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Abstract. We determine b-functions of the seventeen polynomials of three
variables classificatied by the second author. The zero set of each of these
polynomials defines a Saito free divisor.

1 Introduction

The purpose of this paper is the determination of the b-functions of the polyno-
mials obtained in [10] where the second author classified weighted homogeneous
polynomials of three variables with some nice conditions as discriminants of Weyl
groups.

Before entering into the main subject of this paper, we explain its back-
ground. The seventeen polynomials classified in [10] are decomposed into three
families by the weights (p, q, r); (I) (p, q, r) = (2, 3, 4), (II) (p, q, r) = (1, 2, 3), (III)
(p, q, r) = (1, 3, 5). These families are related with the reflection groups of rank
three. In fact, there are three irreducible finite reflection groups of rank three
and their types are A3, B3, H3. The discriminant of the reflection group W (A3)
(resp., W (B3), W (H3)) is contained in (I) (resp., (II), (III)). Let x, y, z be the
variables such that their weights are p, q, r, respectively and let F (x, y, z) be one
of the seventeen polynomials. Then we find that not only the hypersurface of C3

defined by F (x, y, z) = 0 is a Saito free divisor but also it is regarded as a special
kind of a space of 1-parameter deformations of curves in the yz-space of a simple
curve singularity whose type is one of the types E6, E7, E8 (see [10]). Since the
complements of discriminants are known to be K(π, 1)-spaces, it is interesting to
determine the fundamental groups of the hypersurfaces defined by F (x, y, z) = 0.
This is done by T. Ishibe and K. Saito (cf. [4]).
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As a next step to study properties of these polynomials, we focus our attention
on the determination of their b-functions and make clear the roles of the roots of
the b-functions. Actually this is the main subject of this paper. There are several
methods of computing b-functions. In this paper we employ two methods. One
is the well-known method developped by M. Kashiwara (cf. [5]) which is quite
theoretical. The other is an algorithmic method established by Oaku ([7]); This is
improved and implemented to the computer algebra system “Risa/Asir” by Noro
([6]). It is underlined that this method is applicable to arbitary polynomials and
that we can easily compute the b-functions of the seventeen polynomials by this
method. As an advantage of the former method, it is possible to understand the
role of the factors of b-functions. In fact, for each of the seventeen polynomials, its
b-function is expected to be the product of three factors associated to a stratifica-
tion, namely, the first one corresponds to the contribution of the hypersurface, the
second does to that of the singular locus of the hypersurface and the third does
to that of the origin. Applying these two methods to our case, we actually show
that the b-function for each of the seventeen polynomials is decomposed into three
factors expected above. In particular, as a consequence of our study, we shall show
the following result.

Theorem If F (x, y, z) is one of the seventeen polynomials, then

bF (s) = (s+ 1)b̃2F,a(s)b̃
3
F,a(s),

where b̃2F,a(s) and b̃3F,a(s) are factors associated to the singular locus of the hyper-
surface F (x, y, z) = 0 and the origin, respectively.

We are going to explain the contents of this paper briefly. In section 2, we
review the results of [10] concerning the seventeen polynomials. In section 3, we
explain the definition of “b-function” of an analytic function, some of its basic
properties and methods of finding roots of b-functions. In particular, we introduce
polynomials b̃kf (s) associated to the b-functions. It is known that b̃1f (s) = s + 1.
In section 4, we apply the method of section 3 to the seventeen polynomials.
In our case, b̃2F (s) corresponds to the contribution of the singular locus of the
hypersurface F (x, y, z) = 0. Applying the arguments of the previous two sections,
we introduce a polynomial b̃2F,a(s) which is expected to be a factor of b̃2F (s). As

to b̃3F,a(s), applying the criterion of finding roots of b̃nf (s) = 0 explained in section

3 to our case, we determine some of factors of b̃3F (s). As a result, we introduce a

polynomial b̃3F,a(s) which is a factor of (but is expected to coincide with) b̃3F (s).

The concrete form of b̃3F,a(s) is given in Proposition 1. In section 5, we shall
show the main result of this paper. We first give b-functions of the seventeen
polynomials by using Risa/Asir. Comparing the computation on b̃2F,a(s), b̃

3
F,a(s)

with that on bF (s) by the algorithmic method, we obtain Theorem stated above.
As a consequence, we find that b̃jF,a(s) conincides with b̃jF (s) (j = 2, 3).
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2 The seventeen polynomials

In this section, we review the results of [10].
Let x, y, z be variables and consider a weighted homogeneous polynomial F (x, y, z)

of x, y, z of weights p, q, r. First we introduce seventeen polynomials FA,1, FA,2, . . . , FH,8

of x, y, z;
(I) The case (p, q, r) = (2, 3, 4). (This case corresponds to the reflection group

of Type A3.)
FA,1 = 16x4z − 4x3y2 − 128x2z2 + 144xy2z − 27y4 + 256z3.
FA,2 = 2x6 − 3x4z + 18x3y2 − 18xy2z + 27y4 + z3.
(II) The case (p, q, r) = (1, 2, 3). (This case corresponds to the reflection group

of Type B3.)
FB,1 = z(x2y2 − 4y3 − 4x3z + 18xyz − 27z2).
FB,2 = z(−2y3 + 4x3z + 18xyz + 27z2).
FB,3 = z(−2y3 + 9xyz + 45z2).
FB,4 = z(9x2y2 − 4y3 + 18xyz + 9z2).
FB,5 = xy4 + y3z + z3.
FB,6 = 9xy4 + 6x2y2z − 4y3z + x3z2 − 12xyz2 + 4z3.
FB,7 = 1

2xy
4 − 2x2y2z − y3z + 2x3z2 + 2xyz2 + z3.

(III) The case (p, q, r) = (1, 3, 5). (This case corresponds to the reflection group
of Type H3.)

