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Abstract. In this paper we study the radical of a linear expression of the
form c1x1 + c2x2 + . . .+ cmxm, with c1, . . . , cm, x1, . . . , xm relatively prime
elements in the ring Ar(K) of arithmetical functions in r variables over a
field K of characteristic zero.

1 Introduction

Given an integer r ≥ 1 and a field K of characteristic zero, the set of arithmetical
functions in r variables over K is given by Ar = Ar(K) = {f : Nr → K}, with
multiplication defined by the convolution

(f ∗ g)(n1, ..., nr) =
∑
d1|n1

...
∑
dr|nr

f(d1, ..., dr)g(
n1
d1
, ...,

nr
dr

), (1)

for any f, g ∈ Ar. Here K has a natural embedding in Ar, and Ar with addition
and convolution defined as above becomes a K-algebra. For some work on rings
of arithmetical functions the reader is referred to [11], [4], [5], [6], [10], [7], [8],
[2], [9], [1], [12], and [3]. In particular, by generalizing a theorem of Cashwell
and Everett in [12] it is shown that the ring Ar is factorial. This opens up the
possibility of studying various Diophantine equations over the ring Ar. With this
in mind, an anlog of the well-known ABC conjecture of Masser and Oesterlé was
investigated in [13]. In order to state the main result of [13], let us first recall the
construction from [1] of a class of absolute values on Ar, which generalize the one
discovered by Schwab and Silberberg [9]. Let t = (t1, . . . , tr) ∈ Rr with t1, . . . , tr
linearly independent over Q, and ti > 0, (i = 1, 2, . . . , r). For each n ∈ N denote
by Ω(n) the total number of prime factors of n counting multiplicities, and define
Ωr : Nr → Nr by

Ωr(n1, . . . , nr) = (Ω(n1), . . . ,Ω(nr)).
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For any f ∈ Ar, f not identically zero, let supp(f) = {n ∈ Nr|f(n) ̸= 0}, and
define

Vt(f) = min
n∈supp(f)

t · Ωr(n).

We also put Vt(0) = ∞. It is shown in [1] that for any f, g ∈ Ar,

Vt(f + g) ≥ min({Vt(f), Vt(g)}),

and

Vt(f ∗ g) = Vt(f) + Vt(g).

Next, using the valuation Vt one defines a nonarchimedean absolute value |.|t by

|x|t = ρVt(x) if x ̸= 0, and |x|t = 0 if x = 0,

where ρ is a fixed real number in (0, 1).

Since Ar is a unique factorization domain (see [12]), every f ∈ Ar, can be
written as f = upα1

1 · · · pαmm , where p1, . . . , pm are irreducible elements of Ar,
u is a unit in Ar, and the factorization is unique up to the order of factors and
multiplication of p1, . . . , pm by units in Ar. The radical of f is defined by rad(f) =
p1p2 · · · pm, which is well-defined up to multiplication by a unit. Moreover, for any
t as above, the absolute value |rad(f)|t is well-defined, since by the construction
of |.|t the absolute value of any unit of Ar equals 1.

In [13] it is proved that for any nonzero relatively prime elements f , g, and h
of Ar satisfying |f |t < |g|t and f + g = h, and any t as above,

|rad(fgh)|t ≤ max{|f |t, |g|t, |h|t}. (2)

In the present paper we employ Wronskians with entries in Ar, defined with
respect to certain derivations which were introduced in [1], in combination with
the method from [13], to obtain the following generalization of the above result.

Theorem 1 Let r be a positive integer and K a field of characteristic zero. Let
t = (t1, . . . , tr) ∈ Rr with t1, . . . , tr linearly independent over Q, and ti > 0, i =
1, . . . , r. Let c1, . . . , cm be relatively prime non-zero elements of Ar(K) and con-
sider the linear form L(X1, . . . , Xm) := c1X1 + · · · + cmXm. Let x1, . . . , xm be
relatively prime elements of Ar(K) that are also relatively prime to the product
c1 · · · cm, and assume that the values |c1x1|t, . . . , |cmxm|t are pairwise distinct.
Then one has

|rad(L(x1, . . . , xm))|m−1
t ≤

max{|c1x1|t, . . . , |cmxm|t}∣∣∣∣∣rad
(

m∏
j=1

cj

)
rad

(
m∏
j=1

xj

)∣∣∣∣∣
m−1

t

. (3)
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2 Preliminaries

An arithmetical function f ∈ Ar is called completely additive provided

f(n1m1, ..., nrmr) = f(n1, ..., nr) + f(m1, ...,mr),

for any n1, ..., nr,m1, ...,mr ∈ N.
Let ψ ∈ Ar be a completely additive function, and define the map Dψ : Ar →

