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Abstract

How can a space be divided into cells of equal volume so as to minimize the
surface area of the boundary? L. Kelvin conjectured that the partition made by
a tiling (packing) of congruent copies of the truncated octahedron with slightly
curved faces is the solution ([4]). In 1994, D. Phelan and R. Weaire [6] showed a
counterexample to Kelvin’s conjecture, whose tiling consists of two kinds of cells
with curved faces.

In this paper, we study the orthic version of Kelvin’s conjecture: the truncated
octahedron has the minimum surface area among all polyhedral space-fillers, where
a polyhedron is called a space-filler if its congruent copies fill space with no gaps
and no overlaps. We study the new conjecture by restricting a family of space-
fillers to its subfamily consisting of unfoldings of doubly covered cuboids (rectangular
parallelepipeds), we show that the truncated octahedron has the minimum surface
area among all polyhedral unfoldings of a doubly covered cuboid with relation

√
2 :√

2 : 1 for its edge lengths. We also give the minimum surface area of polyhedral
unfoldings of a doubly covered cube.

1 Introduction.

The problem of foams, first raised by L. Kelvin, is easy to state and hard to solve ([4]).
How can space be divided into cells of equal volume so as to minimize the surface area
of the boundary? Kelvin conjectured that the partition made by a tiling (packing) of
congruent copies of the truncated octahedron with slightly curved faces is the solution.
This tiling satisfies the conditions discovered by Plateau more than a century ago for
minimal soap bubbles.

In 1994, the physicists D. Phelan and R. Weaire [6] showed a counter-example to
Kelvin’s conjecture. They produced foam with cells of equal volume with a smaller surface
area than the Kelvin foam. The Phelan-Weaire foam contains two different types of cells
with 14 faces and 12 faces. Recently, R. Gabbrielli [1] proposed a new counterexample
to Kelvin’s conjecture. The Gabbrielli foam contains four different types of cells and its
surface area is smaller than the Kelvin foam but larger than the Phelan-Weaire foam.

For the two dimensional case (the plane), the classical honeycomb conjecture that
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Figure 1: The truncated octahedron

any partition of the plane into regions of equal area has perimeter at least that of the
regular hexagonal honeycomb tiling, was proved by F. Tóth [5], under the hypothesis that
cells are convex, and it was proved completely by T. C. Hales [2] without the convexity
hypothesis.

For the three dimensional case, we consider the minimal surface area problem under the
hypothesis that all cells are congruent and convex. A body ( a compact set homeomorphic
to the closed ball in R3) is called a space-filler if its congruent copies fill the space with
no gaps and no interior overlaps. It is easy to see that if a space-filler is convex, it
should be a polyhedron. Our question is if any partition of R3, by any space-filler, has
boundary area at least that of the tiling by the truncated octahedron with equal volume.
In other words, does the truncated octahedron have the minimum surface area among
convex space-fillers?.

The orthic version of Kelvin’s conjecture. Any convex space-filler has the surface
area at least that of the truncated octahedron with equal volume.

In this paper, we study the conjecture mentioned above by restricting the set of convex
space-fillers to a smaller subset which consists of unfoldings of doubly covered cuboids (see
Definition 1 and Definition 2 for detail). We show that the truncated octahedron has
the minimum surface area among all convex unfoldings of doubly covered cuboid, with
relation

√
2 :

√
2 : 1 for its edge lengths.

2 Definitions and Theorems.

We call a compact set, W ⊂ R3, a body if W is homeomorphic to a closed unit ball in
R3. For a body W in R3, we denote the surface area of W by area(W ) and denote the
volume of W by vol(W ).

Definition 1. Let P be a polyhedron. The doubly covered P (denoted by D(P )) is the
degenerated polytope in 4-space consisting of P and its congruent copy (denoted by P ∗)
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whose corresponding faces are identified.

Definition 2. Let P be a polyhedron. A body W is called an unfolding of D(P ) if W is
mapped onto D(P ) by a locally isometric map (denoted by ϕW,D(P )) with no 3-dimensional
overlaps. We call ϕW,D(P ) a folding map of W onto D(P ), and the image of the boundary
of W a cut 2-complex of D(P ) for W . Then the map ϕW,D(P ) is one-to-one in the interior
of W , but not one-to-one on the boundary of W . For the sake of simplicity, we assume
that the cut 2-complex is included in P ∗.

