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Abstract

The purpose of this paper is to study systems of uniformization equations singu-
lar along Saito free divisors which have solutions expressed in terms of hyperelliptic
integrals. Saito free divisors treated here are defined by use of the discriminants
of dihedral groups of order 4m. We construct fundamental solutions of the above
mentioned system by means of Gaussian hypergeometric functions in addition to a
solution expressed by the hyperelliptic integral. In the last section, we discuss the
cases m = 2 and m = 3 in detail.

1 Introduction

The notion of systems of uniformization equations singular along Saito free divisors was
introduced by K. Saito about thirty years ago (cf. [1]). We call a divisor in Cn Saito
free if and only if the OCn-module of its logarithmically tangent vector fields is free. In
spite of its interest, such systems are not studied well and there are many problems on
this theory to be done. The purpose of this paper is to study systems of uniformization
equations singular along Saito free divisors which have solutions expressed in terms of
hyperelliptic integrals. The same question was treated in [9] for two divisors defined by
weighted homogeneous polynomials in three variables. One is defined by the discriminant
of a dihedral group of order 2(2m + 1). The other is the discriminant of the reflection
group of type H3. In the former case, we construct fundamental solutions by means of
Gaussian hypergeometric functions in addition to a solution expressed by the hyperelliptic
integral.

In this paper, we treat the case of a Saito free divisor in C3 constructed from the
discriminant of a dihedral group of order 4m in a natural way. The argument of this
paper is similar to that in [9]. The main result of this paper is to define a function of
three variables which is expressed by the hyperelliptic integral and determine the system
of uniformization equations which governs the function in question (cf. Theorem 1).
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We now briefly explain the contents of this paper. In section 2, we introduce a polyno-
mial, denoted by σn(t; u, v) of t whose coefficients are polynomials of u, v. We show that co-
efficients of σn(t;u, v) are invariant by the action of a dihedral group of order 2n and imply
a generating function of σn(t;u, v). In section 3, we introduce a polynomial δm(x1, x2, x3)
of x1, x2, x3 which is defined as the pull-back of the discriminant of σ2m(t;u, v) by a cer-
tain polynomial mapping. We show that the hypersurface δm(x1, x2, x3) = 0 is a Saito
free divisor in C3. In section 4, after a brief survey on a result by K. Saito on a system
of uniformizations equations along the Saito free divisor in C3 defined as the zero set of
the discriminant of type A3, we introduce a polynomial Pm(t;x1, x2, x3) of t whose coeffi-
cients are polynomials of x1, x2, x3 which is constructed by σ2m(t;u, v). Then we define a
function vm(x1, x2, x3) by

vm(x1, x2, x3) =

∫ x1

∞
Pm(t;x1, x2, x3)−1/2dt.

Since 2m is the degree of Pm(t; x1, x2, x3), vm(x1, x2, x3) is regarded as a hyperelliptic
integral. The purpose of this paper is to obtain a system of differential equations which
governs vm(x1, x2, x3) (cf. Theorem 1). The system in question has three linearly inde-
pendent solutions outside the set δm = 0 and is regarded as a system of uniformization
equations in the sense of Saito (cf. [1], §3). We also construct fundamental solutions of the
system by means of Gaussian hypergeometric functions in addition to vm (cf. Theorem
2). In section 5, we study the function vm for the cases m = 2, 3 in detail. In the both
cases, vm is reduced to an elliptic integral.

2 Preliminaries on dihedral groups

In this section, we introduce polynomials whose coefficients are invariant polynomials of
dihedral groups and study their elementary properties.

We start with introducing the polynomial of t defined by

σn(t;u, v) =
n−1∏

k=0

(t− (εku− ε−kv)) (1)

where ε = e2πi/n. It follows from the definition that

σn(t;−v,−u) = σn(t; u, v)
σn(t;−εv,−ε−1u) = σn(t; u, v)

On the other hand, the group G generated by the linear transformations

(u, v) → (−v,−u)
(u, v) → (−εv,−ε−1u)

is isomorphic to the dihedral group of order 2n. If n is odd,

L = uv, M = (un − vn) (2)
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are basic invariants of the ring of G-invariant polynomials of u, v. On the other hand, if
n is even,

L = uv, M = (un/2 − vn/2)2 (3)

are basic invariants of the ring of G-invariant polynomials of u, v. In particular,

σn(0; u, v) = −M

and the coefficients of σn(t;u, v) are polynomials of L,M .
Since by virtue of the degree condition, coefficients of σn(t;u, v) +M are polynomials

of L and independent of M , we put

χn(t;L) = σn(t;u, v) +M. (4)

It is easy to see that

χn(t;L) =
n−1∏

k=0

(t− (εk − ε−k)
√
L). (5)

To construct a generating function of χn(t;L), we put

Φ(z, t;L) =
1

1− tz − Lz2
(6)

and define τn(t;L) (n = 1, 2, . . .) by

Φ(z, t;L) =
∞∑
n=0

τn+1(t;L)zn (7)

Lemma 1 The following equations hold.