FH,1 = −50z3+(4x5−50x2y)z2+(4x7y+60x4y2+225xy3)z− 135
2 y5−115x3y4−

10x6y3 − 4x9y2.
FH,2 = 100x3y4 + y5 + 40x4y2z − 10xy3z + 4x5z2 − 15x2yz2 + z3.
FH,3 = 8x3y4 + 108y5 − 36xy3z − x2yz2 + 4z3.
FH,4 = y5 − 2xy3z + x2yz2 + z3.
FH,5 = x3y4 − y5 + 3xy3z + z3.
FH,6 = x3y4 + y5 − 2x4y2z − 4xy3z + x5z2 + 3x2yz2 + z3.
FH,7 = xy3z + y5 + z3.
FH,8 = x3y4 + y5 − 8x4y2z − 7xy3z + 16x5z2 + 12x2yz2 + z3.
Let F (x, y, z) be one of the polynomials defined above. Then C : {(y, z);F (0, y, z) =

0} is regarded as a curve having an isolated singularity of type E6, E7, E8 at the ori-
gin if F (x, y, z) is one of the polynomials FA,j(j = 1, 2), FB,j(j = 1, . . . , 7), FH,j(j =
1, . . . , 8), respectively (cf. [13]). Therefore if we regard x as a parameter, the family
of curves Cx : F (x, y, z) = 0 on yz-space is a deformation of the curve C0 = C.

It is shown in [10] that, for the polynomial F (x, y, z), there are vector fields
V0, V1, V2 defined by

V0 = px
∂

∂x
+ qy

∂

∂y
+ rz

∂

∂z
,

V1 = qy
∂

∂x
+ h22(x, y, z)

∂

∂y
+ h23(x, y, z)

∂

∂z
,

V2 = rz
∂

∂x
+ h32(x, y, z)

∂

∂y
+ h33(x, y, z)

∂

∂z

(1)

having the following properties:
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(C0) hij(x, y, z) are polynomials of x, y, z.
(Ci) [V0, V1] = (q − p)V1, [V0, V2] = (r − p)V2.
(Cii) There exist polynomials fj(x, y, z) (j = 0, 1, 2) such that

[V1, V2] = f0(x, y, z)V0 + f1(x, y, z)V1 + f2(x, y, z)V2.

(Ciii)
∂h22

∂z
is a non-zero constant.

(Civ) Define the 3× 3 matrix M by

M =

 px qy rz
qy h22(x, y, z) h23(x, y, z)
rz h32(x, y, z) h33(x, y, z)

 . (2)

Then F (x, y, z) coincides with det(M) up to a constant factor.
In particular we have the following facts (cf. [9]):
(D1) There are polynomials cj = cj(x, y, z) such that VjF = cjF (j = 0, 1, 2). In particular

c0 is a positive constant.
(D2) If V is any vector field logarithmic along {F = 0} with coefficients in R, then V ∈∑2

j=0 RVj .

Let ZF be the hypersurface in C3 defined by F = 0 and let SF be the set
of singular points of ZF . By direct computation, we find that SF ∩ {x ̸= 0} is
smooth. Let Sj

F (j = 1, 2, . . . , k) be the totality of irreducible components of SF .

Then it is also easy to see that each Sj
F is a curve. Take a point P of Sj

F ∩{x ̸= 0}.
In this section, we review the results on the hypersurface SF near P given in [10].

Before explaining the result, we recall curves with simple singularities at the
origin in C2;

An : un+1 + v2 = 0 (n ≥ 1)
Dn : u(un−2 + v2) = 0 (n ≥ 4)
E6 : u4 + v3 = 0
E7 : u(u2 + v3) = 0
E8 : u5 + v3 = 0

(3)

If there is a neighbourhood U of P in ZF which is biholomorphically isomorphic
to a neighbourhood T of the origin (0, 0, 0) in {(u, v) ∈ C2 : un+1 + v2 = 0} ×C
such that P corresponds to the origin in TAn , we say that the type of singular-
ity of ZF along Sj

F is An. Similarly, if there is a neighbourhood U of P in ZF

which biholomorphically isomorphic to a neighbourhood T of the origin (0, 0, 0)
in {(u, v) ∈ C2 : u(un−2 + v2) = 0} ×C (resp. {(u, v) ∈ C2 : u4 + v3 = 0} ×C,
{(u, v) ∈ C2 : u(u2 + v3) = 0} × C, {(u, v) ∈ C2 : u5 + v3 = 0} × C) such that
P corresponds to the origin, we say that the type of singularity of ZF along Sj

F is
Dn (resp. E6, E7, E8).

We now state a theorem in [10].

Theorem 1 (i) There is a natural bijection between the set of polynomials of (I)
and that of corank one subsdiagrams of the Dynkin diagram of type E6 invariant
by its non-trivial symmetry.
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(ii) There is a natural bijection between the set of polynomials of (II) (resp.
(III)) and that of corank one subdiagrams of the Dynkin diagram of type E7 (resp.
E8).

For the seventeen polynomials introduced in this section, the types of singu-
larities are given in the table below.

TABLE 1

F Type
FA,1 A2 +A2 +A1

FA,2 A5

F Type
FB,1 A3 +A2 +A1

FB,2 A5 +A1

FB,3 D6

FB,4 D5 +A1

FB,5 E6

FB,6 A4 +A2

FB,7 A6

F Type
FH,1 A4 +A2 +A1

FH,2 A4 +A3

FH,3 D5 +A2

FH,4 D7

FH,5 E6 +A1

FH,6 A7

FH,7 E7

FH,8 A6 +A1

3 Review on b-functions

We here explain a general method of determining the b-function of an analytic
function f(x) (cf. [14]). (Our argument of this section is basically same as a part
of [15], §3.)