Fig. 2 shows the unfolding map of the truncated octahedron W onto the doubly covered
cuboid with relation

√
2 :

√
2 : 1 for its edge lengths. W is divided into a cuboid and six

pieces (Fig. 2 (2)), each of the six pieces is reflected in the common face with the cuboid,
and we obtain the doubly covered cuboid (Fig. 2 (3), see [3] for more details).

 

(1) (2) (3) 

Figure 2: The Folding map of the truncated octahedron onto the doubly covered cuboid

Theorem 1. Let α be the surface area of the truncated octahedron with unit volume, that
is, α = 5.31472 . . .. Let P be a cuboid with relation

√
2 :

√
2 : 1 for its edge lengths. Then

for any convex unfolding W of the doubly covered cuboid D(P ), we have

area(W ) ≥ α · (vol(W ))2/3.

Equality is attained if and only if W is the truncated octahedron.

For cubes, we obtain the following theorem.

Theorem 2. For any convex unfolding W of a doubly covered cube, we have

area(W ) ≥ β · (vol(W ))2/3,

where β = 5.34525 . . ..
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3 Preliminaries.

In the rest of this paper, we denote by P a cuboid with the vertices vi (1 ≤ i ≤ 4) and
wi (1 ≤ i ≤ 4) in Fig. 3 (1). The geometric properties of convex unfoldings of D(P ) are
characterized in [3], and shown in Lemma 1 below.

Definition 3. Draw a rectangle 2p1p2p3p4 in P ∗, which is parallel to a face (2v1v2v3v4)
of P ∗ and whose edges are parallel to v1v2 or v2v3 (Fig. 3 (1)). Then we have the
cut 2-complex of D(P ) consisting of the set {2vivi+1pi+1pi, 2wiwi+1pi+1pi, ∆vipiwi :
i = 1, 2, 3, 4}, where v5 = v1 and w5 = w1 and some of them may be empty ((Fig. 3 (2)).
Divide P ∗ by the cut 2-complex and reflect each piece in the face common with P ∗. Then
we get an unfolding of D(P ) (Fig. 3 (3)). We call such unfolding a generalized truncated
octahehedron. It is possible that 2xyzw is included in the surface of P ∗. The rectangle
in Fig. 3 (1) may be a line segment (for example, when p1 = p4, p2 = p3, p1 ̸= p2) or a
single point when p1 = p2 = p3 = p4.

 

(1) (2)

(3)

w3 
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p3 
p4 v2 

v3 
v4 
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Figure 3: A generalized truncated octahedron

Lemma 1 [3]. Let W be a convex unfolding of D(P ). Then the cut 2-complex has a
rectangle p1p2p3p4 (which may be a line segment or a single point) in Fig. 2 (2) or a
parallelogram in Fig. 3. The unfolding W is a generalized truncated octahedron or a
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parallelepiped.

 

Figure 4: A parallelepiped

Let 2p1p2p3p4 be a rectangle in Fig. 2 (1). We let

|v1v2| = a, |v1v4| = b, |v1w1| = c, |p1p2| = a − x, |p1p4| = b − y,

where |uv| means the edge length of an edge uv. We denote by a function fa,b,c(x, y) the
area of a cut 2-complex of D(P ) in Fig. 3 (2).

Notice that the area of the cut 2-complex for an unfolding W of D(P ) is half of the
surface area of W . So, to find the minimal surface area of W is equivalent to minimizing
fa,b,c(x, y).

Lemma 2. If fa,b,c(x, y) attains the minimum among all cut 2-complexes of D(P ), then
the center of 2p1p2p3p4 is identical to the center of P .

Proof. For two trapezoids v1p1p2v2 and w3p3p4w4, the sum of their heights is at least√
y2 + c2 and equality holds when the two trapezoids are parallel. Hence the sum of their

area is at least {a + (a − y)}
√

y2 + c2 /2 and equality holds if and only if the center of
2p1p2p3p4 is identical to the center of P . 2

So, we assume the center of 2p1p2p3p4 is the center of P in the rest of paper.

Lemma 3. Let a, b, c be given positive real numbers. The notation f(x, y) stands for
fa,b,c(x, y), that is, the area of a cut 2-complex of D(P ) in Fig. 3 (2). We have

(1) f(x, y) =
√

c2 + x2 (2b − y) +
√

c2 + y2 (2a − x) +
√

x2 + y2 c + (a − x)(b − y).