{
(t2 + 4L) ∂

2

∂t2
+ 3t ∂

∂t

}
Φ =

(
z2 ∂2

∂z2 + 3z ∂
∂z

)
Φ (8)

{
(t2 + 4L) d

2

dt2
+ 3t d

dt
− n(n+ 2)

}
τn+1 = 0 (9)

τn+1(t;L) =





(m+ 1)LmtF
(
m+ 2,−m, 3

2
;− t2

4L

)
(n = 2m+ 1)

LmF
(
m+ 1,−m, 1

2
;− t2

4L

)
(n = 2m)

(10)

The proof of this lemma is straightforward.
From Lemma 1, we have the following lemma whose proof is similar to that of Lemma

1 in [9].

Lemma 2 The polynomial χn(t;L) is given by

χn(t;L) = n

∫ t

0

τn(t;L)dt. (11)
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As a consequence of the above lemmas, we find that

χn+1(t;L) =





2Lm+1F
(
m+ 1,−m− 1, 1

2
;− t2

4L

)
− 2Lm+1 (n = 2m+ 1)

(2m+ 1)LmtF
(
m+ 1,−m, 3

2
;− t2

4L

)
(n = 2m)

(12)

The following lemma will be used later.

Lemma 3 We have the following formulas.

τ2m(t;L) + Lτ2m−2(t;L)− χ2m−1(t;L) = 0 (m = 1, 2, 3, . . .) (13)

τ2m−1(t;L)χ2m−1(t;L)− τ2m−2(t;L){χ2m(t;L) + 2Lm} = L2m−2t (m = 1, 2, 3, . . .) (14)

Proof. The identity (13) is an easy consequence of (10) and (12).
It follows from (10) and (12) that the identity (14) is a consequence of

(2m+ 1)F (m+ 1,−m;
3

2
;X)F (m+ 1,−m;

1

2
;X)−

2mF (m+ 1,−m+ 1;
3

2
;X)F (m+ 1,−m− 1;

1

2
;X) = 1, (15)

which is shown by an elementary but a little tedious computation. �

The discriminant ∆̃n(L,M) of σn(t;L) = χn(t;L)−M as a polynomial of t is expressed
as follows: In case n is odd, then ∆̃n(L,M) = nn(M2 + 4Ln)(n−1)/2. In case n = 4m,
then ∆̃n(L,M) = −nnMn/2−1(M + 4Ln/2)n/2. In case n = 4m + 2, then ∆̃n(L,M) =
−nnMn/2(M + 4Ln/2)n/2−1.

3 Saito free divisors constructed by one-parameter

deformation of the polynomial y2m + z4

From now on we assume that n is even. The odd n case is discussed in [9]. So we
put n = 2m with a positive integer m. The hypersurface ∆̃n(L,M) = 0 coincides with
M(M + 4Lm) = 0 in this case. Since M(M + 4Lm) = (M + 2Lm)2 − 4L2m, we put M ′ =
M+2Lm and define ∆m(L,M ′) = M ′2−4L2m and σ̃2m(t;L,M ′) = χ2m(t;L)−(M ′−2Lm).
Introduce vector fields W0,W2 by

{
W0 = 2L∂L + 2mM ′∂M ′
W2 = 2M ′∂L + 8mL2m−1∂M ′

(16)

Both W0, W2 are logarithmic along ∆m = 0, that is, we have

W0∆m = 4m∆m, W2∆m = 0.

By direct computation we have

W2σ̃2m(t;L,M ′) = 4mM ′τ2m−1(t;L)− 8mL2m−1 (17)
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Lemma 4

{W 2
2 + 4(m− 1)2L2m−2}σ̃−1/2

2m

= ∂t[{8mL2m−1τ2m − 4m(M ′2 − 2L2m)τ2m−2 − 4mtL2m−2M ′}σ̃−3/2
2m − 4(m− 1)tL2m−2σ̃

−1/2
2m ]

This lemma is shown by direct computation. We omit its proof (cf. [9]).
Our concern is to introduce a Saito free divisor in C3 defined as the pull-back of the

hypersurface ∆m(L,M ′) = 0 of C2 by a map of C3 to the (L,M ′)-space. For this purpose,
we define a map of (x1, x2, x3)-space to the (L,M ′)-space as follows. First we put

{
λm(x1, x2, x3) = x2

µm(x1, x2, x3) = χ2m(x1;x2) + 2xm2 − x2
3.

(18)

Then
(x1, x2, x3)→ (λm, µm)

defines a map of (x1, x2, x3)-space to the (L,M ′)-space. As a pull-back of ∆m(L,M ′) by
this map, we introduce a polynomial

δm(x) = µm(x)2 − 4λm(x)2m. (19)

We are going to show that the hypersurface Sm of the (x1, x2, x3)-space defined by
δm(x) = 0 is a Saito free divisor.

For this purpose, we construct three vector fields which are tangent to Sm. It is clear
from the definition that both ∂x3δm, ∂x1δm are divisible by µm(x). So we put

g21(x) =
1

µm(x)
∂x3δm, g23(x) = − 1

µm(x)
∂x1δm, (20)

and define vectors
~p1 = (x1, 2x2,mx3)
~p2 = (g21(x), 0, g23(x)).

(21)

Note that g21(x) = −4x3.
We define g31(x), g32(x), g33(x) by

~p3 = (g31(x), g32(x), g33(x)) =
1

x3

{(0, ∂x3δm,−∂x2δm)− χ2m−1(x1;x2)~p2} (22)

Note that g31(x), g32(x), g33(x) are polynomials of x = (x1, x2, x3).

