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Abstract. In this article, we prove several results on non-vanishing or van-
ishing of central values of quadratic twist L-functions attached to newforms,
which were originally conjectured in [Gol79]. Let p be a prime congruent
to 1 modulo 4. For such p, we show that there exists a newform f of level
p such that a positive proportion of quadratic twists of its central L-value
are non-zero. This result is a generalization of [Koh99] to the case of prime
levels under the condition that the weight of f is 12, 16 or 20. Let N be
a positive odd integer such that the exponent of each prime divisor of N is
odd. We prove that any newform of level N of weight k ≥ 2 has the property
that a positive proportion of quadratic twists of its central L-value are zero.
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1 Introduction

For X > 0, let F (X) denote the set of fundamental discriminants D satisfying
|D| < X. We denote by Snew

2k (Γ0(N)) the space spanned by newforms of weight
2k on Γ0(N). Let k and N be positive integers and f ∈ Snew

2k (Γ0(N)) a newform.
Let r be either 0 or 1. Then a conjecture of Goldfeld [Gol79] states that

♯{D ∈ F (X) | ords=k L(s, f ⊗ χD) = r} ≫ X (1.1)

(see also Ono [Ono04, Conjecture 9.10]), that is, there exists a positive constant c
such that, for sufficiently large X > 0, we have

♯{D ∈ F (X) | ords=k L(s, f ⊗ χD) = r} ≥ cX, (1.2)

where χD :=
(
D
)
is the Kronecker character attached to the quadratic field with

discriminant D and ords=k L(s, f⊗χD) is the order of the L-function L(s, f⊗χD)
attached to the χD-twist f ⊗ χD of f at s = k. The automorphic L-function
L(s, f⊗χD) has a functional equation relating L(s, f⊗χD) with L(2k−s, f⊗χD)
and L(k, f ⊗ χD) is called the central L-values.

Remark 1.1 (see [Vat98, Theorem II]) The conjecture is true for any newform
f ∈ Snew

2 (Γ0(19)) corresponding to an elliptic curve over the rational number field
Q with conductor 19.

1.1 Results on non-vanishing of the central L-values

We recall some known results on the non-vanishing of the central L-values L(k, f⊗
χD). We put

Nk,f (X) := ♯{D ∈ F (X) | L(k, f ⊗ χD) ̸= 0}. (1.3)

Currently, it seems that the best estimate is due to Ono and Skinner [OS98], who
showed that

Nk,f (X) ≫ X

logX
(1.4)

(see [OS98, Corollary 3]). Galois representations attached to modular forms and
a theorem of Waldspurger play important roles in the proof of this result. The
estimate above arises from the Chebotarev Density Theorem. By Waldspurger
[Wal81], under certain conditions, the central values L(k, f⊗χD) are proportional
to the squares of Fourier coefficients for a modular form of weight k + 1/2 corre-
sponding to f under the Shimura correspondence.

James [Jam98] gave the first example of (k,N, f) satisfying

Nk,f (X) ≫ X. (1.5)

In his paper, the estimate (1.5) is reduced to that of the proportion of imaginary
quadratic fields whose class numbers are not divisible by 3. This proportion can
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be estimated by the work of Davenport and Heilbronn [DH71], and was refined
by Nakagawa and Horie [NH88]. James’s method was employed by Vatsal [Vat99]
and Kohnen [Koh99] in the proofs of their results on the non-vanishing.

Vatsal proved that N1,f (X) ≫ X for each newform f corresponding to an
elliptic curve over Q with a rational point of order 3 and good ordinary reduction at
3 (see [Vat99, Theorem 0.3]). Roughly speaking, he showed a congruence between
the algebraic part of the central L-value L(k, f ⊗χD) and the class number of the
imaginary quadratic field with discriminant D modulo 3, up to 3-adic units (see
[Vat99, Theorem 3.3]). Therefore, he obtained the estimate in a fashion similar to
[Jam98].

Suppose that k is even. Let f ∈ Snew
2k (Γ0(1)) = S2k(SL2(Z)) be a normalized

Hecke eigenform. Since the sign of the functional equation of L(k, f ⊗ χD) is
χD(−1) (see [Ono04, Lemma 9.2 and Remark 9.3]), it is natural to suppose that
χD(−1) = +1, that is, D > 0. For X > 0, let N+

k,1(X) be the number of funda-
mental discriminants D with 0 < D < X such that there exists a Hecke eigenform
f ∈ S2k(SL2(Z)) satisfying L(k, f ⊗ χD) ̸= 0. For ε > 0, let X ≫ε 0 mean that
there exists a constant c > 0 depending on ε and X > c. Kohnen [Koh99] proved
that for any even integer k ≥ 6, if ε > 0 and X ≫ε 0, then

N+
k,1(X) ≥

(
9

16π2
− ε

)
X (1.6)

(see [Koh99, Theorem]). Kohnen’s result above immediately implies that there
exists a Hecke eigenform f ∈ S2k(SL2(Z)) such that

N+
k,f (X) ≥

(
1

dk,1
· 9

16π2
− ε

)
X (1.7)

(see [Koh99, Corollary 1]), where dk,1 := dimC(S2k(SL2(Z))). Moreover, he
pointed out that (1.7) holds for any Hecke eigenform f ∈ S2k(SL2(Z)) (see [Koh99,
Corollary 2]) assuming a conjecture of Maeda (see [HM97, Conjecture 1.2]) with
respect to each even integer k ≥ 6. Currently, this conjecture has been verified for
all weights k ≤ 14000 (see [GM12]).

