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Abstract. In the present paper we introduce some generalized convergent
lacunary sequence spaces defined by a Musielak-Orlicz function M = (Mi).
We also make an effort to study some topological properties and prove some
inclusion relations between these spaces.

1 Introduction and Preliminaries

The notion of difference sequence spaces was introduced by Kızmaz [6], who studied
the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion was further
generalized by Et and Çolak [3] by introducing the spaces l∞(∆n), c(∆n) and
c0(∆

n). Let w be the space of all complex or real sequences x = (xk) and let m,
n be non-negative integers, then for Z = l∞, c, c0 we have sequence spaces

Z(∆m
n ) = {x = (xk) ∈ w : (∆m

n xk) ∈ Z},

where ∆m
n x = (∆m

n xk) = (∆m−1
n xk − ∆m−1

n xk+1) and ∆0
nxk = xk for all k ∈ N,

which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(

m
v

)
xk+nv.

Taking n = 1, we get the spaces which were studied by Et and Çolak [3]. Taking
m = n = 1, we get the spaces which were introduced and studied by Kızmaz [6].

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and con-
vex function such that M(0) = 0, M(x) > 0 for x > 0.

Mathematical Subject Classification (2010): 40A05, 40C05, 46A45
Key words: Orlicz function, Musielak-Orlicz function, lacunary sequence, paranorm space



10 K. Raj

Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to define the fol-
lowing sequence space,

ℓM =
{
(xk) ∈ w :

∞∑
k=1

M
( |xk|

ρ

)
< ∞, for some ρ > 0

}
which is called an Orlicz sequence space. Also ℓM is a Banach space with the norm

||(xk)|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|

ρ

)
≤ 1

}
.

Also, it was shown in [8] that every Orlicz sequence space ℓM contains a subspace
isomorphic to ℓp(p ≥ 1). An Orlicz function M satisfies the ∆2−condition if and
only if for any constant L > 1 there exists a constant K(L) such that M(Lu) ≤
K(L)M(u) for all values of u ≥ 0. An Orlicz functionM can always be represented
in the following integral form

M(x) =

∫ x

0

η(t)dt

where η is known as the kernel of M , is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t) → ∞ as t → ∞.
A sequence M = (Mi) of Orlicz functions is called a Musielak-Orlicz function (see
[11, 15]). A sequence N = (Ni) defined by

Ni(v) = sup{|v|u−Mi(u) : u ≥ 0}, i = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For a
given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its
subspace hM are defined as follows

tM =
{
x ∈ w : IM(cx) < ∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) < ∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
i=1

(Mi)(xi), x = (xi) ∈ tM.

We equip tM with the Luxemburg norm

||x|| = inf
{
i > 0 : IM

(x
i

)
≤ 1

}
or equip it with the Orlicz norm

||x||0 = inf
{1

i

(
1 + IM(ix)

)
: i > 0

}
.
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A Musielak-Orlicz function (Mi) is said to satisfy the ∆2-condition if there exist
constants a,K > 0 and a sequence c = (ci)

∞
i=1 ∈ ℓ1+ (the positive cone of ℓ1) such

that the inequality
Mi(2u) ≤ KMi(u) + ci

holds for all i ∈ N and u ∈ R+ whenever Mi(u) ≤ a.
Let X be a linear metric space. A function p : X → R is called a paranorm, if

1. p(x) ≥ 0 for all x ∈ X,

2. p(−x) = p(x) for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with p(xn−x) → 0 as n → ∞, then p(λnxn−λx) → 0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called a total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric
of any linear metric space is given by some total paranorm (see [20], Theorem
10.4.2, pp. 183). For more details about sequence spaces (see [12, 13, 18, 19]) and
reference therein.
Let l∞, c and c0 denotes the sequence spaces of bounded, convergent and null
sequences x = (xi)

∞
i=1 respectively. A linear functional L on ℓ∞ is said to be a

Banach limit (see [1]) if it has the properties:

1. L(x) ≥ 0 if x ≥ 0(i.e. xn ≥ 0 for all n),

2. L(e) = 1, where e = (1, 1, · · · ),

3. L(Dx) = L(x),

where the shift operator D is defined by (Dxn) = (xn+1).
Let B be the set of all Banach limits on ℓ∞. A sequence x is said to be almost
convergent to a number L if L(x) = L for all L ∈ B. Lorentz [5] has shown that
x is almost convergent to L if and only if

tkm = tkm

({
xj

}∞
j=1

)
=

xm + xm+1 + · · ·+ xm+k

k + 1
→ L as k → ∞, uniformly in m.