(2)
∂f

∂x
(x, y) =

x√
c2 + x2

(2b − y) −
√

c2 + y2 +
cx√

x2 + y2
− (b − y)
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(3)
∂f

∂y
(x, y) =

y√
c2 + x2

(2a − x) −
√

c2 + x2 +
cy√

x2 + y2
− (a − x)

(4)
∂2f

∂x∂y
(x, y) = 1 − x√

c2 + x2
− y√

c2 + y2
− xy

(x2 + y2)3/2
.

(5)
∂2f

(∂x)2
(x, y) =

(2b − y)c2

(c2 + x2)3/2
+

cy2

(x2 + y2)3/2
> 0

(6)
∂2f

(∂y)2
(x, y) =

(2a − x)c2

(c2 + y2)3/2
+

cx2

(x2 + y2)3/2
> 0

Proof. We denote by the area of a polygon A by |A|. Then
f(x, y) = |2v1v2p2p1| + |2w1w2p2p1| + |2v2v3p3p2| + |2w2w3p3p2| +

|2v3v4p4p3| + |2w3w4p4p3| + |2v4v1p1p4| + |2w4w1p1p4| +
|∆v1w1p1| + |∆v2w2p2| + |∆v3w3p3| + |∆v4w4p4| + |2p1p2p3p4|.

By Lemma 2, we have
f(x, y) = 4|2v1v4p4p1| + 4|2v1v2p2p1| + 4|∆v1w1p1| + |2p1p2p3p4|

=
√

c2 + x2 (2b − y) +
√

c2 + y2 (2a − x) +√
x2 + y2 c + (a − x)(b − y).

Hence (1) holds. By standard calculations we have (2) through (6).
2

4 The minimum of the function fa,b,c(x, y) in the case

a = b ≥ c = 1.

In this section we suppose a = b ≥ c = 1 and let L = a = b. Then L ≥ 1. The notation
f(x, y) stands for the function fL,L,1(x, y). We will prove the following proposition.

Proposition 1. Let L ≥ 1. The function fL,L,1(x, y) for 0 ≤ x, y ≤ L attains its
minimum when x = y. For the case L =

√
2, f√2,

√
2,1(x, y) attains its minimum when

x = y = 1/
√

2, for which the corresponding unfolding of D(P ) is the truncated octahedron.

By equations (1) through (6), we have the following:

(7) f(x, y) =
√

1 + x2 (2L − y) +
√

1 + y2 (2L − x) +
√

x2 + y2 + (L − x)(L − y).

(8)
∂f

∂x
(x, y) =

x√
1 + x2

(2L − y) −
√

1 + y2 +
x√

x2 + y2
− (L − y)
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(9)
∂f

∂y
(x, y) =

y√
1 + x2

(2L − x) −
√

1 + y2 +
y√

x2 + y2
− (L − x)

(10)
∂2f

∂x∂y
(x, y) = 1 − x√

1 + x2
− y√

1 + y2
− xy

(x2 + y2)3/2
.

(11)
∂2f

(∂x)2
(x, y) =

2L − y

(1 + x2)3/2
+

y2

(x2 + y2)3/2
> 0

(12)
∂2f

(∂y)2
(x, y) =

2L − x

(1 + y2)3/2
+

x2

(x2 + y2)3/2
> 0.

We prove Proposition 1 by dividing the domain of the function f(x, y) = fL,L,1(x, y)
into four subsets {(x, y) : 1/

√
3 ≤ x, y ≤ L}, {(x, y) : 0 ≤ x ≤ 1/

√
3 ≤ y ≤ L},

{(x, y) : 0 ≤ y ≤ 1/
√

3 ≤ x ≤ L}, and {(x, y) : 0 ≤ x, y ≤ 1/
√

3}.

Lemma 4. Let xo and yo satisfy 1/
√

3 ≤ xo, yo ≤ L. If

∂f

∂x
(xo, yo) =

∂f

∂y
(xo, yo) = 0,

then
xo = yo.

Moreover, there exists at least one t (1/
√

3 ≤ t ≤ L) which satisfies
∂f

∂x
(t, t) =

∂f

∂y
(t, t) = 0.