We will improve Kohnen’s result in that the assertion similar to (1.7) holds
for a newform f ∈ Snew

2k (Γ0(p)) with a prime p congruent to 1 modulo 4 (see
Theorem 2.1, Corollary 2.2 and Corollary 2.3), while Kohnen’s result asserts the
non-vanishing only for the level 1. However, we need to assume that the weights
2k must be either 12, 16 or 20 in our statements.

1.2 Results on vanishing of the central L-values

We recall some known results on the vanishing of the central L-values. Currently,
it seems that the best estimate is due to Perelli and Pomykala [PP97], who showed
that for any N and any f corresponding to an elliptic curve over Q, if ε > 0, then

♯{D ∈ F (X) | ords=1 L(s, f ⊗ χD) = 1} ≫ε X
1−ε. (1.8)
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We will prove

♯{D ∈ F (X) | ords=1 L(s, f ⊗ χD) ≥ 1} ≫ X (1.9)

for a newform f ∈ Snew
2k (Γ0(N)) with k ≥ 1 under the assumption that the expo-

nent of each prime divisor of N is odd (see Theorem 2.4).

Acknowledgements. The author is very grateful to Professor Atsushi Yam-
agami for valuable guidance and kind help. He is also grateful to Professor At-
sushi Murase and Professor Bernhard Heim for valuable comments on improving
the manuscript. Moreover, the author expresses his gratitude to Doctor Masataka
Chida for providing a lot of knowledge and helpful advices about the non-vanishing
problem, and also to Doctor Hiroshi Sakata for helpful advices about modular
forms of half-integral weight. The author also thanks the referee for many helpful
comments and kind suggestions.

2 Statements of results

For a positive integer N , we put

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
. (2.1)

We denote by Snew
2k (Γ0(N)) the space spanned by newforms of weight 2k on Γ0(N).

For X > 0, let F+(X) be the set of fundamental discriminants D satisfying 0 <
D < X and N+

k,N (X) the number of elements D ∈ F+(X) such that there exists
a newform f ∈ Snew

2k (Γ0(N)) satisfying L(k, f ⊗ χD) ̸= 0. For a newform f ∈
Snew
2k (Γ0(N)), we put

N+
k,f (X) := ♯{D ∈ F+(X) | L(k, f ⊗ χD) ̸= 0}. (2.2)

One of the main results on the non-vanishing is stated as follows:

Theorem 2.1 Let p be a prime with p ≡ 1 (mod 4). Assume that k = 6, 8 or 10.
Then we have N+

k,p(X) ≫ X. More precisely, if ε > 0 and X ≫ε 0, then

N+
k,p(X) ≥

(
9p

32π2(p+ 1)
− ε

)
X. (2.3)

We put

dk,p := dimC(S
new
2k (Γ0(p))). (2.4)

By an argument similar to [Koh99], we obtain the following:

Corollary 2.2 Let the assumptions be the same as in Theorem 2.1. Then there
exists a newform f ∈ Snew

2k (Γ0(p)) such that N+
k,f (X) ≫ X holds. More precisely,

if ε > 0 and X ≫ε 0, then

N+
k,f (X) ≥

(
1

dk,p
· 9p

32π2(p+ 1)
− ε

)
X. (2.5)
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Let f =
∑

n≥1 a(n)q
n ∈ Snew

2k (Γ0(p)) be a newform. We denote by Q̄ an algebraic

closure of the rational number field Q. It is well-known that a(n) ∈ Q̄ for all n ≥ 1
(see [Shi72, Proposition 1.3]). For σ ∈ GQ := Gal(Q̄/Q), we define

fσ :=
∑
n≥1

a(n)σqn. (2.6)

Then fσ ∈ Snew
2k (Γ0(p)) is a newform (see [Shi72, Proposition 1.2]). Since it is

known that the central L-value of f is not zero if and only if the central L-value
of fσ is not zero by [Shi77, Theorem 1], Corollary 2.2 can be extended to a result
for each newform fσ as follows:

Corollary 2.3 Let the assumptions be the same as in Theorem 2.1 and f ∈
Snew
2k (Γ0(p)) a newform satisfying N+

k,f (X) ≫ X. Then, the estimate N+
k,fσ (X) ≫

X holds for all σ ∈ GQ.

