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Abstract. In this paper we show that certain subrings of the ring Ar(F ) of
arithmetical functions in r variables over a given field F are factorial.

1 Introduction

The ring (A,+, .) of complex valued arithmetical functions with Dirichlet convo-
lution consists of all functions N → C, where N is the set of positive integers.
Cashwell and Everett [2] proved that (A,+, .) is a unique factorization domain.
Yokom [13] investigated the prime factorization of arithmetical functions in a cer-
tain subring of the regular convolution ring. He determined a discrete valuation
subring of the unitary ring of arithmetical functions. Narkiewicz [4] introduced
and studied in [4] the concept of regular convolution. Further work on regular
convolutions has been done by Scheid [5], [6], [7], Sitaramaiah [12] and Haukka-
nen [3]. Schwab and Silberberg [10] constructed an extension of (A,+, .) which is
a discrete valuation ring. In [11], they showed that A is a quasi-noetherian ring.
Further results have been obtained by Schwab in [8] and [9]. Alkan and the authors
[1] studied absolute values and derivations on the ring of arithmetical functions in
several variables having values in an integral domain, with the analogue of Dirich-
let convolution as multiplication. If R is an integral domain and r is a positive
integer, let Ar(R) = {f : Nr → R}. For any f, g ∈ Ar(R), the convolution f ∗ g of
f and g is defined by

(f ∗ g)(n1, ..., nr) =
∑
d1|n1

...
∑
dr|nr

f(d1, ..., dr)g

(
n1

d1
, ...,

nr

dr

)
. (1.1)

In [14] a natural family of subrings Br,k,p(R) of Ar(R) was considered. For
any k ∈ {1, . . . , r}, and any prime number p, Br,k,p(R) consists of all the functions
f ∈ Ar(R) with the property that for all n1, . . . , nr ∈ N with p dividing nk, one
has f(n1, . . . , nr) = 0. It was shown in [14] that the generating degree ofAr(R)
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with respect to each of the subrings Br,k,p(R) is equal to 1. For two commutative
topological rings A ⊆ B, by the generating degree of B over A, one means the
cardinality of the smallest subset M of B for which the ring A[M ] is dense in B.
In the present paper we complement the results from [14] by showing that if R is
a field, then all the subrings of Ar(R) of the form Br,k,p(R) are factorial.

Theorem 1 For any field F , any integer r ≥ 1, any k ∈ {1, . . . , r}, and any
prime number p, the subring Br,k,p(F ) of Ar(F ) is factorial.

2 Valuations

Let r be a positive integer, let R be an integral domain, with identity 1R, and
let Ar(R) = {f : Nr → R}. Then R has a natural embedding in the ring Ar(R),
and Ar(R) with addition and convolution defined as in the Introduction naturally
becomes an R-algebra. We now recall the construction from [1] of a class of abso-
lute values on Ar(R). Fix t = (t1, . . . , tr) ∈ Rr with t1, . . . , tr linearly independent
over Q, and ti > 0, (i = 1, 2, . . . , r). Given n ∈ N, denote by Ω(n) the total number
of prime factors of n, counting multiplicities. Thus, if n = pα1

1 . . . pαk

k is the prime
factorization of n, then Ω(n) = α1 + . . .+ αk. Define also Ωr : Nr → Nr by

Ωr(n1, . . . , nr) = (Ω(n1), . . . ,Ω(nr)).

For any f ∈ Ar(R) denote supp(f) = {n ∈ Nr|f(n) ̸= 0}, and let

Vt(f) = min
n∈supp(f)

t · Ωr(n),

with the convention min(∅) = ∞. It is shown in [1] that for any f, g ∈ Ar(R) one
has

Vt(f + g) ≥ min({Vt(f), Vt(g)}),

and
Vt(f ∗ g) = Vt(f) + Vt(g).

