A note on minimal normal compactifications of \mathbb{C}^2

Madoka Nobe, Yasuhiro Ohshima and Mikio Furushima

(Received February 2, 2014) (Accepted March 29, 2014)

1 Introduction

Let M be a smooth connected compact complex surface and C an analytic subset C of M. The pair (M, C) is called a compactification of \mathbb{C}^2 if M - C is biholomorphic to \mathbb{C}^2 . Then one sees easily that C is of pure codimension one. Namely, C is a divisor. We set $C = \bigcup_{i=1}^{r} C_i$, where each C_i is an irreducible curve. Then it is known

that

- (1.1) S is a rational surface (cf.[3]).
- (1.2) $\mathrm{H}^{i}(M,\mathbb{Z}) \cong \mathrm{H}^{i}(C,\mathbb{Z})$ for i < 4, $\mathrm{H}^{1}(M,\mathbb{Z}) \cong \mathrm{H}^{3}(M,\mathbb{Z}) = 0$ and $\mathrm{H}^{2}(M,\mathbb{Z}) = \mathbb{Z}^{r}$. In particular, each C_{i} is simply connected and its normalization is a smooth rational curve.

Definition 1.1 A compactification (M, C) is said to be minimal normal if it satisfies the following conditions:

- (i) each C_i is smooth,
- (ii) the singular points of $C = \bigcup_{i=1}^{r} C_i$ are ordinary double points and
- (iii) no non-singular rational component of C with self-intersection number -1 has at most two intersection points with other components of C.

Then Morrow [4], applying the topological results of Ramanujan [7], proved the following:

Theorem 1.1 Let (M, C) be a minimal normal compactification of \mathbb{C}^2 and we set $C = \bigcup_{i=1}^{r} C_i$. Then the dual graph $\Gamma(C)$ of C is one of the types $(\Gamma_a) \sim (\Gamma_g)$ in Table I.

Mathematical Subject Classification (2010): 32J05; 32J15; 14J20 Key words: compactification, rational surface, cluster set.

Now, in this note, applying the theory of cluster sets of holomorphic mappings at the essential singular point according to Nishino-Suzuki [5], we shall give an elementary proof of Theorem 1.1.

Table I

2 The cluster set of a holomorphic mapping.

2.1 Analytic curves as a cluster set

Let S be a nonsingular compact complex surface and $C = \bigcup_{i=1}^{N} C_i$ a compact analytic curve in S satisfying

- (i)' each $C_i (1 \le i \le s)$ is a compact irreducible analytic curve,
- (ii) the singular points of $C = \bigcup_{i=1}^{s} C_i$ are ordinary double points, and
- (iii) no non-singular rational component of C with self-intersection number -1 has at most two intersection points with other components of C.

Then Nishino-Suzuki (Théorème 5 in [6]) proved the following

Theorem 2.1 Assume that for each C_i there exists a holomorphic mapping $\varphi_i : \mathbb{C} \longrightarrow S \setminus C$ such that

$$C_i \subset \varphi_i(\infty; S) := \bigcap_{R>0} \overline{\varphi_i(\Delta_R)} \subset C$$
,

where $\Delta_R = \{z \in \mathbb{C} : |z| > R\}$ and $\overline{\varphi_i(\Delta_R)}$ is the closure of $\varphi_i(\Delta_R)$ in S. Then the type of C is one of $(\alpha) \sim (\epsilon)$ in Table 2, in which for the types $(\beta_s)(s \ge 2), (\gamma), (\gamma'), (\delta)$ and (ϵ) each irreducible component of C is a non-singular rational curve and the graph $\Gamma(C)$ is depicted as Figure 1-5.

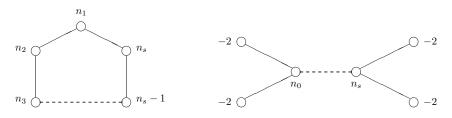
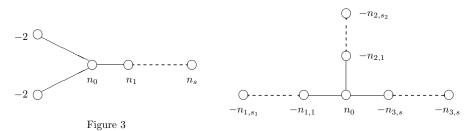