Remark 2.1 In general, for positive integers N and k, the space Snew
2k (Γ0(N)) is

not necessarily spanned by a single Galois orbit. A conjecture about the cardinality
of Galois orbits in Snew

2k (Γ0(N)) is formulated in [Tsa14]. As another related topic,
we refer to [KSW08] on the density of the set of primes ℓ such that the ℓ-th Fourier
coefficient a(ℓ) of f generates the Hecke field Q({a(n)}n≥1).

For X > 0, let F−(X) be the set of fundamental discriminants D satisfying −X <
D < 0 and FN (X) the set of fundamental discriminants D satisfying |D| < X and
(D,N) = 1 for a positive integer N . For ϵ ∈ {±}, we put

F ϵ
N (X) := F ϵ(X) ∩ FN (X). (2.7)

We denote by R the real number field. We define the function sgn : R× → {±} by

sgn(x) :=

{
+ if x > 0,

− if x < 0.
(2.8)

For a newform f ∈ Snew
2k (Γ0(N)), we put

Vϵ
k,f (X) := ♯{D ∈ F ϵ

N (X) | L(k, f ⊗ χD) = 0}, (2.9)

where ϵ := sgn((−1)k). For a prime p, we denote by ordp the p-adic additive
valuation. Let ν(N) denote the number of distinct prime divisors of N .

Theorem 2.4 Let k ≥ 2 be an integer and N a positive odd integer such that
ordp(N) is odd for any prime divisor p of N . For any newform f ∈ Snew

2k (Γ0(N)),
we have V±

k,f (X) ≫ X. More precisely, if ε > 0 and X ≫ε 0, then

V±
k,f (X) ≥

 3ν(N)

2ν(N)π2

∏
p|N :prime

p

p+ 1
− ε

X. (2.10)
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3 The proportion of indivisibility for class num-
bers of quadratic fields

For R-valued functions F (X) and G(X) on R, we use the notation

F (X) ∼ G(X) (X → ∞), (3.1)

which means

lim
X→∞

F (X)

G(X)
= 1. (3.2)

We use the following lemma to prove Proposition 3.3 and Theorem 2.4.

Lemma 3.1 Let F (X) be an R-valued function on R.

(1) Assume that F (X) ∼ cX (X → ∞) for a positive number c. Then for any
ε > 0 and X ≫ε 0,

F (X) > (c− ε)X. (3.3)

(2) Let G1(X) and G2(X) be R-valued functions on R. We put G(X) := G1(X)+
G2(X). Assume that G(X) > 0, F (X) ∼ 2G(X) (X → ∞) and F (X) ≥
3G1(X) +G2(X). Then for any ε > 0 and X ≫ε 0,

G2(X) >

(
1

2
− ε

)
G(X). (3.4)

Proof.

(1) By the assumption, for any ε > 0 and X ≫ε 0, we have −ε <
F (X)

cX
− 1,

and hence have (c− ε)X < F (X).

(2) By the assumption, for any ε > 0 and X ≫ε 0, we have F (X) < 2(1 +
ε)G(X). By combining the assumption with this, we have

G(X) ≤ F (X)− 2G1(X) < 2(1 + ε)G(X)− 2G1(X) = 2εG(X) + 2G2(X).

Therefore, we have 2G2(X) > (1− 2ε)G(X). This implies the assertion.

For two positive integers m and N , a positive number X and a signature ϵ ∈ {±},
we put

F ϵ(X,m,N) :={D ∈ F ϵ(X)| D ≡ m (mod N)}, (3.5)

N ϵ
2(X,m,N) :=♯F ϵ(X,m,N), (3.6)

S−
2 (X,m,N) :=

∑
D∈F−(X,m,N)

h∗
3(D), (3.7)

where h∗
3(D) is the order of the 3-torsion subgroup of the ideal class group Cl(Q(

√
D))

for the quadratic field Q(
√
D) with discriminant D.
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Lemma 3.2 Let m and N be positive integers and X a positive number. Assume
that N is odd and that p2 | N and p2 ∤ m for any odd prime divisor p of (m,N).
Then we have the following:

S−
2 (X,m,N) ∼2N−

2 (X,m,N) (X → ∞), (3.8)

N+
2 (X,m,N) ∼N−

2 (X,m,N) ∼ 3

φ(N)π2

∏
p|N :prime

p

p+ 1
X (X → ∞), (3.9)

where φ is Euler’s totient function.

For this see [NH88, Theorem 1 and Proposition 2]. We denote by h(D) :=
|Cl(Q(

√
D))| the class number of Q(

√
D). In later discussion, we need the follow-

ing proposition, whose proof is similar to [Koh99].

Proposition 3.3 Let N be a positive odd square-free integer not divisible by 3 and
m an integer with (m,N) = 1. For ε > 0 and X ≫ε 0, we have

♯
{
D ∈ F+(X,m,N) ∩ F+(X,−1, 3) | 3 ∤ h(−3D)

}
≥

 9

16π2φ(N)

∏
p|N :prime

p

p+ 1
− ε

X. (3.10)

In particular, if N is a prime p ̸= 3, then

♯
{
D ∈ F+(X,m, p) ∩ F+(X,−1, 3) | 3 ∤ h(−3D)

}
≥

(
9p

16(p2 − 1)
− ε

)
X.