Next, one extends the valuation Vt to a valuation Vt on the field of fractions

K = { f
g |f, g ∈ Ar(R), g ̸= 0} of Ar(R) by letting Vt(

f
g ) = Vt(f) − Vt(g). The

above valuation is nonarchimedean. From now on we will restrict to the case
when R = F is a field. One of the important features of this valuation, which
will be used in the proof of Theorem 1, is the following. Let f be an element of
Ar(F ). Then Vt(f) = 0 if and only if f is a unit of Ar(F ). Indeed, if f is a unit
of Ar(F ), then f(1, 1, . . . , 1) must be a nonzero element of F . Then (1, 1, . . . , 1)
lies in supp(f), and by the definition of Vt it follows that Vt(f) = 0. Conversely, if
Vt(f) = 0, then by the definition of Vt there exists an n = (n1, . . . , nr) in supp(f)
for which (Ω(n1), . . . ,Ω(nr)) = (0, . . . , 0). This forces each of n1, . . . , nr to equal
1, which in turn implies that (1, 1, . . . , 1) lies in supp(f), and hence f is a unit of
Ar(F ). Let us also remark, as another important feature of this valuation, that,
although for r ≥ 2 the image of K through Vt is dense in R, the image of Ar(F )
through Vt consists of a strictly increasing sequence of nonnegative real numbers
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with limit infinity. Therefore any strictly decreasing sequence of such values, say
Vt(α1) > Vt(α2) > . . . , with α1, α2, . . . in Ar(F ), must terminate after finitely
many steps.

3 Reduction to the full ring Ar(F )

Let F be a field. Fix an integer r ≥ 1, a k ∈ {1, . . . , r}, and a prime number
p. Consider the subring Br,k,p(F ) of Ar(F ) consisting of all the functions f ∈
Ar(F ) with the property that for all n1, . . . , nr ∈ N with p dividing nk, one has
f(n1, . . . , nr) = 0. As usual, by an irreducible element in a ring R we mean a
nonzero, nonunit element a of R with the property that whenever a is written as
a product of two elements b and c in the ring, then one of them is a unit.

In proving Theorem 1, our idea is to reduce the satement of the theorem about
the subring Br,k,p(F ) to the similar statement about the full ring Ar(F ), and
separately to prove that Ar(F ) is factorial. In this section we present the reduction
step, that is we show that if Ar(F ) is factorial, then Br,k,p(F ) is factorial as well.

Lemma 1 Let u ∈ Br,k,p(F ) be nonzero. Then u is a unit in Br,k,p(F ) if and
only if u is a unit in Ar(F ).

Proof: It is clear that if u is a unit in Br,k,p(F ), then u is a unit in Ar(F ). Suppose
now that u is a unit in Ar(F ). Then there exists v ∈ Ar(F ) such that u ∗ v = 1,
where 1 is the unity in Ar(F ), which as an arithmetical function, is given by

1(n1, . . . , nr) =

{
1 if n1 = · · · = nr = 1,

0 else.

for n1, . . . , nr ∈ N. We construct w ∈ Br,k,p(F ) from v as follows. Let n1, . . . , nr ∈
N. Then we let

w(n1, . . . , nr) =

{
0 if p|nk,

v(n1, . . . , nr) else.

It follows that u ∗ w = 1. To see this, first note that u ∗ w(1, . . . , 1) = 1. For
(n1, . . . , nr) ̸= (1, . . . , 1), consider

(u ∗ w)(n1, ..., nr) =
∑
d1|n1

...
∑
dr|nr

w(d1, ..., dr)u

(
n1

d1
, ...,

nr

dr

)
. (3.1)

If p does not divide nk, then p does not divide any divisor dk of nk, and the above
sum equals∑

d1|n1

...
∑
dr|nr

v(d1, ..., dr)u

(
n1

d1
, ...,

nr

dr

)
= (u ∗ v)(n1, ..., nr) = 0.

So (u ∗w)(n1, ..., nr) = 0. Also, if p divides nk, then each term in the sum on the
right side of equation (3.1) is zero. This is because p divides either dk or nk

dk
in
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each of the terms. So again (u ∗ w)(n1, ..., nr) = 0. We conclude that u ∗ w = 1
and therefore u is a unit in Br,k,p(F ).

Lemma 2 Let π ∈ Br,k,p(F ) be nonzero. Then π is an irreducible element of
Br,k,p(F ) if and only if π is an irreducible element of Ar(F ).