Figure 1

Figure 2



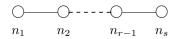


Figure 5

Table 2		
	Name of type	Explication of C
(α)	$lpha_\infty(n)$	An irreducible non-singular elliptic curve with the self
		intersection number $(C^2) = n \ge 0$.
(β)	$eta_\infty(n)$	An irreducible rational curve with only one ordinary
		double point and $(C^2) = n \ge 0$.
	$\beta_{\infty}(n_1, \cdots, n_s) (s \ge 2)$	Figure 1, all $n_i = -2$ or $\max\{n_i\} \ge 0$.
(γ)	$\gamma_{\infty}(n_1,\cdot\cdot\cdot,n_s)(s\geq 1)$	Figure 2, all $n_i = -2$ or $\max\{n_0 + 1, n_1, \dots, n_{s-1}, n_s +$
		$1\} \ge 0$.
	$\gamma'_{\infty}(n_1, \cdot \cdot \cdot, n_s) (s \ge 1)$	Figure 3, $n_i = -2$ or $\max\{n_0 + 1, n_1, \dots, n_s\} \ge 0$.
(δ)	$\delta(n_0 q_1/l_1,q_2/l_2,q_3/l_3)$	Figure 4, (i) $n_0 \ge -2$. (ii) $(l_1, l_2, l_3) =$
		(3,3,3), (2,4,4) or $(2,3,m)$ with $m = 3,4,5,6$. (iii)
		for each $i = 1, 2, 3, (q_i, l_i)$ is a pair of coprime integers
		such that $0 < q_i < l_i$ and that
		1 1
		$\frac{l_i}{q_i} = n_{i,1} - \frac{1}{n_{i,2} - \frac{1}{1}}$
		$q_i \qquad n_{i,2}$
		<i>n</i> · · · · <u>1</u>
		$n_{i,3} - \frac{1}{1}$
		$\dots \overline{n_{i,r_i}}$
		(continued fraction expansion)
	,	where $n_{i,j} \ge 2$ are integers appearing in Figure 4.
(ϵ)	$\epsilon_{\infty}(n_1,\cdots,n_s)(s\geq 1)$	Figure 5, $\max\{n_i\} \ge 0$.

2.2 Fundamental groups of the tubular neighborhoods.

Let S and $C = \bigcup_{i=1}^{n} C_i$ be as in **2.1**. Let K be the boundary of a tubular neighborhood of C in S. Let e_i $(1 \le i \le r)$ be a loop in K that goes once around C_i with positive orientation. Then one has the following (cf. Mumford [5]).

Lemma 2.1 The fundamental group $\pi_1(K)$ is the group generated by e_1, e_2, \ldots, e_r with relations:

 $(R_1) e_i e_j = e_j e_i \text{if} C_i \cap C_j \neq \emptyset$

(R₂)
$$\prod_{j=1}^{r} e_j^{s_{ij}} = 1, i = 1, 2, \dots, r$$
, where $s_{ij} = (C_i \cdot C_j)$ (intersection number)

i.e.,

$$\pi_1(K) = \langle e_1, e_2, \dots, e_r \, | \, (R_1), (R_2) \rangle.$$

Let us introduce the integer $[n_1, n_2, ..., n_r] \in \mathbb{Z}$ for $n_i \in \mathbb{Z}$ $(1 \le i \le r)$ inductively as follows:

- (2-a) $[\emptyset] = 1$, where \emptyset denotes the empty set.
- (2-b) $[n_1] = n_1.$
- (2-c) $[n_1, n_2, \dots, n_j] = n_1[n_2, \dots, n_j] [n_3, \dots, n_j] \quad (2 \le j \le r).$

Then one can easily verify the following

Lemma 2.2 (1) $[n_1, n_2, \ldots, n_r] = [n_i, n_{i-1}, \ldots, n_1][n_{i+1}, \ldots, n_r] - [n_{i-1}, \ldots, n_1][n_{i+2}, \ldots, n_r].$

- (2) $[n_1, n_2, \ldots, n_r] = [n_r, n_{r-1}, \ldots, n_2, n_1].$
- (3) $[-n_1, -n_2, \dots, -n_r] = (-1)^r [n_1, n_2, \dots, n_r].$
- (4) If $n_i \neq 0$ $(1 \leq i \leq r)$, then we have the continued fractional expansion

$$\frac{[n_1, n_2, \dots, n_r]}{[n_2, \dots, n_r]} = n_1 - \frac{1}{n_2 - \frac{1}{n_3 - \frac{1}{\dots \frac{1}{n_r}}}}$$

- (5) $[n_1, n_2, \dots, n_r] > [n_2, n_3, \dots, n_r] > \dots > [n_{r-1}, n_r] > [n_r] > 1$ if $n_i > 1$ $(1 \le i \le r)$.
- (6) Suppose that $n_i \ge 2$ $(1 \le i \le r)$. Then,

$$[n_1, n_2, n_3 \dots, n_r] - [n_2, n_3, \dots, n_r] = 1$$
 iff $n_1 = n_2 = \dots = n_r = 2$.