(3.11)

Proof. Fix D0 ∈ Z satisfying D0 ≡ m (mod N) and D0 ≡ −1 (mod 3), and
put ∆0 :=−3D0. Set

F (X) :=S−
2 (3X,∆0, 9N),

G1(X) :=♯
{
∆ ∈ F−(3X,∆0, 9N) | 3 | h(∆)

}
,

G2(X) :=♯
{
∆ ∈ F−(3X,∆0, 9N) | 3 ∤ h(∆)

}
,

G(X) :=G1(X) +G2(X) = N−
2 (3X,∆0, 9N).

Since h∗
3(∆) ≥ 3 if 3 | h(∆), we have F (X) ≥ 3G1(X) + G2(X). Since we have

F (X) ∼ 2G(X) (X → ∞) by Lemma 3.2 (3.8), we can apply Lemma 3.1 (2) to
these functions. Consequently, we have

G2(X) ≥
(
1

2
− ε

)
G(X)

for any ε > 0 and X ≫ε 0. Since the mapping D 7→ −3D from F+(X,D0, 3N)
into F−(3X,∆0, 9N) is surjective, we have

♯
{
D ∈ F+(X,D0, 3N) | 3 ∤ h(−3D)

}
≥ G2(X).
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Thus,

♯
{
D ∈ F+(X,D0, 3N) | 3 ∤ h(−3D)

}
≥

(
1

2
− ε

)
G(X)

for any ε > 0 and X ≫ε 0. By Lemma 3.2 (3.9), we have

G(X) = N−
2 (3X,∆0, 9N)

∼ 3

φ(9N)π2

∏
p|9N :prime

p

p+ 1
(3X) =

9

8π2φ(N)

∏
p|N :prime

p

p+ 1
X (X → ∞).

Therefore, we have

♯
{
D ∈ F+(X,D0, 3N) | 3 ∤ h(−3D)

}
≥

 9

16π2φ(N)

∏
p|N :prime

p

p+ 1
− ε

X

for any ε > 0 and X ≫ε 0. This inequality is nothing but the formula in the
assertion.

4 The central L-values and modular forms of half-
integral weight

In this section, we review the formula by Kohnen [Koh85] which generalizes the
well-known Kohnen-Zagier formula [KZ81] to the case of modular forms with levels.
Throughout the paper, we let

√
z be the branch of the square root having argument

in (−π/2, π/2] and put q := e2π
√
−1z. We denote by Sk+1/2(Γ0(4N), χ) the space

of cusp forms of half-integral weight k + 1/2 on Γ0(4N) with Nebentypus χ (see
[Shi73]). Let g(z) =

∑
n≥1 b(n)q

n ∈ Sk+1/2(Γ0(4N), χ). For a prime p, the action

of the Hecke operator T (p2) on g(z) in the sense of Shimura [Shi73] is defined by

g(z) | T (p2) :=
∑
n≥1

(
b(p2n) + χ(p)χ(−1)kn(p)p

k−1b(n) + χ(p2)p2k−1b(n/p2)
)
qn,

(4.1)

where b(n/p2) := 0 for n/p2 ̸∈ Z.
We now recall the Kohnen plus space defined in [Koh82]. Let d be a positive

integer. For a formal q-series
∑

n≥0 a(n)q
n ∈ C[[q]], the V -operator V (d) and

U -operator U(d) is defined by

(
∑
n≥0

a(n)qn) | V (d) :=
∑
n≥0

a(n)qdn (4.2)

(
∑
n≥0

a(n)qn) | U(d) :=
∑
n≥0

a(dn)qn. (4.3)

Suppose that N is a positive odd square-free integer and that χ is a Dirichlet
character modulo N satisfying χ(−1) = 1 and χ2 = 1N , where 1N is the trivial
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character modulo N . Then we have χ = χN0(=
(
N0

)
) for some positive divisor

N0 of N . The Kohnen plus space S+
k+1/2(Γ0(4N), χ) is the subspace of cusp forms

g(z) ∈ Sk+1/2(Γ0(4N), χ) with the Fourier expansion

g(z) =
∑
n≥1

χ(2)(−1)(−1)kn≡0,1 (mod 4)

b(n)qn, (4.4)

where χ(2) is the 2-primary component of χ. We denote the conductor of χ by cχ.
For a positive divisor d of N , we put

S+
k+1/2(Γ0(4d), χ) := S+

k+1/2(Γ0(4d)) | U(cχ) := {f | U(cχ) | f ∈ S+
k+1/2(Γ0(4d))}

(4.5)

(see [Koh82, Section 2, Proposition 3]). Let g(z) =
∑

n≥1 b(n)q
n ∈ S+

k+1/2(Γ0(4N), χ).