Ar by
Dψ(f)(n1, . . . , nr) = f(n1, . . . , nr)ψ(n1, . . . , nr),

for all n1, . . . , nr ∈ N. Then we have that (see [1]) for all f, g ∈ Ar and c ∈ K,
(a) Dψ(f + g) = Dψ(f) +Dψ(g),
(b) Dψ(fg) = fDψ(g) + gDψ(f),
(c) Dψ(cf) = cDψ(f).
Thus, Dψ is a derivation on Ar over K.

Let ψ ∈ Ar be a completely additive function. Let f be a nonzero element of
Ar, and f = upe11 · · · pemm be its prime factorization. Then,

Dψ(f) = ue1p
e1−1
1 Dψ(p1)p

e2
2 · · · pemm + upe11 e2p

e2−1
2 Dψ(p2)p

e3
3 · · · pemm

+ . . .+ upe11 · · · pem−1

m−1 emp
em−1
m Dψ(pm) +Dψ(u)p

e1
1 · · · pemm ,

where

Dψ(u)(1, . . . , 1) = Dψ(p1)(1, . . . , 1) = · · · = Dψ(pm)(1, . . . , 1) = 0.

So we may writeDψ(f) asDψ(f) = pe1−1
1 pe2−1

2 · · · pem−1
m fψ, for some fψ ∈ Ar with

fψ(1, . . . , 1) = 0, and consequently |fψ|t < 1. Since f
rad(f) = pe1−1

1 pe2−1
2 · · · pem−1

m ,

it is a divisor of Dψ(f), and so we have |Dψ(f)|t|rad(f)|t < |f |t. Also, since the

greatest common divisor (f,Dψ(f)) is a multiple of f
rad(f) ,

|(f,Dψ(f))|t ≤
∣∣∣∣ f

rad(f)

∣∣∣∣
t

.

We will assume that ψ has the property that ψ(n1, . . . , nr) ̸= 0 for all r-tuples
(n1, . . . nr) ̸= (1, . . . , 1). Over a field K of characteristic zero one can easily con-
struct such functions ψ. For example, define ψ(n1, . . . , nr) = Ω(n1) + · · ·+Ω(nr)
for all positive integers n1, . . . , nr, and then use the canonical embedding of Z
in K in order to send the values of ψ in K. If ψ has the above property, then
any element f of Ar satisfying |f |t < 1, and Dψ(f) will have the same support.
Therefore we have |Dψ(f)|t = |f |t.

3 Proof of Theorem 1

Let c1, . . . , cm, x1, . . . , xm ∈ Ar satisfy the hypothesis of Theorem 1. Let ψ ∈ Ar
be a completely additive function such that ψ(n1, . . . , nr) ̸= 0 for all r-tuples
(n1, . . . nr) ̸= (1, . . . , 1). Since L(x1, . . . , xm) = c1x1 + . . . + cmxm and the
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absolute values |c1x1|t,. . . , |cmxm|t, are assumed to be distinct, it follows that
|L(x1, . . . , xm)|t = max{|c1x1|t, . . . , |cmxm|t}. For f ∈ Ar(K), define D0

ψf = f ,

and inductively Dn
ψf = Dψ(D

n−1
ψ f) for any positive integer n. To simplify our

notation, in what follows we denote L(x1, . . . , xm) by L. By applying the operator
Dψ repeatedly to the equality c1x1 + . . .+ cmxm = L, we know that

Dψc1x1 + . . .+Dψcmxm = DψL,

D2
ψc1x1 + . . .+D2

ψcmxm = D2
ψL,

. . .

Dm−1
ψ c1x1 + . . .+Dm−1

ψ cmxm = Dm−1
ψ L.

Next, we consider the Wronskian

Wψ(c1x1, . . . , cmxm) =

∣∣∣∣∣∣∣∣∣
c1x1 c2x2 . . . cmxm

Dψc1x1 Dψc2x2 . . . Dψcmxm
...

...
...

...
Dm−1
ψ c1x1 Dm−1

ψ c2x2 . . . Dm−1
ψ cmxm

∣∣∣∣∣∣∣∣∣
From the above equations, it follows that

Wψ(c1x1, . . . , cmxm) =Wψ(c1x1, . . . , cm−1xm−1, L).