Let X be a complex manifold of dimension n and let OX (resp.DX) be the sheaf
of germs of holomorphic functions on X (resp. the sheaf of differential operators of
finite order with coefficients in OX). We here restrict our attention to the study of
differential equations governing a complex power of a polynomial or a holomorphic
function. We put DX [s] = DX ⊗C[s] for an indeterminate s that commutes with
DX . We define an Ideal

Jf (s) = {P (s, x, ∂x) ∈ DX [s]; P (s, x, ∂x)(f(x))
s = 0}

for a holomorphic function f(x) on X and also define the following DX (or DX [s])-
Modules:

N = DX [s](f(x))s ≃ DX [s]/Jf (s),
M = DX [s](f(x))s/DX [s](f(x))s+1 ≃ DX [s](f(x))s/(Jf (s) +DX [s]f(x)),
Nα = DX/Jf (α) (α ∈ C),

where Jf (α) = {P (α, x, ∂x) ∈ DX ;P (s, x, ∂x) ∈ Jf (s)}. Then N , M, Nα are
coherent DX -Modules.

The b-function of f(x) is, by definition, the monic polynomial bf (s) of s with
the minimal degree such that

P (s, x, ∂x)(f(x))
s+1 = bf (s)(f(x))

s
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for a differential operator P (s, x, ∂x) ∈ DX [s]. It is provable that Nα ≃ DX(f(x))α

if and only if α ∈ C satisfies bf (α− n) ̸= 0 for all n ∈ N.
In the sequel, we restrict our attention to the case where X = Cn with coor-

dinate x = (x1, x2, . . . , xn) and that f(x) is a weighted homogeneous polynomial
of x1, x2, . . . , xn; there are positive rational numbers r1, r2, . . . , rn (0 < rj , j =
1, 2, . . . , n) such that X0f = f , where X0 is a vector field X0 =

∑n
j=1 rjxj∂xj .

Put
M̃ = (s+ 1)M ≃ DX [s]/(Jf (s) +DX [s](V +OXf)),

where V =
∑n

i=1 OX∂xif. Regarding s an endomorphism of M̃, we write b̃f (s) for
the minimal polynomial of s. Then, from the definition, we have

bf (s) = (s+ 1)b̃f (s).

¿From the assumption, it follows that s−X0 ∈ Jf (s) and moreover

M̃ = DX/(Jf (0) +DXV),

where Jf (0) = DX ∩ Jf (s). We take a regular stratification X =
∪
α

Xα of H.

Whitney such that

ŠS(M̃) ⊂
∪
α

T ∗
Xα

X.

Then we define b̃kf (s) as the minimal polynomial of the endomorphism s of⊗
codimXα=k

HomDX
(M̃,BXα|X)xα (xα ∈ Xα),

where BXα|X denotes the space of delta functions supported on Xα ⊂ X. We now

recall an interdependence between b̃f and b̃kf , that is,

l.c.m2≤k≤n(b̃
k
f )|b̃f |

n∏
k=2

b̃kf ,

where l.c.m is an abbreviation of the least common multiple.
There are criterions of finding roots of b-functions. We here explain two of such

critrions.
As to b̃nf (s), there is a rather simple criterion of finding roots of b̃nf (s) = 0.

To be specific, we decompose F = HomDX (M̃,Bpt)0 into root subspaces of the
endomorphism s, where Bpt is an abbreviation of B{0}|X . A homomorphism 1 7→
∆(x) ∈ Bpt in F is an eigenvector of s belonging to an eigenvalue β if and only if
the following condition holds:

(A)


X0∆(x) = β∆(x),
Q(x, ∂x)∆(x) = 0 for all Q(x, ∂x) ∈ Jf (0),
∂f
∂xi

∆(x) = 0 for i = 1, 2, . . . , n.

Then, for a complex number β, b̃nf (s) has the factor s − β if and only if there is
non-zero ∆(x) ∈ Bpt satisfying (A).
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On the other hand, if f(x) has an isolated singularity at the origin in addition
to weighted homogeneous property, there is a formula of the b-function of f(x).
To describe the formula concretely, we write

(tr1 − t) · · · (trn − t)

(1− tr1) · · · (1− trn)
= tα1 + tα2 + · · ·+ tαµ

for some positive rational numbers α1, α2, . . . , αµ. Then the following theorem
holds.

Theorem 2 (M. Kashiwara, T. Miwa and M. Sato) Under the notation above,

b̃f (s) =
∏
j

′(s+ αj),

where
∏′

indicates the multiplicity free product.

(This theorem is equivalent to Th. 6.18 in [5].)
As an application of this theorem, it is easy to determine the b-function of

the defining polynomial f(u, v) of a curve with a simple singularity at the origin
introduced in (3). The result is given in the table below.

TABLE 2

Type b̃f (s)

An

∏n
j=1

(
s+ 1

2 + j
n+1

)
D2m(m > 1) (s+ 1)

∏m−1
j=1

(
s+ m+j−1

2m−1

)(
s+ 2m+j−1

2m−1

)
D2m+1(m > 1) (s+ 1)

∏m
j=1

(
s+ 2m+2j−1

4m

) (
s+ 4m+2j−1

4m

)
E6 (s+ 7

12 )(s+
10
12 )(s+

11
12 )(s+

13
12 )(s+

14
12 )(s+

17
12 )

E7 (s+ 1)(s+ 5
9 )(s+

7
9 )(s+

8
9 )(s+

10
9 )(s+ 11

9 )(s+ 13
9 )

E8 (s+ 8
15 )(s+

11
15 )(s+

13
15 )(s+

14
15 )(s+

16
15 )(s+

17
15 )(s+

19
15 )(s+

22
15 )

In the sequel, cY (s) denotes the polynomial b̃f (s) for the root system of type
Y in the table above.