Proof. Suppose 1/
√

3 ≤ x, y ≤ L. Since by the equation (10)

∂2f

∂x∂y
(L, y) = 1 − L√

1 + L2
− y√

1 + y2
− Ly

(L2 + y2)3/2

< 1 − 1√
2
− 1

2
− Ly

(L2 + y2)3/2
< 0,

we have
∂

∂x
f(L, y) is decreasing with respect to y for 1/

√
3 ≤ y ≤ L. Since

∂f

∂x
(L,L) =

L2

√
1 + L2

−
√

1 + L2 +
1√
2

= − 1√
1 + L2

+
1√
2
≥ − 1√

2
+

1√
2

= 0 by L ≥ 1,

we have

(13)
∂f

∂x
(L, y) > 0 for 1/

√
3 ≤ y ≤ L.
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Since

∂f

∂x
(

1√
3
, y) =

1

2
(2L − y) −

√
1 + y2 +

1√
1 + 3y2

− (L − y)

=
y

2
−
√

1 + y2 +
1√

1 + 3y2

and

(
√

1 + y2)2 − (
1

2
y +

1√
1 + 3y2

)2 = 1 +
3

4
y2 − y√

1 + 3y2
− 1

1 + 3y2

= (
1

2
− 1

1 + 3y2
) + (

1

2
+

3

4
y2 − y√

1 + 3y2
) ≥ 0 + (

1

2
+

1

4
− 1√

3
) > 0,

we have

(14)
∂f

∂x
(

1√
3
, y) < 0 for 1/

√
3 ≤ y ≤ L.

By (13), (14), and the Implicit Function Theorem, there is a function g(y) defined on
1/
√

3 ≤ y ≤ L, which satisfies

(15)
∂f

∂x
(g(y), y) = 0,

(16) 1/
√

3 ≤ g(y) ≤ L, and

(17) g′(y) = − (∂2f/∂x∂y)(g(y), y)

(∂2f/(∂x)2)(g(y), y)
.

Since for 1/
√

3 ≤ x, y ≤ L,

∂2

∂x∂y
f(x, y) = 1 − x√

1 + x2
− y√

1 + y2
− xy

(x2 + y2)3/2

< 1 − 1√
1 + 1/x2

− 1√
1 + 1/y2

≤ 0,

we have by (17) g′(y) > 0 for 1/
√

3 ≤ y ≤ L, and hence

(18) g(y) is strictly increasing on 1/
√

3 ≤ y ≤ L.

Since f(x, y) = f(y, x), for 1/
√

3 ≤ x, y ≤ L

(19)
∂f

∂x
(g(y), y) =

∂f

∂y
(y, g(y)) = 0.
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Hence if
∂f

∂x
(xo, yo) =

∂f

∂y
(xo, yo) = 0 for some (xo, yo) with 1/

√
3 ≤ xo, yo ≤ L, then

xo = g(yo), for, if xo ≤ y0 (resp. xo ≥ y0) , then xo = g(yo) ≥ g(xo) = yo (resp.
xo = g(yo) ≤ g(xo) = yo) by (18) and so xo = yo. Moreover, there exists at least one

t (1/
√

3 ≤ t ≤ L) which satisfies
∂f

∂x
(t, t) =

∂f

∂y
(t, t) = 0.

2

Lemma 5. For x and y satisfying 0 ≤ x ≤ 1/
√

3 ≤ y ≤ L, we have

f(x, y) ≥ f(1/
√

3, y),

and for x and y satisfying 0 ≤ y ≤ 1/
√

3 ≤ x ≤ L, we have

f(x, y) ≥ f(x, 1/
√

3).

Proof. Let x and y satisfy 0 ≤ x ≤ 1/
√

3 ≤ y ≤ L. By (14),
∂f

∂x
(1/

√
3, y) < 0. Since

∂f

∂x
(x, y) is increasing with respect to x for 0 ≤ x ≤ 1/

√
3 by (8), we have

∂f

∂x
(x, y) < 0

for all 0 ≤ x ≤ 1/
√

3. Hence f(x, y) is decreasing with respect to x for 0 ≤ x ≤ 1/
√

3
and so f(x, y) ≥ f(1/

√
3, y).

By symmetry f(x, y) = f(y, x), the latter part of Lemma 5 holds. 2

Lemma 6. For any x and y satisfying 0 ≤ x, y ≤ 1/
√

3

f(x, y) ≥ min{f(t, t) : 0 ≤ t ≤ 1/
√

3}.

Proof. Let x and y satisfy 0 ≤ x, y ≤ 1/
√

3 and suppose x ≤ y. Since
∂2f

(∂x)2
(x, y) > 0

by (11),
∂f

∂x
(x, y) is increasing with respect to x for 0 ≤ x ≤ L. By x ≤ y

∂f

∂x
(x, y) ≤ ∂f

∂x
(y, y) =

y√
1 + y2

(2L − y) −
√

1 + y2 +
1√
2
− (L − y)

=

(
2y√
1 + y2

− 1

)
L − y2√

1 + y2
−
√

1 + y2 +
1√
2

+ y.