Remark 1 From the definition, ~p1 is the coefficient vector of the Euler vector field as-
sociated to the weighted homogeneous polynomial µm(x1, x2, x3) and ~p2 (resp. ~p3) is the
coefficient vector of a kind of Hamiltonian vector field on (x1, x3)-space (resp. (x2, x3)-
space).

Using the vectors ~p1, ~p2, ~p3, we define a matrix Mδm by

Mδm =




x1 2x2 mx3

−4x3 0 g23(x)
g31(x) g32(x) g33(x)


 (23)
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Introduce vector fields V0, V1, V2 by

t(V0, V1, V2) = Mδm
t(∂x1 , ∂x2 , ∂x3)

Then by direct computation we obtain

[V0, V1] = (m− 1)V1, [V0, V2] = 2(m− 1)V2, [V1, V2] = 4(m− 1)τ2m−1(x1;x2)V1, (24)

V0δm = 4mδm, V1δm = V2δm = 0, (25)

det(Mδm) = −16mδm. (26)

These imply that the hypersurface Sm in C3 is actually a Saito free divisor by virtue of
(1.9) in [2].

4 A system of uniformization equations singular along

Sm and its solutions

In this section, we first give a survey on the result by K. Saito concerning a system of
uniformization equations singular along the divisor defined by the discriminant of the
Weyl group of type A3. (For the details, see [1], [3].) This is a model of [9] and this paper.
Next we introduce a system of uniformization equations along Sm and construct solutions
by hyperelliptic integrals and Gaussian hypergeometric functions.

4.1 The case of A3. A prototype

The discriminant ∆(A3) of the polynomial of t defined by f(t) = t4 + x1t
2 + x2t + x3

coincides with the determinant of the matrix

M∆(A3) =




2x1 3x2 4x3

3x2 −x2
1 + 4x3 −1

2
x1x2

4x3 −1
2
x1x2

1
4
(−3x2

2 + 8x1x3)




up to a constant factor. It is easy to see that ∆(A3) defines a Saito free divisor by virtue
of (1.9) in [2]. This is shown as follows. Let V0, V1, V2 be vector fields defined by

t(V0, V1, V2) = M∆(A3)
t(∂x1 , ∂x2 , ∂x3).

Then by direct computation, we have

V0∆(A3) = 12∆(A3), V1∆(A3) = 0, V2∆(A3) = 2x1∆(A3).

and these imply that ∆(A3) = 0 is Saito free.
The system of differential equations





V0u = −u
V1V1u = 0
V1V2u = −1

2
x2u− 1

2
x1V1u

V2V2u = −x3u− x2

4
V1u

(27)
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is introduced in [1]. This is an example of systems of uniformization equations singular
along ∆(A3) = 0. We will construct solutions of (27) after K. Saito. We first introduce
polynomials

L(x) = 16x3 +
4

3
x2

1, M(x) =
8

3
x3

1 + 36x2
2 − 96x1x3.

It is easy to see that

16∆(A3) = L(x)3 − 1

3
M(x)2,

V0L = 4L, V0M = 6M, V1L = V1M = 0, V ′2L = −1

3
M, V ′2M = −3

2
L2.

Here we put

V ′2 = V2 − 1

6
x1V0.

Let

P (t) = 4t3 − L(x)t+
1

9
M(x)

be a cubic polynomial of t. Then the following formulas are easy to show:

P (−2

3
x1) = 4x2

2,

(V0 + 2t∂t)P = 6P,

(9V ′22 + 3
16
L(x))P (t)−1/2

= 1
8
∂
∂t

{(−12L(x)t4 − 3L(x)2t2 + 2
3
L(x)M(x)t− 1

3
M(x)2 + L(x)3

)
P (t)−3/2

}
.

(28)

We put

v(x) =

∫ − 2
3
x1

∞
P−

1
2dt. (29)

Then, by an argument explained in [1], we see that

V0v = −v, V1v = −1

and

V ′22 v =
1

4
x2V1v − 1

48
L(x)v.

As a consequence, we find that the function v(x) is a solution of (27).
If u(x) is a solution of (27) such that V1u = 0, then u is a solution of the system

V0u = −u, V1u = 0, V ′22 u = − 1

48
Lu (30)

One method to solve this differential equations is to reduce it to Gaussian hypergeometric
differential equations.

In this manner, we obtain three linearly independent solutions of (27).
The main purpose of this paper is to generalize the argument of this subsection to the

case of the Saito free divisor Sm : δm = 0.
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4.2 A system of uniformization equations along Sm

We assume that m is an integer such that m > 1. We introduce a system of differential
equations





V0u = −(m− 1)u,
V1V1u = 0,
V2V1u = 0,
V2V2u = −16(m− 1)2x2m−2

2 u− 4(m− 1)x3τ2m−2(x1;x2)V1u.

(31)

The right hand sides of the equations in the system (31) are so chosen that the system
satisfies the integrability condition.

Remark 2 The system (31) is an analogue of (27) for the Saito free divisor Sm.