4 Roots of b-functions of our polynomials

We return to our situation. As before, let F (x, y, z) be a polynomial equal to one
of those introduced in §2. Put

Z0 = {(x, y, z) ∈ C3; F (x, y, z) ̸= 0},
Z1 = {(x, y, z) ∈ C3; F (x, y, z) = 0} − {(x, y, z) ∈ C3; ∂xF = 0, ∂yF = 0, ∂zF = 0},
Z2 = {(x, y, z) ∈ C3; ∂xF = 0, ∂yF = 0, ∂zF = 0, x ̸= 0},
Z3 = {(0, 0, 0)}.

Then we easily find that there is a regular stratification C3 = ∪αXα such that the
union of strata Xα with codimXα = k coincides Zk. Let b̃F (s) and b̃kF (s)(k = 2, 3)
be the minimal polynomials for F introduced in the previous section. The purpose
of this section is to study the factors of b̃kF (s) (k = 2, 3).
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Remark 1 In the case of the discriminant of an irreducible finite reflection group,
the explicit form of its b-function was conjectured in [15] and solved affirmatively
in [8].

By using the b-function of the defining polynomial of a simple singularity on a
curve described in the previous section, we can determine candidates of the roots
of b̃2F (s) = 0 up to multiplicities. To be specific, let F = F (x, y, z) be one of the
seventeen polynomials and let Y1, Y2, . . . , Yk be the types of irreducible components
of singular locus of the hypersurface defined by F = 0. Let {β1, β2, . . . , βN} be all

the roots of
∏k

j=1 cYj (s) = 0. Assume that β1, β2, . . . , βN are mutually different.

Then we put b̃2F,a(s) =
∏N

i=1(s − βi). In virtue of Theorem 1 and TABLE 2, we

can easily determine the concrete form of b̃2F,a(s). The result is given in the table
below:

TABLE 3

F b̃2F,a(s)

FA,1 (s+ 5
6 )(s+

7
6 ) · (s+ 1)

FA,2 (s+ 2
3 )(s+

5
6 )(s+ 1)(s+ 7

6 )(s+
4
3 )

FB,1 (s+ 1)(s+ 5
6 )(s+

3
4 )(s+

5
4 )(s+

7
6 )

FB,2 (s+ 1)(s+ 2
3 )(s+

5
6 )(s+

4
3 )(s+

7
6 )

FB,3 (s+ 1)(s+ 3
5 )(s+

4
5 )(s+

6
5 )(s+

7
5 )

FB,4 (s+ 1)(s+ 5
8 )(s+

7
8 )(s+

9
8 )(s+

11
8 )

FB,5 (s+ 7
12 )(s+

5
6 )(s+

11
12 )(s+

13
12 )(s+

7
6 )(s+

17
12 )

FB,6 (s+ 7
10 )(s+

9
10 )(s+

11
10 )(s+

13
10 ) · (s+

5
6 )(s+

7
6 )

FB,7 (s+ 9
14 )(s+

11
14 )(s+

13
14 )(s+

15
14 )(s+

17
14 )(s+

19
14 )

FH,1 (s+ 7
10 )(s+

9
10 )(s+

11
10 )(s+

13
10 ) · (s+

5
6 )(s+

7
6 ) · (s+ 1)

FH,2 (s+ 7
10 )(s+

9
10 )(s+

11
10 )(s+

13
10 ) · (s+

3
4 )(s+ 1)(s+ 5

4 )
FH,3 (s+ 5

8 )(s+
7
8 )(s+ 1)(s+ 9

8 )(s+
11
8 ) · (s+ 5

6 )(s+
7
6 )

FH,4 (s+ 7
12 )(s+

3
4 )(s+

11
12 )(s+ 1)(s+ 13

12 )(s+
5
4 )(s+

17
12 )

FH,5 (s+ 7
12 )(s+

5
6 )(s+

11
12 )(s+

13
12 )(s+

7
6 )(s+

17
12 ) · (s+ 1)

FH,6 (s+ 5
8 )(s+

3
4 )(s+

7
8 )(s+ 1)(s+ 9

8 )(s+
5
4 )(s+

11
8 )

FH,7 (s+ 5
9 )(s+

7
9 )(s+

8
9 )(s+ 1)(s+ 10

9 )(s+ 11
9 )(s+ 13

9 )
FH,8 (s+ 9

14 )(s+
11
14 )(s+

13
14 )(s+

15
14 )(s+

17
14 )(s+

19
14 ) · (s+ 1)

Remark 2 At this moment, it is not trivial whether b̃2F,a(s) is a factor of b̃2F (s)
or not. But lalter we observe that they acually coincide.

In order to determine factors of b̃3F (s), we recall the criterion explained in the
previous section, namely what we have to do is to find ∆(x, y, z) ∈ Bpt satisfying
the condition

(A)


X0∆(x, y, z) = β∆(x, y, z),
Q(x, y, z, ∂x, ∂y, ∂z)∆(x, y, z) = 0 for all Q(x, y, z, ∂x, ∂y, ∂z) ∈ JF (0),
∂f
∂x∆(x) = ∂f

∂y∆(x) = ∂f
∂z∆(x) = 0

Here X0 is the vector field such that X0F = F .
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Unfortunately it is not so easy to determine JF (0). For this reason we modify
the criterion (A) in the following one:

(A’)


X0∆(x, y, z) = β∆(x, y, z),
Q(x, y, z, ∂x, ∂y, ∂z)∆(x, y, z) = 0 for all Q(x, y, z, ∂x, ∂y, ∂z) ∈ GF ,
∂f
∂x∆(x) = ∂f

∂y∆(x) = ∂f
∂z∆(x) = 0

Here

GF = DC3(V1 −
c1
c0

V0) +DC3(V2 −
c2
c0

V0).

