}_{\gamma b} - \frac{1}{4} \vec{v}_b \cdot \Pi_\gamma\right)$$

磁場の発展方程式

$$\partial_t \vec{B} = \eta_{\rm eff} \nabla^2 \vec{B} + \nabla \times \vec{C}$$

電化密度のふるまい

オームの法則の発散

 \mathcal{T}

$$\omega_p^{-1} \equiv \sqrt{\frac{m_e}{e^2 n^{(0)}}} = 2 \times 10^{-9} \,\sec\left(\frac{1+z}{10^5}\right)^{-3/2}$$

$$T_{\rm C} = \frac{1}{\omega_p^2 \eta} = 4 \times 10^{-3} \sec\left(\frac{1+z}{10^5}\right)^{-3/2}$$

宇宙論的時間スケールではプラズマ振動は減衰。しかし源があるので平衡状態はゼロではない。

 $\rho\approx\nabla\cdot\vec{C}$

初期宇宙の電磁気的性質

 $\rho = \nabla \cdot \vec{C},$ 電場 光子圧 $\vec{j} = -\partial_t \vec{C} - \int dt \, \nabla \times \nabla \times \vec{C},$ $\vec{E} = \vec{C},$ $\vec{B} = -\int dt \, \nabla \times \vec{C},$ 陽子 電子

オームの法則で抵抗項は重要でない
 →オームの法則で電場と外力がバランス
 ・電流 → (変位電流) + (磁場)
 ・光子の風がなくなると・・・
 →電場は消えるが磁場は残る(時間積分のため)

KT et al. (2006)

・ソース項の一般相対論的導出

$$\partial_t B^i = \frac{8\sigma_T \rho_{\gamma}^{(0)}}{3e} \epsilon^{ijk} \left[\frac{\rho_{\gamma,k}^{(1)}}{\rho_{\gamma}^{(0)}} \delta v_{b\gamma \, j}^{(1)} + \frac{\delta v_{b\gamma \, j,k}^{(2)}}{8} + \frac{1}{8} \left(v_{b \, l}^{(1)} \Pi_{\gamma \, j}^{(1)l} \right)_{,k} \right]$$

・磁場スペクトルを数値的に評価

 (1st order) × (1st order)の形のものだけ
 (purely 2nd order)は無視

(1次の量はCMBFASTなどで簡単に計算できるので その積も「簡単に」評価できる。しかしvorticityを 評価するには2次摂動のボルツマン方程式を 解かなければならず、ただいま取組中。)

implication

磁場生成まとめ

ゆらぎによる磁場生成

- ・トムソン散乱による陽子と電子の運動の差
 - → 磁場生成
- 2つの拡張
 - 陽子電子を独立に扱う
 - 非線形効果
- 100AU~horizonスケールまであらゆる
 スケールで宇宙全体を満たす磁場が存在
- ・大スケールではrobust
- 小スケール磁場の観測でゆらぎの測定?
- B $\sim 10^{-21}$ Gauss (preliminary)

3、他の磁場生成理論

宇宙論的磁場の生成	
物理による分類	\longrightarrow
●量子論的	
電磁場の共形不変性を破る	
相互作用を入れる	
Pradiation drag	┱→
光子・陽子・電子の系で	
光子が電子を引きずる	
Biermann battery —	
ポリトロープでないガスで	
密度と圧力の分布がずれる	

時系列 インフレーション 相転移 ゆらぎによる生成 (第1世代星) (原始銀河) 再イオン化 銀河や銀河団 からの流れ込み

量子論的生成

C

インフレーション中に量子論的に生成 Turner & Widrow, 1988

- → conformal invarianceを破る
- → 重力との非最小結合、ディラトンなど

Bamba & Sasaki (2007)による一般的な定式化

$$S = \int d^4x \sqrt{-g} \left[R + I(R, \Phi, \cdots) F^{\mu\nu} F_{\mu\nu} + \cdots \right]$$
$$A''(k, \eta) + \frac{I'}{I} A'(k, \eta) + k^2 A(k, \eta) = 0$$

superhorizon:長波長近似 subhorizon:WKB近似

$$\Omega_B(k) \approx \left(\frac{T_{\rm r}}{M_{\rm Pl}}\right)^4 \left(-k\eta_{\rm r}\right)^{4-\alpha} \frac{1}{I(\eta_{\rm r})}$$