Also a sequence x = (xi) ∈ l∞ is said to be almost convergent if all Banach limits
of x = (xi) coincide. In [7], it was shown that

c =
{
x = (xi) : lim

n→∞

1

n

n∑
i=1

xi+s exists, uniformly in s
}
.

Example : Consider (Ω,F , P ) = ([0, 1],B, dx|[0, 1]).

If 0 ≤ a ≤ b ≤ 1 and E = [a, b], then P (E) = b− a.

Define a sequence of random variables {Xn} as follows

Xn(ω) = ωn, ∀ω ∈ Ω.
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For a fixed sample point ω ∈ [0, 1), the sequence of real numbers {Xn(ω)} has
limit

lim
n→∞

Xn(ω) = lim
n→∞

ωn = 0.

For ω = 1, the sequence of real numbers {Xn(ω)} has limit

lim
n→∞

Xn(ω) = lim
n→∞

ωn = lim
n→∞

1n = 1.

Therefore, the sequence of random variables {Xn} does not converge pointwise to
X = 0, because limn→∞ Xn(ω) ̸= X(ω) for ω = 1. However, the set of sample
points ω such that {Xn(ω)} does not converge to X(ω) is a zero-probability event

P

({
ω ∈ Ω :

{
Xn(ω)

}
does not converge to X(ω)

})
= P ({1}) = 1− 1 = 0.

Therefore, the sequence {Xn} almost convergent to X = 0.
In ([9, 10]), Maddox defined a sequence x = (xi) to be strongly almost convergent
to a number L if

lim
n→∞

1

n

n∑
i=1

|xi+s − L| = 0, uniformly in s.

By a lacunary sequence θ = (kr), r = 0, 1, 2, ...., where i0 = 0, we shall mean an
increasing sequence of non-negative integers hr = (kr − kr−1) → ∞(r → ∞). The
intervals determined by θ are denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will

be denoted by qr. The space of lacunary strongly convergent sequences Nθ was
defined by Freedman [4] as follows:

Nθ =
{
x = (xi) : lim

r→∞

1

hr

∑
i∈Ir

|xi − L| = 0, for some L
}
.

Let M be an Orlicz function. Güngör and Et [5] defined the following sequence
spaces:

[ĉ,M ](∆m) =
{
x = (xi) : lim

n→∞

1

n

n∑
i=1

M
( |∆mxi+s − L|

ρ

)
= 0, uniformly in s,

for some ρ > 0 and L > 0
}
,

[ĉ,M ]0(∆
m) =

{
x = (xi) : lim

n→∞

1

n

n∑
i=1

M
( |∆mxi+s|

ρ

)
= 0, uniformly in s,

for some ρ > 0
}

and

[c,M ]∞(∆m) =
{
x = (xi) : sup

n,s

1

n

n∑
i=1

M
( |∆mxi+s|

ρ

)
< ∞, for some ρ > 0

}
.
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The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk =
H, K = max(1, 2H−1) then

|ak + bk|pk ≤ K{|ak|pk + |bk|pk} (1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C. In the second
section of this paper we want to generalize the result of Güngör and Et [4].

Let M = (Mi) be a Musielak-Orlicz function, p = (pi) be a bounded sequence of
positive real numbers and u = (ui) be a sequence of strictly positive real numbers.
Then we define the following sequence spaces:

[ĉ,M, u, p,∆m
n ] =

{
x = (xi) : lim

n→∞

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

= 0, uniformly in s

for some L and ρ > 0
}
,

[ĉ,M, u, p,∆m
n ]0 =

{
x = (xi) : lim

n→∞

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s|
ρ

)pi

= 0, uniformly in s

for some ρ > 0
}

and

[c,M, u, p,∆m
n ]∞ =

{
x = (xi) : sup

n,s

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s|
ρ

)pi

< ∞, for some ρ > 0
}
.

Examples 1. Let Mi(x) = x2, for all i ∈ N. Let pi = 2, ui = i, m = 1, n = 0
and s = 0. Consider a sequence xk = k, for all k ∈ N. Then xk ∈ [ĉ,M, u, p,∆m

n ]
but xk /∈ [ĉ,M, u, p,∆m

n ]0.