Since (Vj −
cj
c0

V0)F = 0, it follows that GF ⊂ JF (0). As a consequence, if (A)

holds for a non-zero ∆ ∈ Bpt and a rational number β, then (A’) also holds for
a non-zero ∆ ∈ Bpt and a rational number β. But it is not trivial whether the
converse is true or not. In splite of this fact, we are going to compute the pair
(∆, β) (∆ ̸= 0) such that (A’) holds for (∆, β). Moreover we focus our effort to
compute such pairs (∆, β) that −2 < β < 0 for simplicity.

Remark 3 In the first draft of this paper, we used the fact that GF coincides
with JF without proof. The referee pointed out that this is not trivial. For this
reason we introduced GF and a criterion (A’). The authors thank to the referee for
pointing out this error.

Proposition 1 Let b̃3F,a(s) be the polynomial defined in TABLE 4 below. If β is

a root of b̃3F (s) = 0 and −2 < β < 0, so is the root of b̃3F,a(s) = 0.

TABLE 4

F b̃3F,a(s)

FA,j (j = 1, 2) (s+ 3
4 )(s+

5
4 )

FB,j (j = 1, 2, 3, 4) (s+ 2
3 )(s+ 1)(s+ 4

3 )
FB,j (j = 5, 6, 7) (s+ 2

3 )(s+
4
3 )

FH,j (j = 1, 2, . . . , 8) (s+ 3
5 )(s+

2
3 )(s+

4
5 )(s+ 1)(s+ 6

5 )(s+
4
3 )(s+

7
5 )

To prove Proposition 1, it suffices to determine pairs (∆, β) satisfying the
conditions that ∆(x, y, z) ∈ Bpt, ∆ ̸= 0, −2 < β < 0 and that the condition (A’)
holds for (∆, β). For this purpose, we let O0 = OC3,0 be the stalk at the orign of
the sheaf of holomorphic functions on C3 with coordinate (x, y, z) and introduce
the ring O0[

1
x ,

1
y ,

1
z ] and its O0-ideal O0[

1
y ,

1
z ] + O0[

1
x ,

1
z ] + O0[

1
x ,

1
y ]. Then Bpt is

identified with the O0-module

O0[
1

x
,
1

y
,
1

z
]/(O0[

1

y
,
1

z
] +O0[

1

x
,
1

z
] +O0[

1

x
,
1

y
]).

For each positive integers l , m, n, the class in Bpt represented by 1
xlymzn is denote

by the same notation for the sake of simplicity. Then it is clear that any element of
Bpt is a finite linear combination of 1

xlymzn (l,m, n > 0) with constant coefficients
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and the operation of partial differential ∂x, ∂y, ∂z and mulitiplication by x, y, z on
Bpt are

∂x

(
1

xlymzn

)
=

−l

xl+1ymzn
, ∂y

(
1

xlymzn

)
=

−m

xlym+1zn
, ∂z

(
1

xlymzn

)
=

−n

xlymzn+1

x

(
1

xlymzn

)
=

1

xl−1ymzn
, y

(
1

xlymzn

)
=

1

xlym−1zn
, z

(
1

xlymzn

)
=

1

xlymzn−1
.

In particular

x

(
1

xymzn

)
= 0, y

(
1

xlyzn

)
= 0, z

(
1

xlyz

)
= 0.

By direct computation we find that each of the elements of Bpt below is ∆(x, y, z)
for some β (−2 < β < 0).

A1

d_{A1,3/4}=1/(x*y*z);

d_{A1,5/4}=1/(8*x^2*y*z^2)+1/(6*x*y^3*z)+1/(x^4*y*z);

A2

d_{A2,3/4}=1/(x*y*z);

d_{A2,3/4}=-5/(2*x^2*y*z^2)+7/(12*x*y^3*z)+1/(x^4*y*z);

B1

d_{B1,2/3}=1/(x*y*z);

d_{B1,1}=1/(4*x^2*y^2*z)+1/(x^4*y*z);

d_{B1,4/3}=-7/(58320*x*y*z^3)+7/(12960*x^2*y^2*z^2)+7/(1080*x^4*y*z^2)+

7/(1080*x*y^4*z)+7/(144*x^3*y^3*z)+7/(30*x^5*y^2*z)+1/(x^7*y*z);

B2

d_{B2,2/3}=1/(x*y*z);

d_{B2,1}=4/(27*x*y*z^2)-2/(3*x^2*y^2*z)+1/(x^4*y*z);

d_{B2,4/3}=-4/(135*x^2*y^2*z^2)+4/(45*x^4*y*z^2)-8/(45*x*y^4*z)+4/(15*x^3*y^3*z)-

8/(15*x^5*y^2*z)+1/(x^7*y*z);

B3

d_{B3,2/3}=1/(x*y*z);

d_{B3,1}=3/(50*x*y*z^2)-3/(10*x^2*y^2*z)+1/(x^4*y*z);

d_{B3,4/3}=11/(11250*x*y*z^3)-11/(1500*x^2*y^2*z^2)+11/(375*x^4*y*z^2)+

11/(250*x^3*y^3*z)-11/(50*x^5*y^2*z)+1/(x^7*y*z);

B4

d_{B4,2/3}=1/(x*y*z);

d_{B4,1}=9/(4*x^2*y^2*z)+1/(x^4*y*z);

d_{B4,4/3}=-187/(720*x*y*z^3)-187/(480*x^2*y^2*z^2)-17/(120*x^4*y*z^2)+

187/(80*x^3*y^3*z)+17/(10*x^5*y^2*z)+1/(x^7*y*z);

B5

d_{B5,2/3}=1/(x*y*z);

d_{B5,4/3}=-1/(3*x*y*z^3)+1/(6*x^2*y^2*z^2)-1/(45*x^4*y*z^2)+1/(x*y^4*z)-

1/(9*x^3*y^3*z)+2/(135*x^5*y^2*z)-1/(486*x^7*y*z);