It is possible to show that (31) has three fundamental solutions outside of Sm. In
particular, the system (31) is a system of uniformization equations singular along the
Saito free divisor Sm in the sense of [1]. The main purpose of this subsection is to
construct its fundamental solutions.

We have already introduced χ2m(t;L) and λm(x)(= x2), µm(x) in the previous sections.
Using these, we define

Pm(t;x1, x2, x3) = σ̃2m(t;λm(x), µm(x)). (32)

It is clear from (18) that

Pm(t;x1, x2, x3) = χ2m(t;x2)− χ2m(x1;x2) + x2
3. (33)

We frequently write Pm(t) instead of Pm(t;x1, x2, x3) for simplicity.

Remark 3 We explain here why we introduce the variables x1, x2, x3. Let us consider the
hyperelliptic curve C defined by

y2 = σ̃2m(t;L,M ′) (34)

on (t, y)-plane, where L,M ′ are parameters. If (x1, x3) is a point on C, then

x2
3 = σ̃2m(x1;L,M ′). (35)

This implies that
x2

3 = χ2m(x1;L)− (M ′ − 2Lm). (36)

Or equivalently,
M ′ = χ2m(x1;L) + 2Lm − x2

3. (37)

If we put L = x2, then (18) follows.

We note that 



V0λm = 2λm, V0µm = 2mµm,
V1λm = 0, V1µm = 0,
V2λm = −4µm, V2µm = −16mλ2m−1

m .
(38)

This means that the vector field V0 (resp. V2) acting on functions of λm(x), µm(x) is identi-
fied with the vector field W0 (resp. −2W2) acting functions of L, M by the correspondence
λm → L, µm →M ′.
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Theorem 1 The function vm(x) defined by

vm(x) =

∫ x1

∞
Pm(t)−1/2dt (39)

is a solution of the system (31).

Proof. We regard Pm(t) as a function of t. Let U be a simply connected domain in
C ∪ {∞} − {t ∈ C| Pm(t) = 0} containing the points x1 and ∞. Since Pm(x1) = x2

3, we
take a branch of ϕ(t) = Pm(t)−1/2 on U such that

ϕ(x1) =
1

x3

. (40)

It is clear that
lim
t→∞

tkϕ(t) = 0 (k = 0, 1, 2, . . . ,m− 1) (41)

and limt→∞ tmϕ(t) is bounded.
We put

wm(t) =

∫

C

ϕ(t)dt, (42)

where C is a path contained in U whose starting point is ∞ and terminal point is x1.
Since vm(x) is obtained by analytic continuation of wm(x), to prove the theorem it suffices
to show that wm(x) is a solution of (31). We are going to prove this.

We first compute V0wm. Since (V0 + t∂t)Pm = 2mPm, it follows that

V0Pm = 2mPm − t∂tPm. (43)

On the other hand, we have

V0ϕ = − ϕ

2Pm
V0Pm. (44)

By virtue of (43) and (44), we have

V0wm =

∫

C

V0ϕdt+ V0(x1)ϕ(x1)

= −1

2

∫

C

ϕ

Pm
V0Pmdt+

x1

x3

= −1

2

∫

C

ϕ

Pm
(2mPm − t∂tPm)dt+

x1

x3

= −mwm +
1

2

∫

C

ϕ

Pm
· t∂tPmdt+

x1

x3

.

Integrating by t both sides of the identity equation

∂t(tϕ) = ϕ− 1

2

ϕ

Pm
· t∂tPm

along C, we have
x1

x3

= wm − 1

2

∫

C

ϕ

Pm
· t∂tPmdt
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Then
1

2

∫

C

ϕ

Pm
· t∂tPmdt = wm − x1

x3

.

As a consequence,
V0wm = −mwm + wm = −(m− 1)wm.

This means that wm satisfies the first of (31).
Next we compute V1wm. Since

V1x2 = 0, V1µm(x) = 0,

it follows that
V1Pm = 0.

Then

V1wm =

∫

C

V1ϕdt+ V1(x1) · ϕ(x1) = −4x3ϕ(x1) = −4.

Namely, we have
V1wm = −4. (45)

This implies that
V1V1wm = V2V1wm = 0, (46)

which means that wm(x) satisfies the second and third equations of (31).
Thirdly we compute V 2

2 wm. It is possible to show

V2(x1) = 4χ2m−1(x1;x2). (47)

Then we find that

V2wm =

∫

C

V2ϕdt+ V2(x1) · ϕ(x1) =

∫

C

V2ϕdt+
4χ2m−1(x1; x2)

x3

.

Consequently,

V2
2wm =

∫

C

V2
2ϕdt+ V2(x1) · (V2ϕ)|t=x1 + V2

(
4χ2m−1(x1; x2)

x3

)
.

Since
V2ϕ = − ϕ

2Pm
(V2Pm),

and

V2Pm = −2(W2σ̃2m)|L=x2,M ′=µm(x) = −8mµm(x)τ2m−1(t;x2) + 16mx2m−1
2 ,

it follows that

V2ϕ|t=x1 =
4m

x3
3

{µm(x)τ2m−1(x1;x2)− 2x2m−1
2 }.