Then we obtain the following:

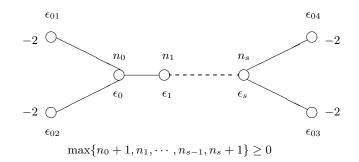
Proposition 2.1 Let C and K be as above. Assume that $\pi_1(K) = \{1\}$. Then the curve C belongs to the type (ϵ) .

Proof. It is easy to see that $\pi_1(K) \neq 1$ for the types $(\alpha), (\beta)$ and $(\beta)_s$. Thus we need only to show that $\pi_1(K) \neq \{1\}$ for the types $(\gamma), (\gamma')$ and (δ) .

The case of type (γ) . We set

$$C = C_{01} \cup C_{02} \cup C_{03} \cup C_{04} \cup C_0 \cup C_1 \cup \dots \cup C_s.$$

Let us denote by ϵ_{0i} $(1 \leq i \leq 4)$, ϵ_j $(0 \leq i \leq s)$ the vertices of the graph $\Gamma(C)$ corresponding to the curves C_{0i} and C_j .



Let a_i $(1 \le i \le 4)$ and e_j $(0 \le j \le s)$ be the loops in K corresponding to the vertices ϵ_{0i} $(1 \le i \le 4)$, ϵ_j $(0 \le j \le s)$ of $\Gamma(C)$. Then we have the following relation between generators:

- $(R_1) \ a_i e_0 = e_0 a_i \ (1 \le i \le 2), \ a_i e_s = e_s a_i \ (i = 3, 4), \ e_i e_{i+1} e_{i+1} e_i \ (0 \le i \le s 1) \ .$
- $(R_2) e_1 = a_1^2 = a_2^2, e_s^2 = a_3^2 = a_4^2,$

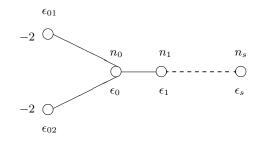
$$a_1 a_2 e_s^{n_0} e_1 = 1, \ e_0 e_1^{n_1} e_2 = 1, \cdots, \ e_{s-2} e_{s-1}^{n_{s-1}} e_s = 1, \ a_3 a_4 e_s^{n_s} e_{s-1} = 1.$$

From this one has

$$\begin{cases} \pi_1(K) / < e_0, e_s > \cong \mathbb{Z}_2 * \mathbb{Z}_2 & \text{if } s > 0 \\ \pi_1(K) / < e_0 > \cong \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 / (a_1 a_2 a_3 a_4 = 1) & \text{if } s = 0 \end{cases}$$

This implies that $\pi_1(K) \neq \{1\}$.

The case of type
$$(\gamma')$$
.



 $\max\{n_0 + 1, n_1, \cdots, n_{s-1}, n_s\} \ge 0$

Let a_i $(1 \le i \le 2)$ and e_j $(0 \le j \le s)$ be the loops in K corresponding to the vertices ϵ_{0i} $(1 \le i \le 2)$ and ϵ_j $(0 \le j \le s)$ in $\Gamma(C)$.

By Lemma 2.1, we have

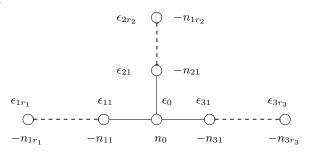
$$\pi_1(K) = \langle a_i (1 \le i \le 2), e_j (0 \le j \le s) | (R_1), (R_2) \rangle,$$

where

 $\begin{array}{l} (R_1) \ a_i e_0 = e_0 a_i \ (1 \leq i \leq 2), e_i e_{i+1} = e_{i+1} e_i (0 \leq i \leq s-1) \\ (R_2) \ e_0 = a_1^2 = a_2^2, \ e_0^{n_0} a_1 a_2 e_1 = 1, \ e_0 e_1^{n_1} e_2 = 1, \cdots, \ e_{s-2} e_{s-1}^{n_s-1} e_s, \ e_{s-1} e_s^{n_s} = 1. \end{array}$ Then we have

 $\pi_1(K)/\langle e_0 \rangle \cong \langle a_1, a_2 | a_1^2 = a_2^2 = (a_1 a_2)^{\alpha} = 1 \rangle \cong \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_{\alpha}/(a_1 a_2 b = 1) \neq \{1\},$ where $\alpha = [n_1, \dots n_s]$ and $b = a_1 a_2$, and hence $\pi_1(K) \neq \{1\}.$

The case of type (δ) .