For a prime p ∤ N , the action of the Hecke operator T (p2)+ on g(z) is defined by

g(z) | T (p2)+ :=
∑
n≥1

(
b(p2n) + χ(p)χ(−1)kn(p)p

k−1b(n) + p2k−1b(n/p2)
)
qn (4.6)

(see [Koh82, Section 3, Proposition]). We note that, by the assumption that χ is
quadratic, the Hecke operator T (p2)+ coincides with T (p2) as (4.1) except p = 2.
We define the space of oldforms in S+

k+1/2(Γ0(4N), χ) to be∑
d|N,d<N

(
S+
k+1/2(Γ0(4d), χ) + S+

k+1/2(Γ0(4d), χ) | U(N2/d2)
)
. (4.7)

If f(z) and g(z) are cusp forms in Sk+1/2(Γ0(4N)), then their Petersson inner
product is defined by

⟨f, g⟩ := 1

[Γ0(4) : Γ0(4N)]

∫
Γ0(4N)\H

f(z)g(z)yk−3/2dxdy, (4.8)

where z = x +
√
−1y denotes a variable for the complex upper half plane H.

Define the space S+new
k+1/2(Γ0(4N), χ) of newforms in S+

k+1/2(Γ0(4N), χ) to be the

orthogonal complement of the space of oldforms with respect to the Petersson
inner product. We simply write

S+new
k+1/2(Γ0(4N)) := S+new

k+1/2(Γ0(4N),14N ). (4.9)

We refer to g ∈ S+new
k+1/2(Γ0(4N), χ) as a Kohnen newform if g is a common eigen-

vector for all operators T (p2)+ (respectively U(p2)) for primes p ∤ N (respectively
p | N). The space S+new

k+1/2(Γ0(4N), χ) has an orthogonal basis consisting of Kohnen

newforms (see [Koh82, Theorem 2.ii)]). We denote by wℓ(f) ∈ {±1} the eigen-
value of a newform f ∈ Snew

2k (Γ0(N)) under the Atkin-Lehner involution for a
prime divisor ℓ of N . Kohnen [Koh85] related L(k, f ⊗ χD) to b(|D|)2 explicitly
as follows:
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Theorem 4.1 ([Koh85, Corollary 1 and Remark]) Let N be a positive odd square-
free integer. Let g(z) =

∑
n≥1 b(n)q

n ∈ S+new
k+1/2(Γ0(4N)) be a Kohnen newform and

f ∈ Snew
2k (Γ0(N)) the newform corresponding to g under the Shimura correspon-

dence. Let D be a fundamental discriminant with (−1)kD > 0 and (D,N) = 1.

(i) If χD(ℓ) = wℓ(f) for all prime divisors ℓ of N , then

b(|D|)2

⟨g, g⟩
= 2ν(N) (k − 1)!

πk
|D|k−1/2L(k, f ⊗ χD)

⟨f, f⟩
, (4.10)

where ν(N) denotes the number of distinct prime divisors of N .

(ii) If χD(ℓ) = −wℓ(f) for some divisor ℓ of N ,

b(|D|) = L(k, f ⊗ χD) = 0. (4.11)

We note that this result implies that the central L-value L(k, f ⊗ χD) is not zero
if and only if the Fourier coefficient b(|D|) is not zero.

5 Proof of the non-vanishing

5.1 Proof of Theorem 2.1

For an even integer k ≥ 6, we define

δk(z) :=
1

4π
√
−1

((
k

2
− 1

)
Gk−2(4z)

d

dz
θ(z)− d

dz
Gk−2(4z)θ(z)

)
=:

∑
n≥1

αk(n)q
n

(5.1)

(see [KZ81, Proof of Corollary 2]), where

Gk(z) :=
ζ(1− k)

2
+

∑
n≥1

σk−1(n)q
n with σk−1(n) :=

∑
0<d|n

dk−1, (5.2)

θ(z) :=
∑
n∈Z

qn
2

= 1 + 2
∑
n≥1

qn
2

. (5.3)

Lemma 5.1 For an even integer k ≥ 6, we have δk(z) ∈ S+
k+1/2(Γ0(4)).

Proof. We recall that Gk−2(4z) ∈ Mk−2(Γ0(4)) and θ(z) ∈ S1/2(Γ0(4)). Let
F1( , ) be the first Rankin-Cohen bracket as in [Coh75, Theorem 7.1]. We have

F1(Gk−2(4z), θ(z)) =
1

2

d

dz
Gk−2(4z)θ(z)− (k − 2)Gk−2(4z)

d

dz
θ(z)

= −8π
√
−1δk(z).
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Since F1(Gk−2(4z), θ(z)) ∈ Sk+1/2(Γ0(4)) (see [Coh75, Corollary 7.2]), so is δk(z).
The Fourier coefficients αk(n) of δk(z) are given by

αk(n) = −n

8
σk−3

(n
4

)
+

∑
x∈Z

0<x≤
√
n

((
k

2
− 1

)
x2 +

x2 − n

4

)
σk−3

(
n− x2

4

)
,

(5.4)

where we define σk−3(n) by 0 for n ̸∈ Z and σk−3(0) by
ζ(3− k)

2
(see [KZ81, Proof

of Corollary 2]). This completes the proof.