B6

d_{B6,2/3}=1/(x*y*z);
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d_{B6,4/3}=-1729/(10240*x*y*z^3)-1729/(5120*x^2*y^2*z^2)-247/(160*x^4*y*z^2)+

1729/(10240*x*y^4*z)-247/(640*x^3*y^3*z)-19/(20*x^5*y^2*z)+1/(x^7*y*z);

B7

d_{B7,2/3}=1/(x*y*z);

d_{B7,4/3}=124729/(116640*x*y*z^3)+11339/(38880*x^2*y^2*z^2)-667/(540*x^4*y*z^2)-

11339/(4320*x*y^4*z)+667/(648*x^3*y^3*z)-29/(45*x^5*y^2*z)+1/(x^7*y*z);

H1

d_{H1,3/5}=1/(x*y*z);

d_{H1,2/3}=1/(x^2*y*z);

d_{H1,4/5}=-(2/(15*x*y^2*z))+1/(x^4*y*z);

d_{H1,1}=1/(x^7*y*z);

d_{H1,6/5}=4/(875*x^2*y^2*z^2)+16/(525*x^5*y*z^2)+8/(2625*x*y^4*z)-4/(525*x^4*y^3*z)+

2/(105*x^7*y^2*z)+1/(x^10*y*z);

d_{H1,4/3}=32/(19683*x^2*y*z^3)-64/(45927*x*y^3*z^2)+68/(45927*x^4*y^2*z^2)+

64/(1701*x^7*y*z^2)+8/(5103*x^3*y^4*z)-92/(15309*x^6*y^3*z)+

2/(81*x^9*y^2*z)+1/(x^12*y*z);

d_{H1,7/5}=1/(625*x^3*y*z^3)-2/(9375*x^2*y^3*z^2)+2/(1875*x^5*y^2*z^2)+

1/(25*x^8*y*z^2)-8/(5625*x*y^5*z)+2/(1875*x^4*y^4*z)-2/(375*x^7*y^3*z)+

2/(75*x^10*y^2*z)+1/(x^13*y*z);

H2

d_{H2,3/5}=1/(x*y*z);

d_{H2,2/3}=1/(x^2*y*z);

d_{H2,4/5}=6/(x*y^2*z)+1/(x^4*y*z);

d_{H2,1}=63/(2*x^2*y*z^2)-36/(x*y^3*z)+9/(2*x^4*y^2*z)+1/(x^7*y*z);

d_{H2,6/5}=-(135/(7*x^2*y^2*z^2))+36/(x^5*y*z^2)+594/(7*x*y^4*z)+9/(7*x^4*y^3*z)+

30/(7*x^7*y^2*z)+1/(x^10*y*z);

d_{H2,4/3}=49894/(729*x^2*y*z^3)-1976/(729*x*y^3*z^2)+247/(9*x^4*y^2*z^2)+

988/(27*x^7*y*z^2)-1976/(243*x^3*y^4*z)+494/(81*x^6*y^3*z)+

38/(9*x^9*y^2*z)+1/(x^12*y*z);

d_{H2,7/5}=405/(2*x^3*y*z^3)-243/(4*x^2*y^3*z^2)+216/(5*x^5*y^2*z^2)+

147/(4*x^8*y*z^2)+1539/(5*x*y^5*z)-189/(20*x^4*y^4*z)+15/(2*x^7*y^3*z)+

21/(5*x^10*y^2*z)+1/(x^13*y*z);

H3

d_{H3,3/5}=1/(x*y*z);

d_{H3,2/3}=1/(x^2*y*z);

d_{H3,4/5}=7/(300*x*y^2*z)+1/(x^4*y*z);

d_{H3,1}=1/(3200*x^2*y*z^2)+1/(800*x^4*y^2*z)+1/(10*x^7*y*z);

d_{H3,6/5}=299/(28000000*x^2*y^2*z^2)+299/(105000*x^5*y*z^2)-299/(420000000*x*y^4*z)+

299/(4200000*x^4*y^3*z)+23/(2100*x^7*y^2*z)+1/(x^10*y*z);

d_{H3,4/3}=187/(70543872*x^2*y*z^3)+187/(11757312*x^4*y^2*z^2)+187/(68040*x^7*y*z^2)+

187/(2449440*x^6*y^3*z)+17/(1620*x^9*y^2*z)+1/(x^12*y*z);

d_{H3,7/5}=7843/(2400000000*x^3*y*z^3)+341/(48000000000*x^2*y^3*z^2)+

341/(20000000*x^5*y^2*z^2)+217/(80000*x^8*y*z^2)-

341/(360000000000*x*y^5*z)+341/(2400000000*x^4*y^4*z)+

31/(400000*x^7*y^3*z)+31/(3000*x^10*y^2*z)+1/(x^13*y*z);

H4

d_{H4,3/5}=1/(x*y*z);

d_{H4,2/3}=1/(x^2*y*z);

d_{H4,4/5}=-26/(75*x*y^2*z)+1/(x^4*y*z);

d_{H4,1}=1/(6*x^2*y*z^2)-1/(6*x^4*y^2*z)+1/(x^7*y*z);

d_{H4,6/5}=-1887/(109375*x^2*y^2*z^2)+444/(4375*x^5*y*z^2)+3774/(546875*x*y^4*z)+

333/(21875*x^4*y^3*z)-74/(525*x^7*y^2*z)+1/(x^10*y*z);

d_{H4,4/3}=2/(243*x^2*y*z^3)-1/(81*x^4*y^2*z^2)+4/(45*x^7*y*z^2)+2/(135*x^6*y^3*z)-
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2/(15*x^9*y^2*z)+1/(x^12*y*z);

d_{H4,7/5}=50141/(7031250*x^3*y*z^3)+50141/(70312500*x^2*y^3*z^2)-

2639/(234375*x^5*y^2*z^2)+637/(7500*x^8*y*z^2)-50141/(87890625*x*y^5*z)-

2639/(4687500*x^4*y^4*z)+91/(6250*x^7*y^3*z)-49/(375*x^10*y^2*z)+

1/(x^13*y*z);