Proof: Suppose that π is an irreducible element of Ar(F ). If π is not an irreducible
element of Br,k,p(F ), then there exist a, b ∈ Br,k,p(F ) such that both a and b are
nonunits in Br,k,p(F ), and π = a ∗ b. By Lemma 1 both a and b are nonunits in
Ar(F ). This contradicts our assumption that π is irreducible in Ar(F ). Hence, π
is an irreducible element of Br,k,p(F ) as well.

Conversely, suppose that π is an irreducible element of Br,k,p(F ). Assume
π = a ∗ b with a, b ∈ Ar(F ). We construct a′, b′ ∈ Br,k,p(F ) from a and b in
the same way we constructed w from v in the proof of Lemma 1. That is, for
n1, . . . , nr ∈ N we let

a′(n1, . . . , nr) =

{
0 if p|nk,

a(n1, . . . , nr) else.

and

b′(n1, . . . , nr) =

{
0 if p|nk,

b(n1, . . . , nr) else.

Then one easily sees that π = a′ ∗ b′. Since π is irreducible in Br,k,p(F ), either
a′ or b′, say a′, is a unit in Br,k,p(F ). By Lemma 1, a′ is also a unit in Ar(F ).
We now show that a is a unit in Ar(F ). Write a = a′ + y, where y is supported
only on the set of all points (n1, . . . , nr) ∈ Nr with the property that p divides
nk. Since a′ is a unit in Br,k,p(F ), there exists an element a′′ of Br,k,p(F ) such
that a′ ∗ a′′ = 1. Thus a ∗ a′′ = a′ ∗ a′′ + y ∗ a′′ = 1 + y ∗ a′′. Define f ∈ Ar(F )
by f =

∑∞
m=0(−1)m(y ∗ a′′)m = 1 − y ∗ a′′ + (y ∗ a′′)2 − (y ∗ a′′)3 + . . . . Note

that f is a well defined element of Ar(F ) since for each fixed (n1, . . . , nr) ∈ Nr,
there exists n ∈ N such that (y ∗a′′)m(n1, . . . , nr) = 0 for all m > n. Observe that
a ∗ a′′ ∗ f = 1, and thus a is invertible in Ar(F ). This completes the proof of the
lemma.

Lemma 3 If Ar(F ) is factorial, then the subring Br,k,p(F ) is factorial.

Proof: First we show that each nonzero element a ∈ Br,k,p(F ) can be expressed as
a finite product of irreducible elements of Br,k,p(F ). Indeed, if a is not irreducible
in Br,k,p(F ), then there exist nonunits b, c ∈ Br,k,p(F ) such that a = b ∗ c. By
Lemma 1, b and c are also non units of Ar(F ). If any of the elements b and c is
not irreducible in Br,k,p(F ), then we may again write that element as a product of
two elements in Br,k,p(F ) which are nonunits in both Br,k,p(F ) and Ar(F ). This
process must stop after finitely many steps since otherwise we obtain a contradic-
tion with the assumption that Ar(F ) is factorial. Hence we conclude that each
element a ∈ Br,k,p(F ) can be expressed as a finite product a = a1 ∗ a2 ∗ · · · ∗ am of
irreducible elements of Br,k,p(F ).
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Secondly we need to establish the uniqueness of the expressions a = a1 ∗ a2 ∗
· · · ∗ am in Br,k,p(F ) up to order and units. Suppose that a = a1 ∗ a2 ∗ · · · ∗ am =
b1 ∗ b2 ∗ · · · ∗ bs (m, s ∈ N) where ai (i = 1, . . . ,m) and bj (j = 1, . . . , s) are
irreducible elements of Br,k,p(F ). By Lemma 2 and the assumption that Ar(F )
is factorial we have that m = s, and there exist wi (i = 1, . . . ,m) such that ai =
bi ∗wi (i = 1, . . . ,m) and wi (i = 1, . . . ,m) are units in Ar(F ). Let n1, . . . , nr ∈ N,
and define vi ∈ Br,k,p(F ) (i = 1, . . . ,m) as follows.

vi(n1, . . . , nr) =

{
0 if p|nk,

wi(n1, . . . , nr) else.