Let a_i $(1 \le i \le 3)$ be a loop in $\pi_i(K)$ corresponding to the vertex ϵ_{i1} $(1 \le i \le 3)$ of $\Gamma(C)$ and e_0 a loop corresponding to the vertex ϵ_0 . Then one has

$$\pi_1(K)/\langle e_0 \rangle \cong \mathbb{Z}_{\alpha_1} * \mathbb{Z}_{\alpha_2} * \mathbb{Z}_{\alpha_3}/(a_1a_2a_3 = 1) \neq \{1\},\$$

where $\alpha_i = [n_{i1}, \cdots n_{ir_i}] \ (1 \le i \le 3)$, hence we have $\pi_1(K) \ne \{1\}$.

Consequently the graph $\Gamma(C)$ must belongs to the type (ϵ). This completes the proof.

3 Rational ruled surfaces.

3.1 A linear trees of rational curves on a rational surface.

Definition 3.1 Let S be a smooth rational surface and $A = \bigcup_{i=1}^{r} A_i$ a curve on S. A is called a linear tree of (smooth) rational curve if

(i) each A_i is a smooth rational curve,

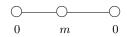
- (ii) $(A_i \cdot A_{i+1}) = 1 \ (1 \le i \le r-1)$ and
- (iii) $(A_i \cdot A_j) = 0$ if $|i j| \ge 2$.

We set $m_i := (A_i^2)$ $(1 \le i \le r)$. Then the graph $\Gamma(A)$ of the curve A is depicted as

Then we have

Lemma 3.1 (see Lemma 6 in Suzuki [8]) Let (S, A) be as above. Then

(3-a) If there exists a pair i, j $(1 \le i < j \le r)$ such that $(A_i^2) \ge 0, (A_j^2) \ge 0$ and $A_i \cap A_j = \emptyset$, then $(A_i^2) = (A_j^2) = 0$ and there exists only one component A_k $(k \ne i, j)$ which intersects $A_i \cup A_j$. The graph $\Gamma(A)$ is depicted as

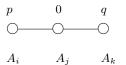


(3-b) If there exists a pair i, $j \ (1 \le i < j \le n)$ such that $(A_i^2) > 0$, $(A_j^2) > 0$, then n = 2and $(A_i^2) = (A_j^2) = 1$. The graph $\Gamma(A)$ is depicted as

Corollary 3.1 Assume that $r \geq 3$. Then there exists only one component A_{i_0} with $(A_{i_0}^2) > 0$. In particular, $(A_k^2) < 0$ for A_k with $A_k \cap A_{i_0} = \emptyset$.

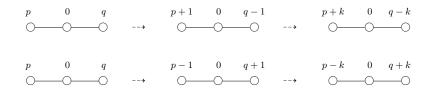
3.2 An elementary transformation.

Assume that the graph $\Gamma(A)$ contains the following subgraph:



Blowing up at the intersection point of A_j and A_k (resp. A_i and A_j) and contracting the proper transform of A_j , which is a (-1)-curve, to a smooth point, we obtain the following:

which we call the *elementary transformation*. For each $0 < k \in \mathbb{Z}$, one has the following:



In the next section 4, we will treat the following special type of the elementary transformations:

4 A classification of minimal normal compatifications of \mathbb{C}^2 .

4.1 The type of the boundary divisor.

Let (M, C) be a minimal normal compactification of \mathbb{C}^2 and set $C = \bigcup_{i=1}^{r} C_i$, where C_i is an irreducible component of C. According to (1.1) and (1.2) in Introduction, we know that

(4-a) M is rational (see [3]).

(4-b) $\operatorname{H}^{i}(M,\mathbb{Z}) \cong \operatorname{H}^{i}(C,\mathbb{Z})$ for i < 3.