Consequently we have

V2(x1)(V2ϕ)|t=x1 =
16m

x3
3

χ2m−1(x1;x2){µm(x)τ2m−1(x1;x2)− 2x2m−1
2 }.
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On the other hand, it follows from direct computation that

V2(χ2m−1(x1;x2)) = 4(2m− 1){x2
3τ2m−2(x1;x2) + x1x

2m−2
2 },

V2x3 = 4mx3τ2m−1(x1;x2).

Then

V2

(
4χ2m−1(x1;x2)

x3

)
=

16(2m− 1){x2
3τ2m−2(x1; x2) + x1x

2m−2
2 }

x3

−16mχ2m−1(x1;x2)τ2m−1(x1;x2)

x3

.

These computations imply

V2
2wm

=

∫

C

V2
2ϕdt+

16m

x3
3

χ2m−1(x1;x2){µm(x)τ2m−1(x1;x2)− 2x2m−1
2 }

+
16(2m− 1){x2

3τ2m−2(x1; x2) + x1x
2m−2
2 } − 16mχ2m−1(x1;x2)τ2m−1(x1; x2)

x3

.

As is shown in Lemma 4, we have

{W 2
2 + 4(m− 1)2L2m−2}σ̃−1/2

m

= ∂t[{8mL2m−1τ2m − 4m(M2 − 2L2m)τ2m−2 − 4mtL2m−2M}σ̃−3/2
m − 4(m− 1)tL2m−2σ̃

−1/2
m ].

This implies that

{1
4
V 2

2 + 4(m− 1)2x2m−2
2 }ϕ

= ∂t[{8mx2m−1
2 τ2m(t;x2)− 4m(µm(x)2 − 2x2m

2 )τ2m−2(t;x2)− 4mtx2m−2
2 µm(x)} ϕ

Pm−4(m− 1)tx2m−2
2 ϕ].

Integrating both sides of this equation along C with respect to t, we have

∫

C

V 2
2 ϕdt+ 16(m− 1)2x2m−2

2 wm

= [{8mx2m−1
2 τ2m(t;x2)− 4m(µm(x)2 − 2x2m

2 )τ2m−2(t; x2)− 4mtx2m−2
2 µm(x)} ϕ

Pm
−4(m− 1)tx2m−2

2 ϕ]t=x1

t=∞

=
16m{2x2m−1

2 τ2m(x1;x2)− (µm(x)2 − 2x2m
2 )τ2m−2(x1; x2)− x1x

2m−2
2 µm(x)}

x3
3

−16(m−1)x1x
2m−2
2

x3
.
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Then

V2
2wm + 16(m− 1)2x2m−2

2 wm

=

(∫

C

V2
2ϕdt+ 16(m− 1)2x2m−2

2 wm

)

+16m
x3

3
χ2m−1(x1;x2){µm(x)τ2m−1(x1;x2)− 2x2m−1

2 }
+

16(2m− 1){x2
3τ2m−2(x1;x2) + x1x

2m−2
2 } − 16mχ2m−1(x1;x2)τ2m−1(x1;x2)

x3

=
16m{2x2m−1

2 τ2m(x1; x2)− (µm(x)2 − 2x2m
2 )τ2m−2(x1;x2)− x1x

2m−2
2 µm(x)}

x3
3

−16(m−1)x1x
2m−2
2

x3
+

16m

x3
3

χ2m−1(x1;x2){µm(x)τ2m−1(x1; x2)− 2x2m−1
2 }

+
16(2m− 1){x2

3τ2m−2(x1;x2) + x1x
2m−2
2 }

x3

−16mχ2m−1(x1;x2)τ2m−1(x1;x2)
x3

.

At this moment, we note that the following identity holds:

{2x2m−1
2 τ2m(x1; x2)− (µm(x)2 − 2x2m

2 )τ2m−2(x1;x2)− x1x
2m−2
2 µm(x)}

+χ2m−1(x1;x2){µm(x)τ2m−1(x1;x2)− 2x2m−1
2 }

= x2
3τ2m−2(x1;x2)µm(x).

This is a consequence of Lemma 3 and (18). Then

V2
2wm + 16(m− 1)2x2m−2

2 wm

= −16(m− 1)x1x
2m−2
2

x3

+
16mτ2m−2(x1;x2)µm(x)

x3

+
16(2m− 1){x2

3τ2m−2(x1;x2) + x1x
2m−2
2 } − 16mχ2m−1(x1;x2)τ2m−1(x1;x2)

x3

= −16(m− 1)x1x
2m−2
2

x3

+
16mτ2m−2(x1;x2)µm(x)

x3

+
16(2m− 1)x1x

2m−2
2 − 16mχ2m−1(x1;x2)τ2m−1(x1; x2)

x3

+ 16(2m− 1)x3τ2m−2(x1; x2)

=
16m{τ2m−2(x1; x2)µm(x) + x1x

2m−2
2 − χ2m−1(x1;x2)τ2m−1(x1;x2)}
x3

+16(2m− 1)x3τ2m−2(x1;x2).

As a consequence, we have

V2
2wm

= −16(m− 1)2x2m−2
2 wm

+
16m{τ2m−2(x1; x2)µm(x) + x1x

2m−2
2 − χ2m−1(x1;x2)τ2m−1(x1;x2)}
x3

+16(2m− 1)x3τ2m−2(x1;x2).