Lemma 5.2 ([Koh99, (6)]) Let k ≥ 6 be an even integer with k ̸≡ 1 (mod 3). For
any fundamental discriminants D > 1, the Fourier coefficients αk(D) of δk(z) are
in Z. Moreover, if D ≡ −1 (mod 3), then

αk(D) ≡ −ukh(−3D) (mod 3) (5.5)

with

uk :=

{
1 if k ≡ 0 (mod 3),

−1 if k ≡ 2 (mod 3).
(5.6)

For a prime p with p ≡ 1 (mod 4), we have

δk(z)|V (p) =
∑
n≥1

αk(n/p)q
n ∈ S+

k+1/2(Γ0(4p), χ4p) (5.7)

where αk(x) := 0 if x ̸∈ Z. For X > 0 and ϵ ∈ {±1}, we put

F+
k,p(X) :={D ∈ F+

p (X) | αk(D) ̸≡ 0 (mod 3)}, (5.8)

F+,ϵ
k,p (X) :={D ∈ F+

k,p(X) | χD(p) = ϵ}. (5.9)

To prove Theorem 2.1, we use the following lemma:

Lemma 5.3 Let p be a prime with p ≡ 1 (mod 4). Assume that k = 6, 8 or 10,
which implies that dimC(S

+
k+1/2(Γ0(4))) = 1. Then there exists ϵ ∈ {±1} such that

for any X > 0, we have

N+
k,p(X) ≥ ♯F+,ϵ

k,p (X) (5.10)

Proof. It suffices to prove that there exists ϵ ∈ {±1} such that for any X > 0
and any D ∈ F+

k,p(X) with χD(p) = ϵ, there exists a newform f ∈ Snew
2k (Γ0(p))

satisfying L(k, f ⊗ χD) ̸= 0. By [Koh82, Theorem 2.i) and Lemma], we have a
decomposition

S+
k+1/2(Γ0(4p), χ4p))

= S+new
k+1/2(Γ0(4)) | U(p)⊕ S+new

k+1/2(Γ0(4)) | U(p3)⊕ S+new
k+1/2(Γ0(4p)) | U(p).
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Since δk is non-zero by Lemma 5.2 and dimC(S
+
k+1/2(Γ0(4))) = 1 by the assumption

that k = 6, 8 or 10, we have S+
k+1/2(Γ0(4)) = Cδk. We thus have

δk | V (p) = aδk | U(p) + bδk | U(p3) + g | U(p) (5.11)

for some a, b ∈ C and g ∈ S+new
k+1/2(Γ0(4p)). Applying the both sides by V (p), we

have

δk | V (p2) = aδk + bδk | U(p2) + g. (5.12)

We denote by bg(n) the n-th Fourier coefficient of g. It follows that for all positive
integers n,

αk(n/p
2) = aαk(n) + bαk(p

2n) + bg(n). (5.13)

Let

∆k(z) =
∑
n≥1

τk(n)q
n

be the cusp form in S2k(SL2(Z)) corresponding to δk under the Shimura correspon-
dence (see [Shi73]). We recall that the Shimura correspondence gives an isomor-
phism between S+

k+1/2(Γ0(4)) and S2k(SL2(Z)) (see [Koh82, Theorem 2]). Since

dimC(S2k(SL2(Z))) = 1 by the assumption that k = 6, 8 or 10, we deduce that ∆k

is a Hecke eigenform. Hence, we have τk(1) = 1 and τk(p
2) = τk(p)

2 − p2k−1. Let
D > 0 be a fundamental discriminant with (D, p) = 1. By [Koh85, (11)], we have

αk(n
2D) = αk(D)

∑
d|n

µ(d)χD(d)dk−1τk(n/d) (5.14)

for all positive integers n. In particular, we have

αk(p
2D) =αk(D)

(
τk(p)− χD(p)pk−1

)
. (5.15)

αk(p
4D) =αk(D)

(
τk(p)

2 − p2k−1 − χD(p)pk−1τk(p)
)
, (5.16)

where we use τk(1) = 1 and τk(p
2) = τk(p)

2 − p2k−1. Putting n = D in (5.13), we
have

bg(D) =
{
−a− b

(
τk(p)− χD(p)pk−1

)}
αk(D)

=
{
bχD(p)pk−1 − (a+ bτk(p))

}
αk(D). (5.17)

Putting n = p2D in (5.13), we have

bg(p
2D) =

{
1− a

(
τk(p)− χD(p)pk−1

)
− b

(
τk(p)

2 − p2k−1 − χD(p)pk−1τk(p)
)}

αk(D)

=
{
1 + bp2k−1 − (τk(p)− χD(p)p2k−1)(a+ bτk(p))

}
αk(D). (5.18)

Recall that S+new
k+1/2(Γ0(4p)) has a basis of Kohnen newforms {gi}si=1 (see [Koh82,

Theorem 2.ii)]). We write g =
∑s

i=1 cigi with ci ∈ C. We denote by bi(n) the
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n-th Fourier coefficient of gi. Let fi be the newform corresponding to gi under the
Shimura correspondence. Note that the eigenvalues of the Atkin-Lehner involution
at fi and gi coincide (see [Koh82, Theorem 2.iii)]). Recall that we denote by
wp(fi) ∈ {±1} the eigenvalue of fi under the Atkin-Lehner involution for p. Since
the eigenvalue of gi under T (p2) = U(p2) is −wp(fi)p

k−1 (see [Koh82, Theorem
1)]), we have

bi(p
2D) = −wp(fi)p

k−1bi(D).