しかし最近反作用や 強結合の問題が指摘 されて磁場はほとんど できないということに なった。

再イオン化 (Langer et al. 03, 05) QSOなどからの紫外線がまわりの非一様なガスの中性水素 をイオン化しながら電子を引きずる。

- ・低エネルギー紫外線 近傍・強い磁場
- ・高いエネルギー紫外線 遠方・弱い磁場

Biermann battery(1)

Biermann 1950

 ∇p_e

 \vec{j}

 ∇n_e

陽子・電子の2流体

$$\vec{C} = \frac{\nabla p_e}{en_e}$$
$$\nabla \times \vec{C} = -\frac{\nabla n_e \times \nabla p_e}{en_e^2} = -\frac{\nabla n_e \times \nabla T_e}{en_e}$$

→ 構造形成に伴う衝撃波、超新星残骸、再イオン化

$$B \approx \frac{T_e \tau}{eL^2} \approx \frac{T_e}{eVL}$$
$$\approx 10^{-22} \text{ Gauss} \left(\frac{T_e}{10^4 \text{ K}}\right) \left(\frac{V}{0.01c}\right)^{-1} \left(\frac{L}{1 \text{ kpc}}\right)^{-1}$$

Biermann battery⁽²⁾

quasar outflow

Furlanetto & Loeb 2001 ・磁場を含んだガスをジェットで 銀河間空間に放出 ・活動が終ってもバブルは膨張

→ 銀河間空間の内の一部は 磁場に汚染される

宇宙の20%程度の 空間が1nG程度の 磁場に汚染される

宇宙磁場の生成まとめ

ボイドに(微弱な)磁場が存在するのは間違いない ・生成(~ 10⁻²⁰ Gauss)

インフレーション、相転移、ゆらぎ、 再イオン化、構造形成・・・

・流れ込み

クェーサー、銀河、銀河団・・・ 磁場の強さ、分布、スペクトルなどを測ることが できれば磁場生成のメカニズムやクェーサーの 活動性、ボイドと銀河・銀河団の相互作用を 探ることができるだろう。

4、高エネルギー天体による 微弱宇宙磁場の測定

KT, K. Ichiki, S. Inoue, K. Murase et al. 07, 08, 09

宇宙磁場の観測

どうやって磁場生成理論を検証できるか? 銀河・銀河団など →増幅により初期条件は残っていない ボイド →初期条件は残っている? 初期宇宙 →増幅される前

磁場観測の方法

BBN:B<1□G
 CMBゆらぎ:B<1nG
 → それほど発展が期待されない
 10⁻²⁰Gまで到達するのはたぶん不可能

ファラデー回転:B<0.06nG → 今後発展が期待されるがまたの機会に

Plagaの方法 (Plaga, 1994) 高エネルギー天体 (GRB・blazar) からの 遅延ガンマ線によって微弱な磁場を観測 → B = $10^{-15} \sim 10^{-20}$ G → 微弱磁場に対して最もポテンシャルが高い

遠方にある天体から来る TeV以上のガンマ線は 途中で吸収

$$E_{\gamma}E_{\rm bg} = m_e^2$$

10

*進行方向は相互作用の度に1/ye程度変化

GRB, AGN

primaryは最初こちらを 向いていなくても 地球に到達できる。

 $\lambda_{\gamma\gamma}$

 θ

$$\Delta t_{\rm delay} = (1 - \cos\left(1/\gamma_e\right))(\lambda_{\gamma\gamma} + \lambda_{\rm IC}) \approx \frac{1}{2\gamma_e^2}(\lambda_{\gamma\gamma} + \lambda_{\rm IC})$$