At this moment, we note an identity equation

τ2m−2(x1; x2)µm(x) + x1x
2m−2
2 − χ2m−1(x1;x2)τ2m−1(x1;x2) = −x2

3τ2m−2(x1;x2),

18



which is also a consequence of Lemma 3 and (18). Then

V2
2wm

= −16(m− 1)2x2m−2
2 wm − 16mx3τ2m−2(x1;x2) + 16(2m− 1)x3τ2m−2(x1; x2)

= −16(m− 1)2x2m−2
2 wm + 16(m− 1)x3τ2m−2(x1;x2).

Since V1wm = −4, it follows that

V2
2wm = −16(m− 1)2x2m−2

2 wm − 4(m− 1)x3τ2m−2(x1;x2)V1wm.

This means that wm(x) satisfies the last of the system (31).
Therefore we find that wm(x) is a solution of (31) and the theorem is proved. �

Solutions of (31) with the condition V1u = 0 are expressed in terms of Gaussian
hypergeometric functions.

Theorem 2 Put

u(x) = δm(x)
1−m
4m F

(
m− 1

4m
,
m− 1

4m
;
2m− 1

2m
;− 4x2m

2

δm(x)

)
.

Then u(x) is a solution of (31) such that V1u = 0.

Proof. The proof of this theorem is similar to that in [9]. For the sake of completeness,
we give here its outline. First we note that

V0δm(x) = 4mδm(x), V1δm = V2δm(x) = 0.

Put

y = − 4x2m
2

δm(x)

and let ϕ(t) be a function of t. Let u(x) be a solution of (31) such that V1u = 0. Then

V0u = −(m− 1)u, V1u = 0, V2
2u = −16(m− 1)2x2m−2

2 u. (48)

Assume that u(x) = δm(x)pϕ(y). Then

V0u = δm(x)p(4mp+ V0)ϕ(y).

Since V0u = −(m− 1)u, it follows that

(V0 + 4pm)ϕ(y) = −(m− 1)ϕ(y).

Now assume that p = 1−m
4m

. Then
V0ϕ(y) = 0.

Since V1δm(x) = V2δm(x) = 0, we find that

V0ϕ(y) = V1ϕ(y) = 0, V2
2ϕ(y) = −16(m− 1)2x2m−2

2 ϕ(y). (49)
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It is straightforward to show that

V 2
2 ϕ(y) = (V2y)2ϕ′′(y) + (V2

2y)ϕ′(y).

It is also straightforward that

V2y =
8µm(x)

x2

y

and

V2
2y =

32m(4mx2m
2 + (2m− 1)µm(x)2)

x2
2

y.

Noting these, we find from

V2
2ϕ(y) = −16(m− 1)2x2m−2

2 ϕ(y)

that

64m2µm(x)2y2ϕ′′(y)+32m{4mx2m
2 +(2m−1)µm(x)2}yϕ′(y) = −16(m−1)2x2m

2 ϕ(y). (50)

We note here that

x2m
2 = −1

4
δm(x)y, µm(x) = −δm(x)(y − 1).

Then (50) turns out to be

64m2(1− y)y2ϕ′′(y) + 32m{−my − (2m− 1)(y − 1)}yϕ′(y)− 4(m− 1)2yϕ(y) = 0. (51)

This is equivalent to

{
ϑy

(
ϑy − 1

2m

)
− y

(
ϑy +

m− 1

4m

)2
}
ϕ(y) = 0. (52)

It is clear that

ϕ(y) = F

(
m− 1

4m
,
m− 1

4m
,
2m− 1

2m
; y

)

is a solution of (52) and the theorem is proved. �

5 The Cases m = 2, 3

The hyperelliptic integral vm(x) introduced in Theorem 1 is reduced to an elliptic integral,
when m = 2 and m = 3. We treat these cases in detail. In particular, we explain the
relationship between these cases and the classical theory of elliptic functions.
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5.1 The case m = 2

In this subsection, we treat the case m = 2. In particular, we determine the relationship
between the variables x1, x2, x3 used in the previous sections and the coefficients g2, g3 of
the elliptic curve defined by y2 = 4x3 − g2x− g3.

In this case
P2(t;x1, x2, x3) = t4 + 4x2t

2 − (x4
1 + 4x2

1x2) + x2
3.

We put
L = x2, M = x4

1 + 4x2
1x2 − x2

3 (53)

as before. Then the hypersurface M(4L2+M) = 0 is a Saito free divisor in the (x1, x2, x3)-
space.

We define the integral

v(x) =

∫ x1

∞

dt√
t4 + 4Lt2 −M (54)

By taking r = t2, we have

v(x) =
1

2

∫ x2
1

∞

dr√
r3 + 4Lr2 −Mr

We note here that
4(r3 + 4Lr2 −Mr) = 4p3 − g2p− g3,

if there are relations among p, L,M and r, g2, g3 by

p = r +
4

3
L,

g2 = 4(M +
16

3
L2),

g3 = −16

3
L(M +

32

9
L2).

Substitution by (53) implies that





g2 =
4

3
(3x4

1 + 12x2
1x2 + 16x2

2 − 3x2
3)

g3 = −16

27
x2(9x4

1 + 36x2
1x2 + 32x2

2 − 9x2
3)

(55)

and that
4p3 − g2p− g3|p=x2

1+ 4
3
x2

= 4x2
1x

2
3. (56)