Since 2y√
1+y2

− 1 ≤ 0 by 0 ≤ y ≤ 1√
3

and L ≤ 1,

∂f

∂x
(x, y) ≤ 2y√

1 + y2
− 1 − y2√

1 + y2
−
√

1 + y2 +
1√
2

+ y

= − (y − 1)2√
1 + y2

− 1 − y2√
1 + y2

+
1√
2

+ y < −1 +
1√
2

+ y

(
1 − y√

1 + y2

)
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≤ −1 +
1√
2

+
1√
3

(
1 − 1/

√
3

(1/
√

3)2 + 1

)
< 0.

Hence for any fixed y (0 ≤ y ≤ 1/
√

3), f(x, y) is decreasing with respect to x for 0 ≤
x ≤ 1/

√
3 with x ≤ y, and so f(x, y) ≥ f(y, y). By the symmetry f(x, y) = f(y, x),

we have for any fixed x (0 ≤ x ≤ 1/
√

3), f(x, y) ≥ f(x, x) for any x and y satisfying
0 ≤ y ≤ 1/

√
3 with x ≥ y. Therefore f(x, y) ≥ min{f(t, t) : 0 ≤ t ≤ 1/

√
3}. 2

Lemma 7. Suppose L =
√

2. The function f(t, t) for 0 ≤ t ≤
√

2 attains its minimum
at t = 1/

√
2.

Proof. Let h(t) = f(t, t) for 0 ≤ t ≤
√

2. Then

h′(t) =
2t√

1 + t2
(2
√

2 − t) − 2
√

1 + t2 −
√

2 + 2t

and h′(t) = 0 if and only if t = 1/
√

2. Therefore, the function f(t, t) attains the minimum
at t = 1/

√
2. 2

Proof of Proposition 1. Let L ≥ 1. By Lemma 4 through Lemma 7 fL,L,1(x, y) for
0 ≤ x, y ≤ L attains its minimum when x = y. In particular, when L =

√
2, we get

∂f

∂x
(1/

√
2, 1/

√
2) =

∂f

∂y
(1/

√
2, 1/

√
2) = 0

and
∂2f

(∂x)2
(1/

√
2, 1/

√
2) × ∂2f

(∂y)2
(1/

√
2, 1/

√
2) −

(
∂2f

∂x∂y
(1/

√
2, 1/

√
2)

)2

= 2.3 · · · > 0.

Hence the function f(x, y) attains a minimal value at x = y = 1/
√

2. The value
f(1/

√
2, 1/

√
2) is not only minimal but also the minimum value by the fact mentioned

above.
If a = b =

√
2 and x = y = 1/

√
2, then trapezoids vivi+1pi+1pi ( 1 ≤ i ≤ 4), where suf-

fixes are considered modulo 4, are congruent to a half of a regular hexagon, and ∆vipiwi

(1 ≤ i ≤ 4) are congruent to a half square, which implies that the corresponding unfolding
of D(P ) is the truncated octahedron. Therefore, by Lemma 4 through Lemma 7, we have
proved Proposition 1. 2

5 The minimum of the function fa,b,c(x, y) in the case

a = c =
√

2 and b = 1.

In this section we suppose a = c =
√

2 and b = 1, and the notation f(x, y) stands for the
function f√2,1,

√
2(x, y). We will prove the following proposition.
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Proposition 2. For 0 ≤ x ≤
√

2 and 0 ≤ y ≤ 1,

f√2,1,
√

2(x, y) ≥ f√2,
√

2,1(1/
√

2, 1/
√

2).

Proof. We will prove Proposition 2 by dividing the domain of the function f(x, y) =
f√2,1,

√
2(x, y) into four subsets {(x, y) : 2

√
2/3 ≤ x ≤

√
2, 0 ≤ y ≤ 1}, {(x, y) : 0 ≤

x ≤ 2
√

2/3, 2/3 ≤ y ≤ 1}, {(x, y) : 0 ≤ x ≤ 2
√

2/3, 0 ≤ y ≤ 2/3, y ≤ x/
√

2}, and
{(x, y) : 0 ≤ x ≤ 2

√
2/3, 0 ≤ y ≤ 2/3, y ≥ x/

√
2}.