 $\lambda_{
m IC}$

 $\sim 1/\gamma_e$

 $\sim 1/\gamma_e$

遅延時間は平均自由工程と曲がり角によってきまる。 (両方ともエネルギーに依存する。)

$$IR E_{IR} = 0.1 \text{eV} \left(\frac{E_{\gamma}}{1 \text{TeV}}\right)^{-1} \qquad \text{CMB}$$

$$E_{pa} = 0.6 \text{GeV} \left(\frac{E_{\gamma}}{1 \text{TeV}}\right)^{2}$$

$$E_{\gamma} = 1 \text{TeV}$$

$$\lambda_{\gamma\gamma} = 2 \text{Mpc} \left(\frac{n_{IR}}{1 \text{cm}^{-3}}\right)^{-1} \qquad \lambda_{TC} = 0.4 \text{Mpc} \left(\frac{E_{\gamma}}{1 \text{TeV}}\right)^{-1}$$

$$\Delta t_{B} = 0.5 \text{ day} \left(\frac{E_{\text{delay}}}{1 \text{GeV}}\right)^{-2} \left(\frac{B}{10^{-20} \text{G}}\right)^{2}$$

特徴的な数字2

• TeV blazar

・GRBでは未観測だが理論的には十分あり得る

$$E_{\rm pa} = 0.6 {\rm GeV} \left(\frac{E_{\gamma}}{1 {\rm TeV}}\right)^2$$

- ・Fermiのエネルギー領域
- ・もう少し高ければ地上チェレンコフ望遠鏡の領域

$$\Delta t_B = 0.5 \,\mathrm{day} \left(\frac{E_{\mathrm{pa}}}{1 \mathrm{GeV}}\right)^{-2} \left(\frac{B}{10^{-20} \mathrm{G}}\right)^2$$

・大きい (小さい) 磁場には高い (低い) エネルギーで

$$\lambda_{\gamma\gamma} = 2 \mathrm{Mpc} \left(\frac{n_{\mathrm{IR}}}{1 \mathrm{cm}^{-3}} \right)^{-1}$$

・親銀河を抜け出すのに十分な大きさ

$$\lambda_{\rm IC} = 0.4 \,{\rm Mpc} \left(\frac{E_{\gamma}}{1 \,{\rm TeV}}\right)^{-1}$$

・上と合わせても反応はlocal

(もちろん個々の場合によるが) この方法では ボイド領域の磁場を探索できる可能性が高い。

primary放射

$dN_{\gamma}/dE_{\gamma} \propto E_{\gamma}^{-2.2}$, for 0.1 TeV < E_{γ} < $E_{\text{cut}} = 10$ TeV $E_{\gamma,[0.1,10]}^{\text{iso}} = 3 \times 10^{53}$ erg

CIB model "best fit" model ("low SFR" model) Kneiske et al. 02, 04

pair echoスペクトル

light curve at 1 GeV & Fermi

light curve at 100 GeV & MAGIC

pair echoの観測可能性

磁場への制限(予想)

磁場観測まとめ

- ・高エネルギー天体からのpair echoを 用いた微弱な磁場の検出
- ・TeVγ線
 - + EBL → TeV電子・陽電子
 - + CMB \rightarrow GeV γ 線
- ・対生成とICで経路が曲がる
 - → 最初変な方向でも地球に到達できる
 - → 遅延時間の発生
- ・10⁻¹⁷~10⁻²⁰Gを検出可能
- ・GRBならz<1の近いものを使う
- ・TeVブレーザーは近くて場所もわかっているが 定常放射が邪魔

まとめ

磁場の生成と観測 生成

- ・宇宙初期のゆらぎから生成
- ・光子、陽子、電子、電磁場
- ·2次摂動

・robustな磁場の予言(宇宙論的磁場、種磁場) 観測

- ・GRBやTeVブレーザーなどからのpair echo ・ $10^{-17} \sim 10^{-20}$ Gauss に感度
- · 10 ~ 10 Gauss に 密度
- ・ボイド磁場の観測によって初期宇宙、

再イオン化、銀河風などを探る

comparison with afterglow