(4-c)
$$\mathrm{H}^{1}(M,\mathbb{Z}) = \mathrm{H}^{1}(C,\mathbb{Z}) = 0$$
 and $\mathrm{H}^{2}(M,\mathbb{Z}) \cong \mathrm{Pic}\,S = \bigoplus_{i=1}^{r} \mathbb{Z}\,\mathcal{O}_{M}(C_{i}).$

Then we have

Proposition 4.1 For each C_i , there exists a holomorphic mapping $\varphi_i : \mathbb{C} \longrightarrow M \setminus C$ such that $C_i \subset \varphi_i(\infty; M) \subset C$,

where $\varphi_i(\infty; M) := \bigcap_{R>0} \overline{\varphi_i(\Delta_R)}$ and $\Delta_R = \{z \in \mathbb{C} : |z| > R\}.$

Proof. The proof is done by the idea similar to that of Lemma 1 in [1] (see also Lemma 2 in [8]).

By (4-c), the type of boundary C is one of the types $(\alpha) - (e)$ in Table 2. Let K be the boundary of a tubular neighborhood of the curve C in S as before. Since \mathbb{C}^2 is simply connected at infinity, $\pi_1(K) = \{1\}$ (trivial). By Proposition 2.1, we have

Theorem 4.1 The curve C belongs to the type (ϵ) in Table 2 (see also Figure 5).

4.2 The classification of $\Gamma(C)$.

First by Theorem 4.1, the graph $\Gamma(C)$ is depicted as

By Proposition 2.1, one has $\pi_1(K) \cong \mathbb{Z}_{\alpha} = \{1\}$, where $\alpha = [n_1, n_2, \ldots, n_r] \in \mathbb{Z}$. Hence we have **Proposition 4.2** $[n_1, n_2, ..., n_r] = \pm 1.$

Applying Proposition 4.2, we shall determine the graph $\Gamma(C)$ below. Here we note that r > 0 is the number of vertices of the graph $\Gamma(C)$.

4.2.1 The case for r = 1.

Since $b_2(S) = b_2(C) = 1$ and S is rational, $S \cong \mathbb{P}^2$, and hence, $C \cong \mathbb{P}^1$ and $(C^2) \leq 2$. By Proposition 4.2, one can see that $(C^2) = 1$, and thus we obtain the graph:

$$(\Gamma_a)$$
 \bigcirc 1

4.2.2 The case for r = 2.

Since $b_2(S) = 2$, one has $S \cong \mathbb{F}_n(n \ge 0)$ (Hirzebruch surface) with $\max\{n_1, n_2\} \ge 0$. We may assume that $n_1 \ge 0$. Since $\alpha = [n_1, n_2] = \pm 1$, one has $n_1n_2 - 1 = \pm 1$, that is, $(n_1, n_2) = (2, 1)$ or $(0, n_2)$.By Lemma 3.2-(3-b), the case $(n_1, n_2) = (2, 1)$ cannot occur. Hence we obtain the graph:

$$\begin{array}{ccc} 0 & m \\ (\Gamma_b) & \bigcirc & \bigcirc & (m \neq -1) \end{array}$$

4.2.3 The case for r = 3.

By Proposition 4.2, one has $\pm 1 = [n_1, n_2, n_3] = n_1 n_2 n_3 - n_1 - n_3$. First we claim that $n_2 = 0$. In fact, if $n_2 > 0$, then $n_1 \leq 0$ and $n_3 \leq 0$ by Lemma 3.1-(3-b). Hence $n_1 n_2 n_3 - n_1 - n_3 > 1$, which is absurd. If $n_2 < 0$, then by Lemma 3.1-(3-b), $n_1 \geq 0$ or $n_3 \geq 0$. We may assume that $n_1 \geq 0$ and $n_3 < 0$ by Lemma 3.1-(3-b). Hence $n_1(n_2 n_3 - 1) - n_3 > 1$, which is absurd. Consequently we get $n_2 = 0$. Then we have $-n_1 - n_3 = \pm 1$. Since $n_i \neq -1$ (i = 1, 3), one sees easily that $n_1 n_3 < 0$. We may assume that $n_1 > 0$. Applying the elementary transformation of type $(ET)_N$, we have

$$0 < n_1 \qquad 0 \qquad n_3 \qquad 0 \qquad 0 \qquad n_1 + n_3$$

By Lemma 3.1-(3-b), one has $n_1 + n_3 = -1$. Putting $n_1 = m > 0$, we have the graph:

$$\begin{array}{cccc} m & 0 & -m-1 \\ (\Gamma_c) & \bigcirc & \bigcirc & \bigcirc & (m>0) \end{array}$$