We thus have

bg(p
2D) = −pk−1

s∑
i=1

wp(fi)cibi(D). (5.19)

Assume that there exists D0 ∈ F+
k,p(X) such that bi(D0) = 0 for all i. We remark

that if anyD ∈ F+
k,p(X) satisfies bi(D) ̸= 0 for some i, then we have L(k, fi⊗χD) ̸=

0 by Theorem 4.1, that is, the assertion follows. Since bg(p
2D0) = 0 by (5.19), we

have

1 + bp2k−1 = (τk(p)− χD0(p)p
k−1)(a+ bτk(p)) (5.20)

by (5.18). We put ϵ := −χD0(p). Let D ∈ F+
k,p(X) with χD(p) = ϵ. By (5.18) and

(5.20), we see that

bg(p
2D) =

{
(τk(p)− χD0(p)p

k−1)(a+ bτk(p))− (τk(p)− χD(p)pk−1)(a+ bτk(p))
}
αk(D)

=
{
(τk(p)− χD0(p)p

k−1)− (τk(p)− χD(p)pk−1)
}
(a+ bτk(p))αk(D)

=2χD(p)pk−1 (a+ bτk(p))αk(D)

If bi(D) = 0 for all i, then we have bg(D) = 0 and bg(p
2D) = 0, so a+ bτk(p) = 0.

By (5.17), we have 0 = bχD(p)pk−1αk(D). Since b ̸= 0 by (5.20), this contradicts
αk(D) ̸= 0. Thus, there exists i for which bi(D) ̸= 0. This yields L(k, fi⊗χD) ̸= 0
by Theorem 4.1. We have completed the proof.

We put ϖp := (p − 1)/2. Let {mi}
ϖp

i=1 be a set of representatives of all quadratic
residue classes in (Z/pZ)×. Since

F+,ϵ
k,p (X) =

ϖp⊔
i=1

F+,ϵ
k,p (X) ∩ F+(X,mi, p),

we have ♯F+,ϵ
k,p (X) =

∑ϖp

i=1 ♯
(
F+,ϵ
k,p (X) ∩ F+(X,m, p)

)
. Suppose that k ̸≡ 1 (mod 3),

that is, k = 6, 8. Then F+,ϵ
k,p (X) ∩ F+(X,mi, p) contains

{D ∈ F+(X,mi, p) | D ≡ −1 (mod 3), 3 ∤ h(−3D)}

by Lemma 5.2. We thus obtain ♯F+,ϵ
k,p (X)∩F+(X,mi, p) ≥

(
9p

16π2(p2 − 1)
− ε

)
X

if ε > 0 and X ≫ε 0 by Proposition 3.3. This yields

♯F+,ϵ
k,p (X) ≥ ϖp ·

(
9p

16π2(p2 − 1)
− ε

)
X.
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This implies the assertion for k = 6, 8. Now suppose that k ≡ 1 (mod 3), that is,
k = 10. Let

E4(z) := 1− 240
∑
n≥1

σ3(n)q
n (5.21)

be the normalized Eisenstein series of weight 4 on SL2(Z). Then δ6,p(z)E4(4z) ∈
S+
21/2(Γ0(4p), χ4p) and we have δ6,p(z)E4(4z) ≡ δ6,p(z) (mod 3). We denote by

β10(n) the n-th Fourier coefficient of δ6,p(z)E4(4z). We thus have for a fundamen-
tal discriminant D > 1 with D ≡ −1 (mod 3),

β10(D) ≡ α6(D) ≡ −h(−3D) (mod 3) (5.22)

by Lemma 5.2. Applying the argument of Lemma 5.3 to δ6,p(z)E4(4z), we see
that there exists ϵ ∈ {±1} such that for any X > 0, the cardinality of the set

{D ∈ F+
p (X) | β10(D) ̸= 0, χD(p) = ϵ}, (5.23)

is less than or equal to N+
10,p(X). Since the set (5.23) contains F+,ϵ

6,p (X) by (5.22),
we have

N+
10,p(X) ≥ ♯F+,ϵ

6,p (X). (5.24)

We have completed the proof.