It is easily verified that for each i ∈ {1, . . . ,m}, one has ai = bi ∗ wi = bi ∗ vi,
and vi is a unit in Ar(F ). But by Lemma 1, vi is also a unit in Br,k,p(F ). Hence
the lemma is proved.

4 Completion of proof of Theorem 1

In order to complete the proof of Theorem 1, it remains to show that Ar(F ) is
factorial. Let us fix a t = (t1, . . . , tr) ∈ Rr with t1, . . . , tr linearly independent
over Q, ti > 0, (i = 1, 2, . . . , r), and consider the valuation Vt defined in Section 2.

Lemma 4 Every α ∈ Ar(F ) which is not zero and not a unit is expressible as a
finite product of irreducible elements of Ar(F ).

Proof: In order to prove the lemma, consider a nonzero element α ∈ Ar(F )
which is not a unit. We need to show that α can be written as a finite product of
irreducible elements of Ar(F ). If α is itself irreducible, there is nothing to prove.
Let us assume that α is not irreducible. Then α can be written as α = α1 ∗ β1,
with α1, β1 nonunit elements of Ar(F ). By the results of Section 2 we know that
Vt(α1) > 0, Vt(β1) > 0, and

Vt(α) = Vt(α1) + Vt(β1).

If α1 and β1 are both irreducibe then the lemma is proved. If not, we continue
the same procedure with α replaced by α1 or β1. Note by the properties of the
valuation Vt discussed Section 2, that since each of α1 and β1 has a valuation that
is strictly smaller than the valuation of α, the above procedure must terminate
after finitely many steps. This completes the proof of the lemma.

We now consider the ring of formal r-fold power series, which is defined as fol-
lows. Let us list the prime numbers in increasing order: p1 = 2, p2 = 3, p3 = 5, . . . .

Then every integer n may be written uniquely in the form n = p
α1(n)
1 p

α2(n)
2 · · · and

uniquely described by a vector (α1(n), α2(n), . . . ) with non-negative integral com-
ponents where only finitely many of the components are nonzero. All such vectors
are realized as n ranges over N. Hence an arithmetic function a = a(n) ∈ A1(F )
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in one variable may be associated with a definite formal power series in a count-
ably infinite number of indeterminates yp1 , yp2 , yp3 , . . . , having coefficients in F ,
by means of the correspondence

a → P (a) =
∑
n

a(n)yα1(n)
p1

yα2(n)
p2

· · · .

Here, the summation extends over all n = p
α1(n)
1 p

α2(n)
2 p

α3(n)
3 · · · in N. Also, an

arithmetic function a = a(n1, n2) ∈ A2(F ) in two variables may be associated
with a definite formal power series in a countably infinite number of indetermi-
nates xp1 , xp2 , xp3 , . . . , yp1 , yp2 , yp3 , . . . having coefficients in F , by means of the
correspondence

a → P (a) =
∑
n

∑
m

a(n,m)xα1(n)
p1

yα1(m)
p1

xα2(n)
p2

yα2(m)
p2

· · · .

Here, the summation extends over all

n = p
α1(n)
1 p

α2(n)
2 p

α3(n)
3 · · ·

and
m = p

α1(n)
1 p

α2(n)
2 p

α3(n)
3 · · ·

in N. In general, an arithmetic function a = a(n1, . . . , nr) ∈ Ar(F ) in r variables
may be associated with a definite formal r-fold power series in a countably infinite
number of indeterminates x1p1 , x1p2 , . . . , x2p1 , x2p2 , . . . , . . . , xrp1 , xrp2 , . . . , having
coefficients in F , by means of the correspondence

a → P (a) =
∑
n1

∑
n2

· · ·
∑
nr

a(n1, . . . , nr)x
α1(n1)
1p1

x
α1(n2)
2p1

· · ·xα1(nr)
rp1

x
α2(n1)
1p2

x
α2(n2)
2p2

· · ·xα2(nr)
rp2

· · · .