2. Let Mi(x) = x4, for all i ∈ N. Let pi =
1
i , ui = 4, m = 2, n = 2 and s = 0.

Consider a sequence xk = k + 1, for all k ∈ N. Then xk ∈ [ĉ,M, u, p,∆m
n ]0 but

xk /∈ [ĉ,M, u, p,∆m
n ].

3. Let Mi(x) = x3, for all i ∈ N. Let pi = i, ui = 9, m = 3, n = 2 and
s = 0. Consider a sequence xk = k3, for all k ∈ N. Then xk ∈ [ĉ,M, u, p,∆m

n ]∞
but xk /∈ [ĉ,M, u, p,∆m

n ]0.

The subject studied in this paper is important because we have generated some
new sequence spaces and studied some algebraic and interesting topological prop-
erties of these spaces. The applications of sequence spaces has been found in
quantum mechanics and matrix transformations. It is related to the other fields
of mathematics because topologist may study different type of topology on these
spaces. Also if one can from operator theory may study the properties of operators
like as boundedness, compactness, Frdholmness etc. on these spaces. So that it is
related to other types of mathematics.
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Relation between the sequence spaces and operator theory: Bhardwaj and Singh
in [2] introduced the sequence space W0(A, f) and studied some topological and
algebraic properties of this sequence space. In [16] Raj, Komal and Khosla studied
the properties of composition and weighted composition operators like bounded-
ness, compactness, closed range, Fredholmness, invertibility etc. on this space
whereas the properties of multiplication operators are studied by Raj and Khosla
in [17]. Recently, Mursaleen and Mohiuddine [14] studied the properties of the ma-
trix transformation on the sequence spaces Vσ(θ) and V ∞

σ (θ). So that in this way
one can define the relation between the sequence spaces and other mathematics.

2 Some strongly almost convergent sequence spaces

In this section of the paper we shall study some topological properties and inclusion
relation between the spaces [ĉ,M, u, p,∆m

n ], [ĉ,M, u, p,∆m
n ]0 and [ĉ,M, u, p,∆m

n ]∞.

Theorem 2.1 Let M = (Mi) be a Musielak-Orlicz function, p = (pi) be a bounded
sequence of positive real numbers and u = (ui) be a sequence of strictly positive real
numbers. Then the spaces [ĉ,M, u, p,∆m

n ], [ĉ,M, u, p,∆m
n ]0 and [ĉ,M, u, p,∆m

n ]∞
are linear spaces over the field of complex numbers C.

Proof. Let x = (xi), y = (yi) ∈ [ĉ,M, u, p,∆m
n ]0 and α, β ∈ C. Then there exist

positive integers ρ1 and ρ2 such that

lim
n→∞

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

= 0, uniformly in s

and

lim
n→∞

1

n

n∑
i=1

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

= 0, uniformly in s.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M is non-decreasing convex function, and so
by using inequality (1), we have

1

n

n∑
i=1

Mi

( |ui∆
m
n (αxi+s + βyi+s)|

ρ3

)pi

≤ 1

n

n∑
i=1

Mi

[( |ui∆
m
n (αxi+s)|
ρ3

)
+

( |ui∆
m
n (βyi+s)|
ρ3

)]pi

≤ K
1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

+K
1

n

n∑
i=1

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

.

→ 0 as n → ∞.

Therefore αx + βy ∈ [ĉ,M, u, p,∆m
n ]0. Hence [ĉ,M, u, p,∆m

n ]0 is a linear space.
Similarly, we can prove that [ĉ,M, u, p,∆m

n ] and [ĉ,M, u, p,∆m
n ]∞ are linear spaces.

Theorem 2.2 Let M = (Mi) be a Musielak-Orlicz function, p = (pi) be a bounded
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sequence of positive real numbers and u = (ui) be a sequence of strictly positive
real numbers. Then the space [ĉ,M, u, p,∆m

n ]∞ is a paranormed space with the
paranorm defined by

g(x) = inf
{
ρ

pr
H : sup

n,s

( 1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s|
ρ

)pi
) 1

H ≤ 1, r = 1, 2, ...
}
,

where H = max(1, supi pi) < ∞.

Proof. It is easy to prove so we omit the details.

Theorem 2.3 Let M = (Mi) be a Musielak-Orlicz function. If sup
i
[Mi(x)]

pi < ∞

for all fixed x > 0, then [ĉ,M, u, p,∆m
n ]0 ⊂ [ĉ,M, u, p,∆m

n ]∞.