5.2 Proof of Corollary 2.2

Let p be a prime with p ≡ 1 (mod 4). Let ε > 0 and X ≫ε 0. We denote
by S the subset of F+(X) consisting of D such that there exists a newform f ∈
Snew
2k (Γ0(p)) satisfying L(k, f ⊗ χD) ̸= 0 so that we have ♯S = N+

k,p(X). We

put Sf := {D ∈ F+(X) | L(k, f ⊗ χD) ̸= 0} for a newform f ∈ Snew
2k (Γ0(p)).

Then we have S ⊂
⊔
Sf , where

⊔
runs over all newforms f ∈ Snew

2k (Γ0(p)). Let
f0 ∈ Snew

2k (Γ0(p)) be a newform satisfying N+
k,f0

(X) ≥ N+
k,f (X) for any newform

f ∈ Snew
2k (Γ0(p)). Then we have N+

k,p(X) ≤
∑

f N
+
k,f (X) ≤ dk,p · N+

k,f0
(X). This

completes the proof.

5.3 Proof of Corollary 2.3

Let D be a fundamental discriminant with D > 0. We define the algebraic part of
the central L-value of f ⊗ χD by

Lalg(k, f ⊗ χD) :=

√
D(k − 1)!L(k, f ⊗ χD)

(2π
√
−1)k−1Ωϵ

f

, (5.25)

where Ωϵ
f denotes a canonical period of f , which has the property that for any

σ ∈ GQ,

Lalg(k, f ⊗ χD)σ = Lalg(k, fσ ⊗ χD) (5.26)
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and ϵ = sgn((−1)k−1χD(−1)) (see [Shi77, Theorem 1]). Then for any σ ∈ GQ,

L(k, f ⊗ χD) ̸= 0 ⇔ Lalg(k, f ⊗ χD) ̸= 0

⇔ Lalg(k, f ⊗ χD)σ ̸= 0

⇔ L(k, fσ ⊗ χD) ̸= 0,

where the last equivalence is deduced from (5.26). This competes the proof.

6 Proof of the vanishing

We use the following lemma to prove Theorem 2.4.

Lemma 6.1 (see [Sak08, Remark 5]) Let k ≥ 2 be an integer and N a positive
odd integer such that ordp(N) is odd for any prime divisor p of N . Let f ∈
Snew
2k (Γ0(N)) be a newform. Let D be a fundamental discriminant with (−1)kD >

0 and (D,N) = 1. If χD(p) = −wp(f) for some p | N , then

L(k, f ⊗ χD) = 0,

where we recall that wp(f) is defined just before Theorem 4.1.

We put ϵ := sgn((−1)k). Then each D ∈ F ϵ
N (X) satisfies (−1)kD > 0. Let p be a

prime divisor of N . We set

Sp := {D ∈ F ϵ
N (X) | χD(p) = −wp(f), χD(ℓ) = wℓ(f) for any prime divisors ℓ ̸= p of N}

and S :=
⊔

p|N :prime Sp. By Lemma 6.1, we have

S ⊂ {D ∈ F±
N (X) | L(k, f ⊗ χD) = 0}. (6.1)

We put ϖp := (p − 1)/2. Let {mp,i}
ϖp

i=1 (respectively {m′
p,i}

ϖp

i=1) be a set of
representatives of residue classes in (Z/pZ)× satisfying χmi(p) = −wp(f) (re-
spectively χmi(p) = wp(f)). We define the subsets Mp and M ′

p of (Z/pZ)× by

Mp := {mp,i mod p}ϖp

i=1 and M ′
p := {m′

p,i mod p}ϖp

i=1. Let N0 :=
∏

p|N :prime p be

the square-free part of N . We put ϖ :=
∏

p|N :prime ϖp = φ(N0)/2
ν(N). We take a

set of representatives {m(p)
i }ϖi=1 of the image of

Mp ×
∏

ℓ|N :prime
ℓ ̸=p

M ′
ℓ

in (Z/N0Z)× by Chinese Remainder Theorem
∏

p|N :prime(Z/pZ)×
∼−→ (Z/N0Z)×.

We then have

Sp =
ϖ⊔
i=1

F ϵ(X,m
(p)
i , N0).
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Combining this with (6.1) and taking their cardinalities, we have

Vϵ
k,f (X) ≥

∑
p|N :prime

ϖ∑
i=1

N ϵ
2(X,m

(p)
i , N0). (6.2)

By Lemma 3.2 and Lemma 3.1 (1), we have

N ϵ
2(X,m

(p)
i , N0) ≥

 3

φ(N0)π2

∏
p|N :prime

p

p+ 1
− ε

X

for ε > 0 and X ≫ε 0. By (6.2) together with this inequality, we have

Vϵ
k,f (X) ≥ ν(N)ϖ

 3

φ(N0)π2

∏
p|N :prime

p

p+ 1
− ε

X

This implies that for ε > 0 and X ≫ε 0, we have

Vϵ
k,f (X) ≥

 3ν(N)

2ν(N)π2

∏
p|N :prime

p

p+ 1
− ε

X.

We have coompleted the proof of Theorem 2.4.
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