4.2.4 The case for $r \ge 4$.

Lemma 4.1 $\max_{1 \le i \le r} \{n_i\} > 0.$

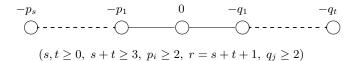
Proof. Assume that $\max_{1 \le i \le r} \{n_i\} = 0$. Let $\nu > 0$ be the number of irreducible components C_i of C with $n_i = (C_i^2) = 0$. Then $\nu \le 2$ by Lemma 3.1-(3-a) since $r \ge 4$. If $\nu = 2$, then $\Gamma(C)$ can be depicted as:

A note on minimal normal compactifications of \mathbb{C}^2

By Proposition 4.3, we have $-[p_s, \ldots, p_1, 0, 0, q_1, \ldots, q_t] = 1$. On the other hand, an easy computation yields the following:

$$\begin{split} -[p_s, \dots, p_1, 0, 0, q_1, \dots, q_t] &= -[0, p_1, \dots, p_s][0, q_1, \dots, q_t] + [p_1, \dots, p_s][q_1, \dots, q_t] \\ &= [p_1, \dots, p_s][q_1, \dots, q_t] - [p_2, \dots, p_s][q_2, \dots, q_t] \\ &> [p_2, \dots, p_s][q_1, \dots, q_t] - [p_2, \dots, p_s][q_2, \dots, q_t] \\ &= [p_2, \dots, p_s] \left([q_1, \dots, q_t] - [q_2, \dots, q_t] \right) \\ &> \cdots \cdots \\ &> [p_2, \dots, p_s] \left([q_t] - 1 \right) \\ &> [p_2, \dots, p_s] > 1. \end{split}$$

This contradicts the fact that $-[p_s, \ldots, p_1, 0, 0, q_1, \ldots, q_t] = 1$. If $\nu = 1$, then we have the graph:



Then we have

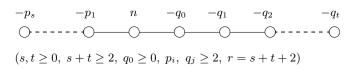
$$\begin{aligned} \pm 1 &= -[p_s, \dots, p_1, 0, q_1, \dots, q_t] \\ &= [p_1, \dots, p_s][0, q_1, \dots, q_t] - [p_2, \dots, p_s][q_1, \dots, q_t] \\ &= -[p_1, \dots, p_s][q_2, \dots, q_t] - [p_2, \dots, p_s][q_1, \dots, q_t]. \end{aligned}$$

This cannot occur since $[p_1, \ldots, p_s][q_2, \ldots, q_t] + [p_2, \ldots, p_s][q_1, \ldots, q_t] > 1$. Hence $\max_{1 \le i \le r} \{n_i\} > 0$. This completes the proof.

Lemma 4.2 There exist components C_{i_0} and C_{i_1} of C such that

$$n := (C_{i_0}^2) > 0, \ (C_{i_1}^2) = 0, \ (C_{i_0} \cdot C_{i_1}) = 1 \text{ and } \max_{i \neq i_1, i_2} \{n_i\} \le -2.$$

Proof. Since $r \ge 4$, by Corollary 3.1, there exists only one component C_{i_0} with $n := (C_{i_0}^2) > 0$ and then the graph $\Gamma(C)$ can be depicted as:



 $-q_0$ Let C_{i_2} be the component of C corresponding to the vertex \bigcirc . Then we only need

to show that $q_0 = 0$. In fact, if we assume that $q_0 > 1$, then we have

$$\begin{split} &\pm 1 &= & [p_s, \dots, p_2, p_1, -n, q_1, q_2, \dots, q_t] \\ &= & [p_1, p_2, \dots, p_s] [-n, q_1, q_2, \dots, q_t] - [p_2, \dots, p_s] [q_0, q_1, \dots, q_t] \\ &= & - [q_1, q_2, \dots, q_t] \{ n [p_1, \dots, p_s] + q_0 [p_2, \dots, p_s] \} - [q_2, \dots, q_t] \{ [p_1, \dots, p_s] - [p_2, \dots, p_s] \}, \end{split}$$

which is absurd since

$$[q_1, q_2, \dots, q_t] \{ n[p_1, \dots, p_s] + q_0[p_2, \dots, p_s] \} + [q_2, \dots, q_t] \{ [p_1, \dots, p_s] - [p_2, \dots, p_s] \} > 2,$$

Hence $q_0 = 0$.

Remark 4.1 In case of $r \ge 4$, one has $t \ge 1$. In fact, if t = 0, then $s \ge 2$. By Proposition 4.2, we have

$$\pm 1 = [p_s, \dots, p_1, -n, 0] = [0, -n, p_1, \dots, p_s] = -[p_1, \dots, p_s]$$

which cannot occur since $[p_1, \ldots, p_s] \geq 2$.