Proof. Let x = (xi) ∈ [ĉ,M, u, p,∆m
n ]0. There exists some positive ρ1 such that

lim
n→∞

1

n

n∑
i=1

[
Mi

( |ui∆
m
n xi+s|
ρ1

)]pi

= 0, uniformly in s.

Define ρ = 2ρ1. Since M = (Mi) is non-decreasing and convex, by using inequality
(1), we have

sup
s

1

n

n∑
i=1

[
Mi

( |ui∆
m
n xi+s|
ρ

)]pi

= sup
s

1

n

n∑
i=1

[
Mi

(∆m
n xi+s − L+ L

ρ

)]pi

≤ K sup
s

1

n

n∑
i=1

[ 1

2pi
Mi

( |ui∆
m
n xi+s − L|
ρ1

)]pi

+ K sup
s

1

n

n∑
i=1

[ 1

2pk
Mi

( |L|
ρ1

)]pi

≤ K sup
s

1

n

n∑
i=1

[
Mi

( |ui∆
m
n xi+s − L|
ρ1

)]pi

+ K sup
s

1

n

n∑
i=1

[
Mi

( |L|
ρ1

)]pi

< ∞.

Hence x = (xi) ∈ [ĉ,M, u, p,∆m
n ]∞. This completes the proof.

3 Generalized lacunary sequence spaces

In this section of the paper we introduce some generalized lacunary almost con-
vergent sequence spaces by using a Musielak-Orlicz function. Let M = (Mi)
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be a Musielak-Orlicz function, p = (pi) be a bounded sequence of real numbers,
u = (ui) be a sequence of strictly positive real numbers. We define the following
sequence spaces in this paper:

[ĉ,M, u, p,∆m
n ]θ =

{
x = (xi) : lim

r→∞

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

= 0, uniformly in s,

for some L and ρ > 0
}
,

[ĉ,M, u, p,∆m
n ]θ0 =

{
x = (xi) : lim

r→∞

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ

)pi

= 0, uniformly in s

for some ρ > 0
}

and

[ĉ,M, u, p,∆m
n ]θ∞ =

{
x = (xi) : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ

)pi

< ∞, for some ρ > 0
}
.

Examples 1. Let Mi(x) = x, for all i ∈ N. Let θ = (2r), pi = i, ui =
3, m = 1, n = 0 and s = 0. Consider a sequence xk = k2, for all k ∈ N. Then
xk ∈ [ĉ,M, u, p,∆m

n ]θ but xk /∈ [ĉ,M, u, p,∆m
n ]θ0.

2. Let Mi(x) = x2, for all i ∈ N. Let θ = (2r), pi =
1
i , ui = i, m = 2, n = 2

and s = 0. Consider a sequence xk = k, for all k ∈ N. Then xk ∈ [ĉ,M, u, p,∆m
n ]θ0

but xk /∈ [ĉ,M, u, p,∆m
n ]θ.

3. Let Mi(x) = x4, for all i ∈ N. Let θ = (2r), pi = 4, ui = 3, m =
3, n = 2 and s = 0. Consider a sequence xk = k + 1, for all k ∈ N. Then
xk ∈ [ĉ,M, u, p,∆m

n ]θ∞ but xk /∈ [ĉ,M, u, p,∆m
n ]θ0.

If x = (xi) ∈ [ĉ,M, u, p,∆m
n ]θ, we say that x = (xi) is lacunary strongly almost

generalized ∆m
n -convergent to the number L with respect to the Musielak-Orlicz

function (Mi). In this case we write [ĉ,M, u, p,∆m
n ]θ − limx = L. If M(x) = x,

then above spaces reduces to the following spaces :

[ĉ, u, p,∆m
n ]θ =

{
x = (xi) : lim

r→∞

1

hr

∑
i∈Ir

( |ui∆
m
n xi+s − L|

ρ

)pi

= 0, uniformly in s,

for some L and ρ > 0
}
,

[ĉ, u, p,∆m
n ]θ0 =

{
x = (xi) : lim

r→∞

1

hr

∑
i∈Ir

( |ui∆
m
n xi+s|
ρ

)pi

= 0, uniformly in s

for some ρ > 0
}
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and

[ĉ, u, p,∆m
n ]θ∞ =

{
x = (xi) : sup

r,s

1

hr

∑
i∈Ir

( |ui∆
m
n xi+s|
ρ

)pi

< ∞, for some ρ > 0
}
.

One may note that the examples on page no.13 for strongly almost convergent se-
quence spaces whereas the examples on page no.16 for generalized lacunary almost
convergent sequence spaces.