Here, the summation extends over all

n1 = p
α1(n1)
1 p

α2(n1)
2 p

α3(n1)
3 · · · ,

n2 = p
α1(n2)
1 p

α2(n2)
2 p

α3(n2)
3 · · · ,

. . .

nr = p
α1(nr)
1 p

α2(nr)
2 p

α3(nr)
3 · · ·

of N. This correspondence is clearly one to one on Ar(F ) to the set

F{. . . , xipj , . . . } = F{x1p1 , x1p2 , . . . }{x2p1 , x2p2 , . . . } . . . {xrp1 , xrp2 , . . . }

of all such power series. Moreover, addition is preserved, and as we will see below
P (f ∗ g) = P (f)P (g). The latter operation is the usual formal operation on
power series involving multiplication and collection of finite number of like terms.
Thus the ring Ar(F ) is isomorphic to the ring F{xipj

} of all r-fold formal power
series. We emphasize that only a finite number of xipj actually appear (i.e., have
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αj(ni) > 0 ) in any term. However, infinitely many xipj may well occur in the
same series. We now prove that P (f ∗ g) = P (f)P (g). One has

P (f)P (g)

=

(∑
n1

∑
n2

· · ·
∑
nr

f(n1, . . . , nr)x
α1(n1)
1p1

x
α1(n2)
2p1

· · ·xα1(nr)
rp1

x
α2(n1)
1p2

x
α2(n2)
2p2

· · ·xα2(nr)
rp2

· · ·

)
(∑

m1

∑
m2

· · ·
∑
mr

g(m1, . . . ,mr)x
α1(m1)
1p1

x
α1(m2)
2p1

· · ·xα1(mr)
rp1

x
α2(m1)
1p2

x
α2(m2)
2p2

· · ·xα2(mr)
rp2

· · ·

)
=

∑
n1,...,nr
m1,...,mr

f(n1, . . . , nr)g(m1, . . . ,mr)

x
α1(n1)+α1(m1)
1p1

x
α1(n2)+α1(m2)
2p1

· · ·xα1(nr)+α1(mr)
rp1

x
α2(n1)+α2(m1)
1p2

x
α2(n2)+α2(m2)
2p2

· · ·xα2(nr)+α2(mr)
rp2

· · ·

This further equals∑
n1,...,nr
m1,...,mr

f(n1, . . . , nr)g(m1, . . . ,mr)

x
α1(n1m1)
1p1

x
α1(n2m2)
2p1

· · ·xα1(nrmr)
rp1

x
α2(n1m1)
1p2

x
α2(n2m2)
2p2

· · ·xα2(nrmr)
rp2

· · ·

=
∑

k1,...,kr

( ∑
k1=m1n1

· · ·
∑

kr=mrnr

f(n1, . . . , nr)g(m1, . . . ,mr)

)
x
α1(k1)
1p1

x
α1(k2)
2p1

· · ·xα1(kr)
rp1

x
α2(k1)
1p2

x
α2(k2)
2p2

· · ·xα2(kr)
rp2

· · ·

=
∑

k1,...,kr

(f ∗ g)(k1, . . . , kr)xα1(k1)
1p1

x
α1(k2)
2p1

· · ·xα1(kr)
rp1

x
α2(k1)
1p2

x
α2(k2)
2p2

· · ·xα2(kr)
rp2

· · ·

= P (f ∗ g).

Next, for any positive integer l, any k ∈ {1, . . . , r}, and any power series
Q ∈ F{. . . , xipj , . . . }, denote by degxkpl

(Q) the supremum of the set of exponents
of xkpl

that appear in the terms of Q with nonzero coefficients. Also, for a positive
integer l, and k ∈ {1, . . . , r}, denote by F{. . . , xipj , . . . }(i,pj )̸=(k,pl) the subring of
F{. . . , xipj , . . . } which consists of all power series Q in F{. . . , xipj , . . . } such that
degxkpl

(Q) is zero. Under the above isomorphism the ring Br,k,p(F ) is isomorphic
to the subring

F{. . . , xipj , . . . }(i,pj) ̸=(k,p).