Proposition 4.3 Assume that t = 1. Then $q_1 = n + 1$ and the graph $\Gamma(C)$ can be depicted as:

Proof. We have

$$\begin{aligned} \pm 1 &= & [p_s, \dots, p_1, -n, 0, q_1] \\ &= & [-n, p_1, p_2, \dots, p_s] \cdot [0, q_1] - [p_1, \dots, p_s] \cdot q_1 \\ &= & (n - q_1)[p_1, \dots, p_s] + [p_2, \dots, p_s] \\ &< & (n + 1 - q_1)[p_1, p_2, \dots, p_s]. \end{aligned}$$

This shows that $n - q_1 < 0$ and $n + 1 - q_1 \ge 0$, hence $q_1 = n + 1$. In particular, we have

$$[p_1, p_2, \dots, p_s] - [p_2, \dots, p_s] = 1.$$

This implies that $p_1 = p_2 = \cdots = p_s = 2$ by Lemma 2.2-(6).

Proposition 4.4 Assume that s = 0. Then $q_1 = n + 1$ and $\Gamma(C)$ is depicted as:

Proof. From

$$\pm 1 = [-n, 0, q_1, \dots, q_t]$$

= $(n - q_1) \cdot [q_2, \dots, q_s] + [q_3, \dots, q_t],$

16

it follows that $n - q_1 < 0$. Hence we have $(q_1 - n) \cdot [q_2, ..., q_s] \pm 1 = [q_3, ..., q_t] < [q_2, ..., q_s]$, that is,

$$(q_1-n-1)\cdot[q_2,\ldots,q_s]<\mp 1.$$

This shows that $q_1 = n + 1$ and then we have

$$[q_2,\ldots,q_s]-[q_3,\ldots,q_t]=1.$$

This implies $q_2 = \cdots = q_t = 2$ by Lemma 2.2-(6).

Proposition 4.5 Assume that the graph $\Gamma(C)$ is depicted as:

Then we have $q_0 = n + 1$ and $p_1 = 2$ or $q_1 = 2$.

Proof. From

$$\begin{split} \pm 1 &= & [p_s, \dots, p_1, -n, 0, q_0, q_1, \dots, q_t] \\ &= & [-n, p_1, \dots, p_s] \cdot [0, q_0, q_1, \dots, q_t] - [p_1, \dots, p_s] \cdot [q_0, q_1, \dots, q_t] \\ &= & (n - q_0) [p_1, \dots, p_s] \cdot [q_1, \dots, q_t] + [p_2, \dots, p_s] \cdot [q_1, \dots, q_t] + [p_1, \dots, p_s] \cdot [q_2, \dots, q_t] \\ &< & (n - q_0 + 2) [p_1, \dots, p_s] \cdot [q_1, \dots, q_t], \end{split}$$

it follows that $n - q_0 < 0$ and $n - q_0 + 2 > 0$, hence $q_0 = n + 1$. Thus we have

$$[p_1, \ldots, p_s] \cdot [q_1, \ldots, q_t] \pm 1 = [p_2, \ldots, p_s] \cdot [q_1, \ldots, q_t] + [p_1, \ldots, p_s] \cdot [q_2, \ldots, q_t].$$

This implies that

$$[p_2, \dots, p_s] \cdot [q_2, \dots, q_t] \neq 1 = ([p_1, \dots, p_s] - [p_2, \dots, p_s]) ([q_1, \dots, q_t] - [q_2, \dots, q_t])$$
$$= ((p_1 - 1)[p_2, \dots, p_s] - [p_3, \dots, p_s]) ((q_1 - 1)[q_2, \dots, q_t] - [q_3, \dots, q_t]).$$

Since $[p_2, ..., p_s] - [p_3, ..., p_s] \ge 1$ and $[q_2, ..., q_t] - [q_3, ..., q_t] \ge 1$, one has

$$((p_1-2)[p_2,\ldots,p_s]+1)((q_1-2)[q_2,\ldots,q_t]+1) \leq [p_2,\ldots,p_s] \cdot [q_2,\ldots,q_t] \pm 1.$$

This yields

$$\{(p_1-2)(q_1-2)-1\}[p_2,\ldots,p_s][q_2,\ldots,q_t]+(p_1-2)[p_2,\ldots,p_s]+(q_1-2)[q_2,\ldots,q_t]+1 \le \pm 1.$$

This shows that $p_1 = 2$ or $q_1 = 2$.