The purpose of this paper is to introduce new sequence spaces by using the
concept of lacunary almost generalized ∆m

n -convergence and a Musielak-Orlicz
function. I also make an efforts to study some topological properties and interest-
ing inclusion relations between these spaces. An attempt is also made to establish
some relations between the spaces defined in section II and the spaces defined in
this section. These spaces also generalizes the well known Orlicz sequence space
lM , strongly summable sequence spaces [c, 1], [c, 1]0 and [c, 1]∞.

Theorem 3.1 For any Musielak-Orlicz function M = (Mi) and any sequence
p = (pi) of strictly positive real numbers, then [ĉ,M, u, p,∆m

n ]θ, [ĉ,M, u, p,∆m
n ]θ0

and [ĉ,M, u, p,∆m
n ]θ∞ are linear spaces over the set of complex numbers C.

Proof. Let x = (xi), y = (yi) ∈ [ĉ,M, u, p,∆m
n ]θ0 and α, β ∈ C. Then there exist

positive integers ρ1 and ρ2 such that

lim
r→∞

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

= 0, uniformly in s

and

lim
r→∞

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

= 0, uniformly in s.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M is a non-decreasing convex function and so
by using inequality (1), we have

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n (αxi+s + βyi+s|

ρ3

)pi

≤ 1

hr

∑
i∈Ir

Mi

[( |ui∆
m
n (αxi+s)|
ρ3

)
+

( |ui∆
m
n (βyi+s)|
ρ3

)]pi

≤ K
1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

+K
1

hr

∑
i∈Ir

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

.

Therefore αx + βy ∈ [ĉ,M, u, p,∆m
n ]θ0. Hence [ĉ,M, u, p,∆m

n ]θ0 is a linear space.
Similarly,

we can prove that [ĉ,M, u, p,∆m
n ]θ and [ĉ,M, u, p,∆m

n ]θ∞ are linear spaces.
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Theorem 3.2 For any Musielak-Orlicz function M = (Mi), [ĉ,M, u, p,∆m
n ]θ∞ is

a semi-normed linear space, semi-normed by

h∆m
n
(x) =

m∑
i=1

|xi|+inf
{
ρ > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ

)pi

≤ 1, r, s = 1, 2, · · ·
}
.

Proof. Clearly h∆m
n
(x) = h∆m

n
(−x), x = 0̄ implies ui∆

m
n xi+s = 0 for all i, s ∈ N

and as

such Mi(0̄) = 0, where 0̄ = (0, 0, · · · ). Therefore h∆m
n
(0̄) = 0. Next let ρ1 and ρ2

be such that

sup
r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

≤ 1

and

sup
r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

≤ 1.

Let ρ = ρ1 + ρ2. Then by using Minkowski’s inequality, we have

sup
r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n (xi+s + yi+s)|

ρ

)pi

≤
( ρ1
ρ1 + ρ2

)
sup
r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

+
( ρ2
ρ1 + ρ2

)
sup
r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

≤ 1.

Since the ρ′s are non-negative, so we have

h∆m
n
(x+ y)

=

m∑
i=1

|xi|+ inf
{
ρ > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n (xi+s + yi+s)|

ρ

)pi

≤ 1, r, s = 1, 2, · · ·
}

≤
m∑
i=1

|xi|+ inf
{
ρ1 > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
ρ1

)pi

≤ 1, r, s = 1, 2, · · ·
}

+

m∑
i=1

|yi|+ inf
{
ρ2 > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n yi+s|
ρ2

)pi

≤ 1, r, s = 1, 2, · · ·
}
.

So, h∆m
n
(x+ y) ≤ h∆m

n
(x) + h∆m

n
(y). Finally for λ ∈ C, without loss of generality

λ ̸= 0, then
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h∆m
n
(λx)

=
m∑
i=1

|λxi|+ inf
{
ρ > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n λxi+s|
ρ

)pi

≤ 1, r, s = 1, 2, · · ·
}

= |λ|
m∑
i=1

|xi|+ inf
{
|λ|r > 0 : sup

r,s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s|
r

)pi

≤ 1, r, s = 1, 2, · · ·
}

= |λ|h∆m
n
(λx),

where r = | ρλ |. This completes the proof of the theorem.

Theorem 3.3 If θ = (kr) be a lacunary sequence with lim inf qr > 1, then

[ĉ,M, u, p,∆m
n ] ⊂ [ĉ,M, u, p,∆m

n ]θ.