H5

d_{H5,3/5}=1/(x*y*z);

d_{H5,2/3}=1/(x^2*y*z);

d_{H5,4/5}=-(52/(25*x*y^2*z))+1/(x^4*y*z);

d_{H5,1}=1/(x^2*y*z^2)+1/(x*y^3*z)-1/(x^4*y^2*z)+1/(x^7*y*z);

d_{H5,6/5}=-6919/(15625*x^2*y^2*z^2)+3256/(4375*x^5*y*z^2)-13838/(78125*x*y^4*z)+

13838/(21875*x^4*y^3*z)-148/(175*x^7*y^2*z)+1/(x^10*y*z);

d_{H5,4/3}=2/(7*x^2*y*z^3)-3/(7*x^4*y^2*z^2)+24/(35*x^7*y*z^2)-2/(7*x^3*y^4*z)+

4/(7*x^6*y^3*z)-4/(5*x^9*y^2*z)+1/(x^12*y*z);

d_{H5,7/5}=458983/(1562500*x^3*y*z^3)+458983/(3906250*x^2*y^3*z^2)-

65569/(156250*x^5*y^2*z^2)+833/(1250*x^8*y*z^2)-

458983/(19531250*x*y^5*z)-458983/(1562500*x^4*y^4*z)+

3451/(6250*x^7*y^3*z)-98/(125*x^10*y^2*z)+1/(x^13*y*z);

H6

d_{H6,3/5}=1/(x*y*z);

d_{H6,2/3}=1/(x^2*y*z);

d_{H6,4/5}=-21/(25*x*y^2*z)+1/(x^4*y*z);

d_{H6,1}=-9/(20*x^2*y*z^2)+9/(10*x*y^3*z)-9/(20*x^4*y^2*z)+1/(x^7*y*z);

d_{H6,6/5}=-24219/(218750*x^2*y^2*z^2)-1242/(4375*x^5*y*z^2)-266409/(1093750*x*y^4*z)+

11799/(43750*x^4*y^3*z)-69/(175*x^7*y^2*z)+1/(x^10*y*z);

d_{H6,4/3}=374/(3645*x^2*y*z^3)+374/(3645*x*y^3*z^2)-34/(135*x^7*y*z^2)-

187/(1215*x^3*y^4*z)+17/(81*x^6*y^3*z)-17/(45*x^9*y^2*z)+1/(x^12*y*z);

d_{H6,7/5}=32643/(390625*x^3*y*z^3)+293787/(7812500*x^2*y^3*z^2)+

10881/(625000*x^5*y^2*z^2)-1209/(5000*x^8*y*z^2)+

1534221/(9765625*x*y^5*z)-402597/(3125000*x^4*y^4*z)+

1209/(6250*x^7*y^3*z)-93/(250*x^10*y^2*z)+1/(x^13*y*z);

H7

d_{H7,3/5}=1/(x*y*z);

d_{H7,2/3}=1/(x^2*y*z);

d_{H7,4/5}=-11/(25*x*y^2*z)+1/(x^4*y*z);

d_{H7,1}=-1/(15*x^2*y*z^2)+1/(15*x*y^3*z)-1/(5*x^4*y^2*z)+1/(x^7*y*z);

d_{H7,6/5}=551/(62500*x^2*y^2*z^2)-551/(13125*x^5*y*z^2)-551/(78125*x*y^4*z)+

551/(18750*x^4*y^3*z)-29/(175*x^7*y^2*z)+1/(x^10*y*z);

d_{H7,4/3}=1/(729*x^2*y*z^3)-1/(729*x*y^3*z^2)+1/(162*x^4*y^2*z^2)-

1/(27*x^7*y*z^2)-1/(243*x^3*y^4*z)+2/(81*x^6*y^3*z)-7/(45*x^9*y^2*z)+

1/(x^12*y*z);

d_{H7,7/5}=5681/(4687500*x^3*y*z^3)-5681/(5859375*x^2*y^3*z^2)+

437/(78125*x^5*y^2*z^2)-133/(3750*x^8*y*z^2)+5681/(9765625*x*y^5*z)-

5681/(1562500*x^4*y^4*z)+437/(18750*x^7*y^3*z)-19/(125*x^10*y^2*z)+

1/(x^13*y*z);

H8

d_{H8,3/5}=1/(x*y*z);

d_{H8,2/3}=1/(x^2*y*z);

d_{H8,4/5}=-132/(25*x*y^2*z)+1/(x^4*y*z);

d_{H8,1}=9/(x^2*y*z^2)+9/(x*y^3*z)-3/(x^4*y^2*z)+1/(x^7*y*z);

d_{H8,6/5}=-193401/(15625*x^2*y^2*z^2)+27144/(4375*x^5*y*z^2)-

16632486/(546875*x*y^4*z)+156078/(21875*x^4*y^3*z)-

468/(175*x^7*y^2*z)+1/(x^10*y*z);

d_{H8,4/3}=249458/(25515*x^2*y*z^3)+997832/(25515*x*y^3*z^2)-
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11339/(945*x^4*y^2*z^2)+5336/(945*x^7*y*z^2)-22678/(1215*x^3*y^4*z)+

2668/(405*x^6*y^3*z)-116/(45*x^9*y^2*z)+1/(x^12*y*z);

d_{H8,7/5}=140110641/(10937500*x^3*y*z^3)+793960299/(27343750*x^2*y^3*z^2)-

12860397/(1093750*x^5*y^2*z^2)+6837/(1250*x^8*y*z^2)+

9200598759/(136718750*x*y^5*z)-187491051/(10937500*x^4*y^4*z)+

280317/(43750*x^7*y^3*z)-318/(125*x^10*y^2*z)+1/(x^13*y*z);

Remark 4 We now explain the meaning of the classes in Bpt introduced above.
Let d_{X,r} be a class in Bpt, where X is one of A3, B3, H3 and r is an attached
rational number. Then DC3d_{A1,r} is a non-trivial quotient of DC3/Jr, where

Jr = DC3(V0 + rc0) +DC3(V1 + rc1) +DC3(V2 + rc2).