Our next goal is to show that

|Wψ(c1x1, . . . , cmxm)|t =

 m∏
j=1

|cj |t

 m∏
j=1

|xj |t

 . (4)

To proceed, let us denote y1 = c1x1, . . . , ym = cmxm. We also denote by BH
the set Ωr[supp(H)] for any H ∈ Ar. Let n1 = (n11, . . . , n1r) ∈ supp(y1), n2 =
(n21, . . . , n2r) ∈ supp(y2), . . . , nm = (nm1, . . . , nmr) ∈ supp(ym). Suppose that
l1 = (l11, . . . , l1r) ∈ By1 , l2 = (l21, . . . , l2r) ∈ By2 , . . ., lm = (lm1, . . . , lmr) ∈ Bym
satisfy the equations Ωr(n1) = l1, . . ., Ωr(nm) = lm respectively. Also assume that
n1, . . . , nm are chosen such that

Vt(y1) = t1l11 + . . .+ trl1r = t1Ω(n11) + . . .+ trΩ(n1r),

...

Vt(ym) = t1lm1 + . . .+ trlmr = t1Ω(nm1) + . . .+ trΩ(nmr).

Let us define for each 1 ≤ i ≤ m, the set

Cyi = {a ∈ Nr : yi(a) ̸= 0 and Ωr(a) = li}

Also, to make a choice, let us assume that for each 1 ≤ i ≤ m, ni was chosen so
that it is the smallest element of Cyi with respect to the lexicographical ordering.
We have that

Vt(y1) + . . .+ Vt(ym) = t · l1 + . . .+ t · lm = t · Ωr(u),
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where u = (n11 · · ·nm1, . . . , n1r · · ·nmr)
By the hypothesis from the statement of the theorem and the definition of

y1, . . . , ym we know that |y1|t, . . . , |ym|t are pairwise distinct. Therefore the r-
tuples n1, . . . , nm are distinct. Let d1 = (d11, . . . , d1r), d2 = (d21, . . . , d2r), . . . ,
dm = (dm1, . . . , dmr) be tuples in Nr, and define

D(d1, . . . , dm) =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

ψ(d1) ψ(d2) . . . ψ(dm)
...

...
...

...
ψm−1(d1) ψm−1(d2) . . . ψm−1(dm)

∣∣∣∣∣∣∣∣∣ .
Here D(d1, . . . , dm) is a Vandermonde determinant, and so

D(d1, . . . , dm) =
∏

1≤i<j≤m

(
ψ(dj)− ψ(di)

)
.

To simplify our notation, we will write f (n) = D
(n)
ψ (f) for any f in Ar and any

positive integer n. Consider w = y1y
(1)
2 y

(2)
3 · · · y(m−1)

m . We have

w(u) = (y1y
(1)
2 y

(2)
3 · · · y(m−1)

m )(u) =
∑

d11···dm1=n11···nm1

. . .
∑

d1r···dmr=n1r···nmr

y1(d11, . . . , d1r) · · · ym(dm1, . . . , dmr)ψ(d21, . . . , d2r) · · ·ψ(m−1)(dm1, . . . , dmr).

We now expand the determinant Wψ(y1, . . . , ym)(u) as a sum of terms of the
form ±w(u) with w similar to the one above, and apply to each of them the above
relation. It follows that

Wψ(y1, . . . , ym)(u) =
∑

d11···dm1=n11···nm1

. . .
∑

d1r···dmr=n1r···nmr

y1(d11, . . . , d1r) · · · ym(dm1, . . . , dmr)D(d1, . . . , dm).

We claim that here each term y1(d11, . . . , d1r) · · · ym(dm1, . . . , dmr)D(d1, . . . , dm)
is zero with the possible exception of the term (d1, . . . , dm) = (n1, . . . , nm). In-
deed, if d1 is such that the dot product t ·Ωr(d1) is strictly smaller than t ·Ωr(n1),
then by the definition of n1 we must have y1(d1) = 0. Similarly for the other
dj ’s. Also, if t · Ωr(di) > t · Ωr(ni) for some i, then there will be a j for which

t ·Ωr(dj) < t ·Ωr(nj), and then we will have yj(dj) = 0 for that j. Thus the only
terms that may survive in the sum are those for which we simultaneously have
t · Ωr(di) = t · Ωr(ni) for each i. This means Ωr(di) = Ωr(ni) for each i, since the
components of t are linearly independent over the rationals. Next, if there is an i
for which di is strictly larger than ni in the lexicographical order, then there will
be a j for which dj is strictly smaller than nj in the lexicographical order, and
this contradicts our choice of nj . Also, no di can be strictly smaller than ni in the
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lexicographical order, by our choice of ni. This forces each di to coincide with ni,
proving our claim. In conclusion