Cashwell and Everett [2] proved that (A1(C),+, .), where C denotes the field
of complex numbers, is a unique factorization domain by showing that the cor-
responding power series ring C{x1p1 , x1p2 , . . . } is a unique factorization domain.
Next, we show that for any positive integer r, Ar(F ) is a unique factorization
domain by showing that the corresponding r-fold power series ring

F{. . . , xipj , . . . } = F{x1p1 , x1p2 , . . . }{x2p1 , x2p2 , . . . } . . . {xrp1 , xrp2 , . . . }

is a unique factorization domain. We have already shown that every element of
(Ar(F ),+, .) can be written as a finite product of irreducible elements. So we
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need to establish the uniqueness of the expression of a non-zero, non-unit element
of Ar(F ) as a product of irreducibles in Ar(F ) up to order and units. We first
show that the uniqueness holds for the case r = 2. We proceed in several steps.
Let S[x1, . . . , xl] denote the ring of formal power series in l indeterminates with
coefficients in S, where S is any ring. Let H = F{x2p1 , x2p2 , . . . x(2,pj)}. At
the first step, we show that the ring F{x1p1 , x1p2 , . . . }{x2p1 , x2p2 , . . . } is isomor-
phic to the ring H{x1p1 , x1p2 , . . . } of 1-fold formal power series with coefficents
in H. Then we need to show that H{x1p1 , x1p2 , . . . } is a a unique factorization
domain. By the proof of Cashwell and Everett [2], it is enough to show that
for any positive integer l, H[x1p1 , x1p2 , . . . , x1pl

] is a unique factorization domain.
At the second step, we show that for any positive integer l,H[x1p1 , x1p2 , . . . , x1pl

]
is isomorphic to F [x1p1 , . . . , x1pl

]{x2p1 , x2p2 , . . . }. Again by the proof of Cash-
well and Everett [2], F [x1p1 , . . . , x1pl

]{x2p1 , x2p2 , . . . } is a unique factorization
domain if for any positive integer l′, F [x1p1 , . . . , x1pl

][x2p1 , x2p2 , . . . , x2p′
l
] is iso-

morphic to F [x1p1 , . . . , x1pl
, x2p1 , x2p2 , . . . , x2p′

l
]. So, at the third step we estab-

lish the last isomorphism. We now proceed with the first step. To show that
F{x1p1 , x1p2 , . . . }{x2p1 , x2p2 , . . . } is isomorphic to the ring H{x1p1 , x1p2 , . . . }, we
first replace the set x1p1

, x1p2
, . . . of variables by the set xp1

, xp2
, . . ., and the set

x2p1 , x2p2 , . . . by yp1 , yp2 , . . .. Given

f ∈ F{xp1 , xp2 , . . . }{yp1 , yp2 , . . . }, f =
∑
n

∑
m

f(n,m)xα1(n)
p1

yα1(m)
p1

xα2(n)
p2

yα2(m)
p2

· · · ,

we define fH ∈ H{xp1 , xp2 , . . . }, where H = F{yp1 , yp2 , . . . }, to be the series

fH =
∑
n

fH(n)xα1(n)
p1

xα2(n)
p2

· · · ,

where

fH(n) =
∑
m

f(n,m)yα1(m)
p1

yα2(m)
p2

· · · .

for each n. The map f → fH is clearly a bijective map.

Also for f, g ∈ F{xp1 , xp2 , . . . }{yp1 , yp2 , . . . }, we have that

(fg) =
∑
n1

∑
m1

∑
n2

∑
m2

f(n1,m1)g(n2,m2)x
α1(n1n2)
p1

yα1(m1m2)
p1

xα2(n1n2)
p2

yα2(m1m2)
p2

· · ·

=
∑
n

∑
m

( ∑
n=n1n2

∑
m=m1m2

f(n1,m1)g(n2,m2)

)
xα1(n)
p1

yα1(m)
p1

xα2(n)
p2

yα2(m)
p2

· · · .