Moreover, if g2, g3 are defined by (55), we have

v(x) =

∫ x2
1+ 4

3
x2

∞

dp√
4p3 − g2p− g3

. (57)
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We now introduce Weierstrass elliptic function

℘(z;u1, u2) =
1

z2
+

∑

(m,n)∈Z2−{(0,0)}

(
1

(z +mu1 + nu2)2
− 1

(mu1 + nu2)2

)
. (58)

As is well-known, the relations among g2, g3 and u1, u2 are

g2 = 60
∑ ′ 1

(mu1 + nu2)4
g3 = 140

∑ ′ 1

(mu1 + nu2)6
. (59)

In the rest of this subsection, we show how x1, x2, x3 are defined as functions of
℘(z;u1, u2) and u1, u2. For this purpose, we introduce e1, e2, e3 by

4p3 − g2p− g3 = 4(p− e1)(p− e2)(p− e3).

Theorem 3 We assume g2, g3, v(x) are defined by (55) and (57) and put z = v(x). Let
℘(z) be Weierstrass elliptic function satisfying ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. Then




x2
1 = ℘(z)− α
x2 =

3

4
α

x2
3 =

℘′(z)2

4(℘(z)− α)

2x1x3 = ℘′(z)

(60)

where α is one of e1, e2, e3.
Moreover, if L,M are polynomials of x1, x2, x3 defined by (53) and α = ej, then

L =
3

4
ej, M = −(ej − ek1)(ej − ek2), (61)

where {j, k1, k2} = {1, 2, 3}.
Proof. To prove this relation, we first note that the relation (55) implies the identity

equation

(
4

3
x2)g2 + g3 = 4(

4

3
x2)3.

This means that p = 4
3
x2 is a solution of the equation 4p3− g2p− g3 = 0 for p. So we put

x2 =
3

4
ej

for j = 1, 2, 3. On the other hand, the definition of v(x) implies that

℘(z) = x2
1 +

4

3
x2 = x2

1 + ej.

Then we may put

x1 =
√
℘(z)− ej.

Noting (56), we may put
℘′(z) = 2x1x3.

Then

x3 =
℘′(z)

2x1

=
℘′(z)

2
√
℘(z)− ej

.

The rest of the theorem is easy to show. �
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5.2 The case m = 3

In this subsection, we treat the case m = 3. In this case

P3(t;x1, x2, x3) = t6 + 6x2t
4 + 9x2

2t
2 − x2

1(x2
1 + 3x2)2 + x2

3.

We put
L = x2, M = x2

1(x2
1 + 3x2)2 − x2

3. (62)

The hypersurface M(4L3 +M) = 0 is a Saito free divisor on the (x1, x2, x3)-space.
In the following argument, we assume that L, M are algebraically independent, but

don’t assume the relationship (62) for L,M and x1, x2, x3, and state explicitly when we
assume it.

We define the integral

va(x1;L,M) =

∫ x1

0

dt√
t6 + 6Lt4 + 9L2t2 −M (63)

By an argument parallel to the proof of Theorem 1, it is possible to show that va(x1, L,M)
is a solution of the system (31) for the case m = 3. (We note that the integration path
for va(x1;L,M) starts from 0 and terminates at x1. This is different from the definition
of the function vm(x) in Theorem 1.)

By changing the integration variable s = t2, we have

va(x1;L,M) =
1

2

∫ x2
1

0

ds√
s(s3 + 6Ls2 + 9L2s−M)

(64)

This means that va(x1;L,M) is reduced to an elliptic integral. By changing integration
variable s = 1/r, we have

va(x1;L,M) =

∫ ∞
1/x2

1

dr√−4Mr3 + 36L2r2 + 24Lr + 4
(65)

Moreover by changing integration variable r = −p+3L2

M
, we have

va(x1;L,M) =

∫ 3L2−M
x2
1

∞

dr√
4p3 − g2p− g3

, (66)

if g2, g3 satisfy the relation

{
g2 = 12L(9L3 + 2M),
g3 = −4(54L6 + 18L3M +M2).

(67)

We note here that there are two relations among x1, x2, x3 and g2, g3

{
4M2 = 4(3L2)3 − g2(3L2)− g3,(

2x3M
x3

1

)2

= 4
(

3L2 − M
x2

1

)3

− g2

(
3L2 − M

x2
1

)
− g3,

(68)
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if we assume the conditions (62) and (67) for L,M and g2, g3.
We are now going to express x1, x2, x3 as functions of g2, g3 and Weierstrass elliptic

function. We regard g2, g3, z as variables and let ℘(z) be Weierstrass elliptic function
satisfying

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. (69)

We introduce L,M so that L,M satisfy the condition (67). It follows from the first of
(67) that

M =
g2

24L
− 9

2
L3 (70)

Substituting this to the second of (67), we find that u = L is a solution of the equation

u8 − 6 · g2

22 · 33
· u4 − g3

33
· u2 − 3 · g2

2

24 · 36
= 0. (71)

For this reason, we first take a solution L of (71) and define M by (70). Next we define
x1, x2, x3 by the relations

℘(z) = 3L2 − M

x2
1

, x2 = L, ℘′(z) =
2x3M

x3
1

(72)

In other words, 



x1 =

√
M√

3L2 − ℘(z)
,

x2 = L,

x3 =
x3

1℘
′(z)

2M
.