Wψ(y1, . . . , ym)(u) = y1(n1) · · · ym(nm)D(n1, . . . , nm). (5)

The above considerations hold for any completely additive function ψ. In
what follows we need ψ to satisfy the additional property that Wψ(y1, . . . , ym)
does not vanish at the point u above. In view of (5), and taking into account that
y1(n1), . . . , ym(nm) are non-zero by our choice of n1, . . . , nm, the above condition
on ψ reduces to the requirement of having D(n1, . . . , nm) non-zero. This being a
Vandermonde determinant, the above condition asks for ψ to take distinct values
at the points n1, . . . , nm.

It is easy to construct such a ψ, but our original construction was not particu-
larly nice or illuminating. Below we present a more conceptual argument for the
existence of such a ψ, which was kindly provided to us by the referee.

Let V be the set of all completely additive functions in Ar. Then V is a
K-vector subspace of Ar. Since the multiplicative monoid N is a free monoid
with the free basis given by all prime numbers, V is isomorphic to the K-dual

of
(
K

⊕
N)⊕ r

, the r-ple direct sum of the countable dimensional K-vector space
considered with the basis indexed by the set of all prime numbers. Eventhough
V is infinite dimensional, one should only look at a finite dimensional portion of
it. Indeed, as one readily sees in the above calculation, the condition for non-
vanishing of D(n1, . . . , nm) for the fixed n only involves the finitely many primes
that divide the entries of n. Since the condition D(n1, . . . , nm) = 0 gives rise to a
single polynomial equation among the values of ψ for finitely many tuples of the
form (1, . . . , 1, p, 1, . . . , 1) where p is a prime number, and since such values can be
chosen freely in the infinite field K, the desired choice of ψ is always possible, as
Kn is Zariski dense in AnK = Spec K[X1, . . . , Xn] since K is infinite.

With ψ as above, we have that

|y1|t · · · |ym|t = ρVt(y1)+...+Vt(ym)

= ρt·Ωr(n11···nm1,...,n1rnmr)

≤ ρVt(Wψ(y1,...,ym))

= |Wψ(y1, . . . , ym)|t
≤ |y1|t · · · |ym|t.

Hence, |Wψ(y1, . . . , ym)|t = |y1|t · · · |ym|t, which completes the proof of (4).

Next, let us remark that the greatest common divisor (cixi, Dψcixi, . . . , D
m−1
ψ cixi)

dividesWψ(c1x1, . . . , cmxm), and cixi divides (cixi, Dψcixi, . . . , D
m−1
ψ cixi)rad(cixi)

m−1

for all 1 ≤ i ≤ m. Also, (L,DψL, . . . ,D
m−1
ψ L) divides Wψ(c1x1, . . . , cmxm), and

L divides (L,DψL, . . . ,D
m−1
ψ L)rad(L)m−1. Thus c1x1c2x2 · · · cmxmL divides

rad(c1x1c2x2 · · · cmxmL)m−1(L,DψL, . . . ,D
m−1
ψ L)

m∏
i=1

(cixi, Dψcixi, . . . , D
m−1
ψ cixi).

(6)
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Since c1x1, c2x2,. . . ,cmxm, and L are coprime, so are the greatest common divi-
sors which appear as the lastm+1 factors in (6). Each of these factors is a divisor of
Wψ(c1x1, . . . , cmxm), therefore their product dividesWψ(c1x1, . . . , cmxm), and we
find that c1x1c2x2 · · · cmxmL divides rad(c1x1c2x2 · · · cmxmL)m−1Wψ(c1x1, . . . , cmxm).
Thus,

|rad(c1x1c2x2 · · · cmxmL)|m−1
t ≤

|L|t
m∏
i=1

|cixi|t

|Wψ(c1x1, . . . , cmxm)|t
= |L|t,

which completes the proof of Theorem 1.

Acknowledgement: The authors are grateful to the referee for many useful
comments and suggestions.
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