Since the process of the proof is a somewhat tedious, we state the outline briefly.

Case 1 : Let (x, y) ∈ {(x, y) : 2
√

2/3 ≤ x ≤
√

2, 2/3 ≤ y ≤ 1}.
Since

∂f 2

(∂x)(∂y)
(x, 1) = − x√

2 + x2
− 1√

3
−

√
2x

(x2 + 1)3/2
+ 1 < 0,

∂f

∂y
(x, 1) is decreasing with respect to x. Since

∂f

∂y
(x, 1) ≤ ∂f

∂y
(2
√

2/3, 1) = −0.05 · · · < 0,

by (6),
∂f

∂y
(x, y) <

∂f

∂y
(x, 1) < 0, which implies f(x, y) ≥ f(x, 1). When y = 1, we have

|p1p4| = 1 − y = 0 and the rectangle p1p2p3p4 is a line segment. This case is included in
the case a = b =

√
2 and c = 1 studied in the section 4.

Case 2 : Let (x, y) ∈ {(x, y) : 0 ≤ x ≤ 2
√

2/3, 2/3 ≤ y ≤ 1}.
Since by (5)

∂f

∂x
(x, y) is increasing, we have

∂f

∂x
(x, y) <

∂f

∂x
(2
√

2/3, y)

= (1 − 2/
√

13)y −
√

2 + y2 + 4/
√

13 + 4/
√

8 + 9y2 − 1 < −0.002 · · · .

Hence f(x, y) ≥ f(2
√

2/3, y) and the point (2
√

2/3, y) is included in Case 1.
Case 3 : Let (x, y) ∈ {(x, y) : 0 ≤ x ≤ 2

√
2/3, 0 ≤ y ≤ 2/3, y ≤ x/

√
2}.

By (6), we have

∂f

∂y
(x, y) ≤ ∂f

∂y
(x, x/

√
2) = −

√
2 + x2 +

x(2
√

2 − x)√
4 + x2

+

√
2√
3
−
√

2 + x

< −
√

2 +
4√
11

+

√
2√
3
−
√

2 + (1 −
√

2√
11

× 2
√

2

3
= −0.2 . . . < 0,

and f(x, y) ≥ f(x, x/
√

2). Since f(x, x/
√

2) is a function of one variable, we get f(x, x/
√

2) ≥
f√2,

√
2,1(1/

√
2, 1/

√
2) (we used Mathematica for calculation).
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Case 4 : Let (x, y) ∈ {(x, y) : 0 ≤ x ≤ 2
√

2/3, 0 ≤ y ≤ 2/3, y ≥ x/
√

2}.
By (5), we have

∂f

∂x
(x, y) ≤ ∂f

∂x
(
√

y, y) =

√
2y(2 − y)√
2 + 2y2

−
√

2 + y2 +
2y√
3y2

− (1 − y)

= (
y√

1 + y2
− 1)(1 − y) +

y√
1 + y2

−
√

2 + y2 +
2√
3

<
2√
13

− 1 +
2√
13

−
√

2 +
2√
3

= −0.15 · · · < 0,

and f(x, y) ≥ f(
√

y, y). Since f(
√

y, y) is a function of one variable, we get f(
√

y, y) ≥
f√2,

√
2,1(1/

√
2, 1/

√
2) (we used Mathematica for calculation).

This complets the proof of Proposition 2. 2

6 Proofs of theorems.

Proof of Theorem 1. Let P be a cuboid with relation
√

2 :
√

2 : 1 for its edge lengths.
Since the surface area of the truncated octahedron obtained by the cut 2-complex whose
area is f√2,

√
2,1(1/

√
2, 1/

√
2), is twice of f√2,

√
2,1(1/

√
2, 1/

√
2), its ratio r = 5.31472 . . ..

By Proposition 1 and Proposition 2, Theorem 1 has been proved.

Proof of Theorem 2. Let P be a cube. Then by Proposition 1 the function
f1,1,1,(x, y) for 0 ≤ x, y ≤

√
2 attains its minimum on the subset {(t, t) : 0 ≤ t ≤ 1}.

Hence by calculating the one variable function f1,1,1,(t, t) = 2
√

1 + t2(2−t)+
√

2t+(1−t)2,
we get the minimum value 4.24 · · · and the ratio r = 2 × 4.24 · · · /22/3 = 5.345 · · ·. 2
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