(73)

The equation (72) is compatible with the second of (68). In this manner, x1, x2, x3 are
expressed by g2, g3, ℘(z).

We are going to specify the meaning of L in the argument above. As we will see at
the end of this subsection, the value of the 3-division point of a fundamental period of
℘(z) is written by L. Recall the duplication formula for the elliptic function

℘(2z) = −2℘(z) +
(3℘(z)2 − g2/4)2

(4℘(z)3 − g2℘(z)− g3)
.

The substitution of both Z = ℘(z) and Z = ℘(2z) in this identity implies an equation

Z = −2Z +
(3Z2 − g2/4)2

4Z3 − g2Z − g3

. (74)

This turns out to be an algebraic equation

48Z4 − 24g2Z
2 − 48g3Z − g2

2 = 0 (75)

By the substitution Z = 3u2, (75) becomes (71), which means that if L is a solution of
(71) and ℘(a0) = 3L2 for a constant a0, then ℘(2a0) = ℘(a0). We now define g2, g3 by
(67) and substitute them on (75). Then we obtain

Z4 − 6L(9L3 + 2M)Z2 + 4(54L6 + 18L3M +M2)Z − 3L2(9L3 + 2M)2 = 0, (76)
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which is equivalent to

(Z − 3L2)(Z3 + 3L2Z2 − 3L(15L3 + 4M)Z + (9L3 + 2M)2) = 0. (77)

If z0 is a solution of

Z3 + 3L2Z2 − 3L(15L3 + 4M)Z + (9L3 + 2M)2 = 0,

then

Z3 + 3L2Z2 − 3L(15L3 + 4M)Z + (9L3 + 2M)2 = (Z − z0)(Z − z1)(Z − z2),

where
{
z1 = 1

2
(−3L2 − z0 −

√−3
M

(54L5 + 15L2M − 12L3z0 −Mz0 − 2Lz2
0)),

z2 = 1
2
(−3L2 − z0 +

√−3
M

(54L5 + 15L2M − 12L3z0 −Mz0 − 2Lz2
0)).

(78)

We take a0 such that ℘(a0) = 3L2, where L is a solution of (71). Then ℘(2a0) = ℘(a0),
which implies that 2a0 = ±a0 + ω for a period ω. If 2a0 = a0 + ω, then 3L2 = ℘(a0) =
℘(ω) = ℘(0). This contradicts ℘(0) =∞. If 2a0 = −a0 +ω, then a0 = ω/3. Let ω1, ω2 be
fundamental periods of ℘(z). Then a0 = (m + j1/3)ω1 + (n + j2/3)ω2 for some integers
m,n and j1, j2 ∈ {0, 1, 2}. This implies that ℘(a0) = ℘((j1ω1 + j2ω2)/3).

The possibilities of (j1ω1 + j2ω2)/3 are

0,
ω1

3
,
ω2

3
,

2ω1

3
,

2ω2

3
,
ω1 + ω2

3
,

2ω1 + ω2

3
,
ω1 + 2ω2

3
,

2ω1 + 2ω2

3
.

Moreover,

℘
(ω1

3

)
= ℘

(
2ω1

3

)
, ℘

(ω2

3

)
= ℘

(
2ω2

3

)
, ℘

(
ω1 + ω2

3

)
= ℘

(
2(ω1 + ω2)

3

)
,

℘

(
ω1 + 2ω2

3

)
= ℘

(
2(ω1 + 2ω2)

3

)
= ℘

(
2ω1 + ω2

3

)
.

Then (
Z − ℘ (ω1

3

)) (
Z − ℘ (ω2

3

)) (
Z − ℘ (ω1+ω2

3

)) (
Z − ℘ (2ω1+ω2

3

))
= (Z − z0)(Z − z1)(Z − z2)(Z − 3L2)

(79)

We put
wj = 2

√−3(3L3 +M − Lzj) (j = 0, 1, 2). (80)

Then it is easy to show that
w2
j = z3

j − g2zj − g3

under the relation (67).
Now we recall the addition formula for ℘(z);




℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(℘′(z2)− ℘′(z1))2

(℘(z2)− ℘(z1))2

℘′(z1 + z2) =
℘′(z1)(℘′(z1 + z2)− ℘(z2)) + ℘′(z2)(℘(z1)− ℘(z1 + z2))

℘(z2)− ℘(z1)

(81)
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Then by the argument above, we may take fundamental periods ω1, ω2 of ℘(z) so that
{

(℘(ω1/3), ℘′(ω1/3)) = (3L2, 2M),
(℘(ω2/3), ℘′(ω2/3)) = (z0, w0).

(82)

Then it follows from the addition formula (81) that
{

(℘((ω1 + ω2)/3), ℘′((ω1 + ω2)/3)) = (z1, w1),
(℘((2ω1 + ω2)/3), ℘′((2ω1 + ω2)/3)) = (z2, w2).

(83)

As a conclusion, we find that there is a fundamental period ω1 such that

℘(ω1/3) = 3L2, ℘′(ω1/3) = 2M. (84)

This is a relation between L and a fundamental period of ℘(z).
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