Proof. Let lim inf qr > 1. Then there exists η > o such that qr > 1 + η and
hence

hr

kr
= 1− kr−1

kr
> 1− 1

1 + η
=

η

1 + η
.

Therefore,

1

kr

kr∑
i=1

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

≥ 1

kr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

≥ η

1 + η

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

and if x = (xi) ∈ [ĉ,M, u, p,∆m
n ], then it follows that x = (xi) ∈ [ĉ,M, u, p,∆m

n ]θ.

Theorem 3.4 If θ = (kr) be a lacunary sequence with lim sup qr < ∞, then

[ĉ,M, u, p,∆m
n ]θ ⊂ [ĉ,M, u, p,∆m

n ].

Proof. Let x = (xi) ∈ [ĉ,M, u, p,∆m
n ]θ. Choose δ > 0 be arbitrarily, then there

exists σ0 such that for every σ ≥ σ0 and for all s ∈ N

aσs =
1

hσ

∑
i∈Iσ

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

< δ

That is, we can find some positive constant W , such that

aσs < W (2)

for all σ and s. Given lim sup qr < ∞ implies that there exists some positive
number K such that

qr < K (3)
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for all r ≥ 1. Therefore, for kr−1 < n ≤ kr, from (2) and (3) we have

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

≤ 1

kr−1

kr∑
i=1

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

≤ 1

kr−1

r∑
σ=1

∑
i∈Iσ

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

=
1

kr−1

[ σ0∑
σ=1

+

r∑
σ=σ0+1

] ∑
i∈Iσ

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

≤ 1

kr−1

(
sup

1≤p≤σ0

aps

)
kσ0 + δ

kr − kσ0

kr−1

≤ W
kσ0

kr−1
+ δK.

Since kr−1 → ∞ as r → ∞, we get x = (xi) ∈ [ĉ,M, u, p,∆m
n ]. This completes

the proof of the theorem.

Theorem 3.5 If θ = (kr) be a lacunary sequence with 1 < lim inf qr ≤ lim sup qr <
∞, then

[ĉ,M, u, p,∆m
n ] = [ĉ,M, u, p,∆m

n ]θ

Proof. The proof of Theorem 3.5 follows from Theorems 3.3 and 3.4.

Theorem 3.6 Let x = (xi) ∈ [ĉ,M, u, p,∆m
n ]θ ∩ [ĉ,M, u, p,∆m

n ]. Then

[ĉ,M, u, p,∆m
n ]θ − limx = [ĉ,M, u, p,∆m

n ]− limx

and [ĉ,M, u, p,∆m
n ]θ − limx is unique for any lacunary sequence θ = (kr).

Proof. Let x = (xi) ∈ [ĉ,M, u, p,∆m
n ]θ ∩ [ĉ,M, u, p,∆m

n ] and [ĉ,M, u, p,∆m
n ]θ −

limx = L0, [ĉ,M, u, p,∆m
n ]− limx = L. We can see that

Mi

( |L− L0|
ρ

)pi

≤ 1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

+
1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L0|

ρ

)pi

.

Taking limit as r → ∞, we have

Mi

( |L− L0|
ρ

)pi

≤ lim
r

sup
s

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

.

Hence, there exist s and r0 such that for r > r0

1

hr

∑
i∈Ir

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

>
1

2
Mi

( |L− L0|
ρ

)pi

.
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Since [ĉ,M, u, p,∆m
n ]− limx = L, it follows that

0 ≥ lim sup
r

(hr

kr

)
Mi

( |L− L0|
ρ

)pi

≥ lim inf
r
Mi

( |L− L0|
ρ

)pi

≥ 0

and so lim
r

qr = 1. Therefore by Theorem 3.4, [ĉ,M, u, p,∆m
n ]θ ⊂ [ĉ,M, u, p,∆m

n ]

and [ĉ,M, u, p,∆m
n ]θ − limx = L0, [ĉ,M, u, p,∆m

n ]− limx = L. Further

1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s − L|

ρ

)pi

+
1

n

n∑
i=1

Mi

( |ui∆
m
n xi+s − L0|

ρ

)pi

≥ Mi

( |L− L0|
ρ

)pi

≥ 0

and taking the limit on both sides as n → ∞, we have Mi

(
|L−L0|

ρ

)pi

= 0, that is,

L = L0 for any sequence of Orlicz functions M = (Mi). This completes the proof
of the theorem.
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