Finally we shall determine the graph $\Gamma(C)$ for the remaining cases where $r \ge 4$. Let us start with the following:

We have shown that $p_1 = 2$ or $q_1 = 2$. Applying the elementary transformation of type $(\text{ET})_N$ in Section 3, we may assume that $q_1 = 2$ and that $\Gamma(C)$ is represented as;

The curves corresponding to the subgraph
$$\overbrace{(-1)\text{-graph}}^{-1}$$
, called a (-1)-graph, $\overbrace{(-1)\text{-graph}}^{-1}$, called a

which can be contracted to a smooth point. Then one has the following:

Next, let us consider the elementary transformation

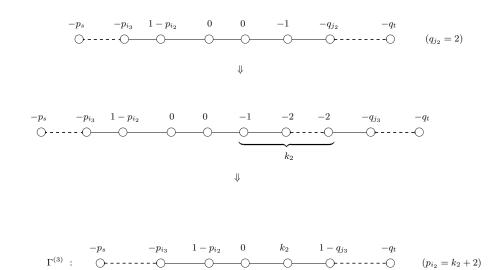
which yields

Contracting the above (-1)-graph to a smooth point, we obtain:

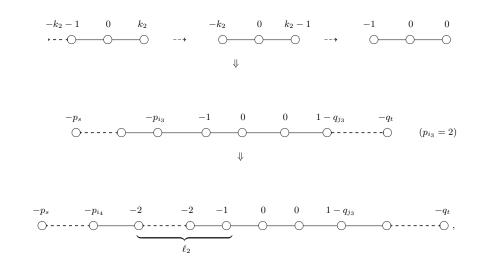
The following elementary transformation

A note on minimal normal compactifications of \mathbb{C}^2

changes $\Gamma^{(2)}$ into



Continuing the operation as below:

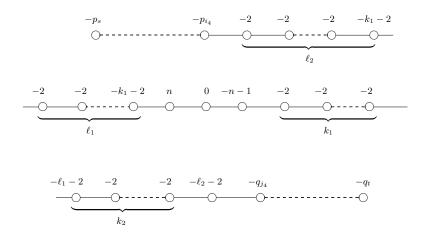


we have the graph:

19

$$\Gamma^{(4)} : \bigcirc \cdots & \bigcirc & & (q_{i_3} = \ell_2 + 2).$$

We note that at this stage the graph $\Gamma(C)$ is represented as



Repeating these operations, we have a sequence of birational transformations:

$$\Gamma^{(1)} \to \Gamma^{(2)} \to \dots \to \Gamma^{(2k)} \quad \left(\text{or} \quad \Gamma^{(2k+1)} \right)$$

where k > 0 is an integer and

The inverse operation $\Gamma^{(2k)}$ ($\Gamma^{(2k+1)}$) $\rightarrow \Gamma^{(1)} \rightarrow \Gamma(C)$ yields the graphs (Γ_g) and (Γ_h) as desired. The proof is completed.

References

- M. Abe, M. Furushima and M. Yamasaki, Analytic compactifications of C²/G, Kyushu J. Math. 54(2000), 87–101.
- [2] M. Furushima, Complex surfaces properly dominated by C², Kumamoto J. Sci. (math.) 17 (1985), 9−25.
- K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom. 6 (1971), 33–46.

20

- [4] J. Morrow, Minimal normal compactifications of C², Proceedings of the Conference of Complex Analysis. Rice Univ. Studies 59 (1973), 97–112.
- [5] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Etudes Sci. Publ. Math.9(1960), 5–22.
- [6] T. Nishino et M. Suzuki, Sur les singularités essentielles et isolées des applications holomorphes à valeurs dans une surface complexe, Publ. Res. Inst. Math. Sci. 16 (1980), 461–497.
- [7] C.P. Ramanujam, A topological characterization of the affine plane as an algebraic variety, Ann. Math. (2) 94 (1971), 69-88.
- [8] M. Suzuki, Compactifications of C × C^{*} and (C^{*})², Tôhoku Math. J. **31**(1979), 453–468.

Madoka Nobe Sanwa Junior Highschool, Kami-Takahashi 1-4-1 860-0061, Kumamoto

Yasuhiro Ohshima Faculty of Engineering, Sojo University, Ikeda 4-22-1, 860-0082, Kumamoto

Mikio Furushima Faculty of Science, Kumamoto University, Kurokami 2-39-1, 860-8555, Kumamoto