Factorization in certain rings of arithmetical functions 37

So,

(fg)H =
∑
n

(∑
m

( ∑
n=n1n2

∑
m=m1m2

f(n1,m1)g(n2,m2)

)
yα1(m)
p1

yα2(m)
p2

· · ·

)
xα1(n)
p1

xα2(n)
p2

· · ·

=

(∑
n1

(∑
m1

f(n1,m1)y
α1(m1)
p1

yα2(m1)
p2

· · ·

)
xα1(n1)
p1

xα2(n1)
p2

· · ·

)
(∑

n2

(∑
m2

f(n2,m2)y
α1(m2)
p1

yα2(m2)
p2

· · ·

)
xα1(n2)
p1

xα2(n2)
p2

· · ·

)

=

(∑
n1

fH(n1)x
α1(n1)
p1

xα2(n1)
p2

· · ·

)(∑
n2

gH(n2)x
α1(n2)
p1

xα2(n2)
p2

· · ·

)
= fHgH .

Thus, the map f → fH is an isomorphism. This finishes step one.

Next, we prove the second step. To do so it suffices to prove that for any
positive integer l,H[xp1 , xp2 , . . . xpl

] is isomorphic to F [xp1 , . . . , xpl
]{yp1 , yp2 , . . . },

where H is as in the proof of the first step. Let a ∈ H[xp1 , xp2 , . . . , xpl
]. Let

a =
∑

n aH(n)x
α1(n)
p1 · · ·xαl(n)

pl , where for each n, aH(n) ∈ H, and aH(n) =∑
m a(n,m)y

α1(m)
p1 y

α2(m)
p2 · · · . Define a ∈ F [xp1 , . . . , xpl

]{yp1 , yp2 , . . . } by a =∑
m a(m)y

α1(m)
p1 y

α2(m)
p2 · · · , where for each m, a(m) =

∑
n a(n,m)x

α1(n)
p1 · · ·xαl(n)

pl .
The map a → a(m) is a homomorphism. To see this let a, b ∈ H[xp1 , xp2 , . . . , xpl

],
and let c = ab. Then cH(n) =

∑
n=n1n2

aH(n1)bH(n2), and

aH(n1)bH(n2) =

(∑
m1

a(n1,m1)y
α1(m1)
p1

yα2(m1)
p2

· · ·

)(∑
m2

b(n2,m2)y
α1(m2)
p1

yα2(m2)
p2

· · ·

)

=
∑
m

( ∑
m=m1m2

a(n1,m1)b(n2,m2)

)
yα1(m)
p1

yα2(m)
p2

· · · .

So,

ab =

(∑
n1

aH(n1)x
α1(n1)
p1

· · ·xαl(n1)
pl

)(∑
n2

bH(n2)x
α1(n2)
p1

· · ·xαl(n2)
pl

)

=
∑
n

( ∑
n=n1n2

aH(n1)bH(n2)

)
xα1(n)
p1

· · ·xαl(n)
pl
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Thus,

ab =
∑
m

(∑
n

( ∑
n=n1n2

∑
m=m1m2

a(n1,m1)b(n2,m2)

)
xα1(n)
p1

· · ·xαl(n)
pl

)
yα1(m)
p1

yα2(m)
p2

· · ·

=

(∑
m1

(∑
n1

a(n1,m1)x
α1(n1)
p1

· · ·xαl(n1)
pl

)
yα1(m1)
p1

yα2(m1)
p2

· · ·

)
(∑

m2

(∑
n2

b(n2,m2)x
α1(n2)
p1

· · ·xα2(n2)
pl

)
yα1(m2)
p1

yα2(m2)
p2

· · ·

)

=

(∑
m1

a(n1)y
α1(m1)
p1

yα2(m1)
p2

· · ·

)(∑
m2

b(n2)y
α1(m2)
p1

yα2(m2)
p2

· · ·

)
= ab

Therefore, the map a → a is a homomorphism. It is clear that this map is also a bi-
jective map. Hence,H[xp1 , xp2 , . . . xpl

] is isomorphic to F [xp1 , . . . , xpl
]{yp1 , yp2 , . . . }.

This finishes step two. As for step three, one can argue similarly as above to con-
clude that the ring

F [x1p1 , . . . , x1pl
][x2p1 , x2p2 , . . . , x2p′

l
]

is isomorphic to the ring

F [x1p1 , . . . , x1pl
, x2p1 , x2p2 , . . . , x2p′

l
],

which finishes the proof in this case. The case of a general r is proved similarly,
and with this the proof of Theorem 1 is complete.
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