¿From the definition, DC3F−r is also a quotient of DC3/Jr. If DC3d_{A1,r} is
a quotient of DC3F−r, then −r is a root of b̃3F (s) = 0.

5 The Main Theorem

In this section, we first show the b-functions of the seventeen polynomials and then
give a relationship between b-functions and b̃2F,a(s), b̃

3
F,a(s).

Theorem 3 The b-functions of the seventeen polynomials are given as follows:
bFA,1

(s) = (s+ 1)2(s+ 3
4
)(s+ 5

4
)(s+ 5

6
)(s+ 7

6
)

bFA,2
(s) = (s+ 1)2(s+ 2

3
)(s+ 4

3
)(s+ 3

4
)(s+ 5

4
)(s+ 5

6
)(s+ 7

6
)

bFB,1
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

4
)(s+ 5

4
)(s+ 5

6
)(s+ 7

6
)

bFB,2
(s) = (s+ 1)3(s+ 2

3
)2(s+ 4

3
)2(s+ 5

6
)(s+ 7

6
)

bFB,3
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)

bFB,4
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 5

8
)(s+ 7

8
)(s+ 9

8
)(s+ 11

8
)

bFB,5
(s) = (s+ 1)(s+ 2

3
)(s+ 4

3
)(s+ 5

6
)(s+ 7

6
)(s+ 7

12
)(s+ 11

12
)(s+ 13

12
)(s+ 17

12
)

bFB,6
(s) = (s+ 1)(s+ 2

3
)(s+ 4

3
)(s+ 5

6
)(s+ 7

6
)(s+ 7

10
)(s+ 9

10
)(s+ 11

10
)(s+ 13

10
)

bFB,7
(s) = (s+ 1)(s+ 2

3
)(s+ 4

3
)(s+ 9

14
)(s+ 11

14
)(s+ 13

14
)(s+ 15

14
)(s+ 17

14
)(s+ 19

14
)

bFH,1
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 5

6
)(s+ 7

6
)(s+ 7

10
)

×(s+ 9
10

)(s+ 11
10

)(s+ 13
10

)

bFH,2
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

4
)(s+ 5

4
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 7

10
)

×(s+ 9
10

)(s+ 11
10

)(s+ 13
10

)

bFH,3
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 5

6
)(s+ 7

6
)(s+ 5

8
)

×(s+ 7
8
)(s+ 9

8
)(s+ 11

8
)

bFH,4
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

4
)(s+ 5

4
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 7

12
)

×(s+ 11
12

)(s+ 13
12

)(s+ 17
12

)

bFH,5
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 5

6
)(s+ 7

6
)(s+ 7

12
)

×(s+ 11
12

)(s+ 13
12

)(s+ 17
12

)

bFH,6
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

4
)(s+ 5

4
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 5

8
)

×(s+ 7
8
)(s+ 9

8
)(s+ 11

8
)

bFH,7
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 5

9
)(s+ 7

9
)(s+ 8

9
)

×(s+ 10
9
)(s+ 11

9
)(s+ 13

9
)

bFH,8
(s) = (s+ 1)3(s+ 2

3
)(s+ 4

3
)(s+ 3

5
)(s+ 4

5
)(s+ 6

5
)(s+ 7

5
)(s+ 9

14
)(s+ 11

14
)(s+ 13

14
)

×(s+ 15
14

)(s+ 17
14

)(s+ 19
14

)
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This theorem is proved as follows. We first compute bF (s) by using Oaku’s
algorithm [7]. (cf. As to its improved version, see [6]). These algorithms use the
Groebner basis method in the ring of differential operators. The result is obtained
by using the computer algebra system “Risa/Asir”.

Theorem 4 Let F (x, y, z) be one of the seventeen polynomials and let bF (s) be
its b-function. Then bF (s) = (s+ 1)b̃2F,a(s)b̃

3
F,a(s).

We can check case by case the claim of the theorem by comparing bF (s) with
(s+ 1)b̃2F,a(s)b̃

3
F,a(s).

Remark 5 (1) There is a duality for the roots of the b-functions of the seventeen
polynomials. Let F (x, y, z) be one of the seventeen polynomials and let bF (s) be
its b-function. Write bF (s) =

∏m
i=1(s+αi), where 0 < α1 ≤ α2 ≤ · · · ≤ αm. Then

αi + αm−i+1 = 2 for all i. As a consequence, αi < 2 for all i.
(2) In Proposition 1, we introduced a polynomial b̃3F,a(s) = 0 related with b̃3F (s).

Noting (1) and Theorem 4, we find that b̃3F (s) = b̃3F,a(s). Then we also conclude

that b̃2F (s) = b̃2F,a(s).
(3) The second author obtained several polynomials which define Saito free

divisors and have nice properties as the seventeen polynomials treated in this paper
(cf. [11], [12], [2]). They are regarded as spaces of 1-parameter deformations of
eight members of the exceptional families of isolated singularities in the sense of
V. Arnol’d. It is possible to compute b-functions of such polynomials by Risa/Asir.
We will discuss this topic elsewhere.

ACKNOWLEDGMENT. The authors thank to Professors M. Noro and N.
Takayama for their hospitality.
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