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Abstract. For an ordinary differential equation u′′ − qu = 0, where q is
holomorphic, the sphere Schwarz map is defined. For the hypergeometric
equations with polyhedral monodromy groups, the image surfaces of the
sphere Schwarz map are studied.
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Introduction

Consider an ordinary differential equation

u′′ − q(x)u = 0, x ∈ X,

where q is holomorphic in a domainX ⊂ C. For two linearly independent solutions
u and v, the affine Schwarz map is defined in [NKSY] as

Saff : X ∋ x 7−→ (u(x), v(x)) ∈ (C2, 0),

where (C2, 0) is the centro-affine plane, whose motion group is GL2(C). The
original Schwarz map (cf. [Yo]) is defined by taking ratio of the affine one:

Sori : X ∋ x 7−→ u(x) : v(x) ∈ P1
C.

By taking ratio, the original one loses much information that the affine one has.
To compensate this loss, we defined the hyperbolic and the de Sitter Schwarz
maps in [SYY, FNSYY], and studied their behavior. In this paper, we propose
another way.

If we recall that taking ratio of two complex numbers means taking quotient
by the multiplicative group C×, and the isomorphism

C× ∼= R>0 × S1 ∼= R× ×P1
R,

we are led to the sphere Schwarz map

Ssph : X ∋ x 7−→ u1(x) : u2(x) : v1(x) : v2(x) ∈ P3
R

where u = u1 + iu2, v = v1 + iv2. Since the 3-sphere S3 is just the double cover
of the real projective 3-space P3

R, we sometimes regard S3 the target of this map.
They are related through the projections:

C2 − {0} ∼= R4 − {0} −→ S3 −→ P3
R −→ P1

C
∼= S2.

Though the natural motion groups of the real centro-afiine 4-space (R4, 0) and
P3

R are GL4(R) and PGL4(R), respectively, throughout this paper we fix the
identification of (C2, 0) and (R4, 0) by

(u, v)←→ (u1, u2, v1, v2),



Affine and sphere Schwarz maps 37

and accordingly fix the embedding GL2(C)→ GL4(R), and use the image group,
say G, as the motion group of (R4, 0), and the image PG of G under the projection
GL4(R)→ PGL4(R) as the motion group of P3

R.
The image of the affine Schwarz map is a complex plane curve in the complex

centro-affine plane, while that of the sphere Schwarz map is a surface in P3
R.

A complex curve is a real surface in the 4-space, which is not easy to see. So
we stand at the origin and look around the space and project the surface to the
3-dimensional screen.

If we take another pair of solutions u′ and v′, and define the three kinds of
Schwarz maps: S ′aff ,S ′sph and S ′ori, then they are related to the former ones via
the motion groupsGL2(C), PG and PGL2(C) of (C2, 0),P3

R andP1
C, respectively.

A natural problem is to find invariants for surfaces in (P3
R, PG) to identify

those coming from complex curves in (C2, 0) (cf. [An]). But we leave this problem
for a future study.

In this paper we study the image surfaces under the sphere Schwarz map of the
hypergeometric differential equation having a polyhedral group as its monodromy.
For the dihedral monodromy groups, sphere Schwarz image surfaces are described
more in detail.

1 Projections

1.1 Projection of algebraic curves

Let a curve C in (C2, 0) be defined by a polynomial F (u, v) = 0. The defining
equation R of the image surface S′ ⊂ P3

R of the curve C under the projection

π : (C2, 0) ∼= (R4, 0) −→ P3
R

is given as follows. The inverse image π−1(S′) of S′ is a cone in (R4, 0) weaved by
the curves

Ck = {(u, v) | F (k) = 0}, k ∈ R×,

where F (k) = F (ku, kv). The equation of this cone should be R. Substitute

u = u1 + iu2, v = v1 + iv2

into F (u, v) and write

F (u1 + iu2, v1 + iv2) = G(u1, u2, v1, v2) + iH(u1, u2, v1, v2),

where G and H are polynomials in u1, u2, v1, v2 with real coefficients. Set

G(k) = G(ku1, ku2, kv1, kv2), H(k) = H(ku1, ku2, kv1, kv2).

Then the curve Ck defined by F (k) in (C2, 0) is defined by G(k) and H(k) in
(R4, 0). Thus we have

Proposition 1 The homogeneous polynomial R = R(u1, u2, v1, v2) defining the
cone π−1(S′) is obtained from G(k) and H(k) by eliminating k.
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The elimination can be done by making resultant of G(k) and H(k); this process
does not care about the reality of k. So S′ maybe part of the closed surface

S = {R = 0} ⊂ P3
R.

If F is of degree n, so are G and H. Generically, the resultant R of the two
polynomials G(k) and H(k) in k is of homogeneous degree n2 in u1, u2, v1, v2. If
F has no constant term, then R is at most of degree n2 − 1. If F has no term of
degree less than j, then R is at most of degree n2 − j2. In some special cases the
degree of R can be lower. For example when F is of degree 4, generically, R is of
degree 42 = 16; if F has no linear terms, then of degree 42 − 22 = 12, if moreover
F has no cubic terms then G(k)/k2 and H(k)/k2 are of degree 1 in k2, and so R
is of degree 4 + 2 = 6 (cf. §6.2).

Remark 1 We assume that F itself is not homogeneous. If so, S is not a surface
but a curve. If F is not homogeneous but if G or H is homogeneous, we must be
careful: For example, consider

F = u2 + v2 − 1.

The polynomial H is homogeneous so that the result of the elimination is just
R = H with some extra inequality due to the equation 0 = G(k) = k2(u2

1 − u2
2 +

v21 − v22)− 1, so that u2
1 − u2

2 + v21 − v22 ≥ 0.

If F is not a polynomial, the author has no idea of getting R. Inverse problem is
also difficult:

Open problem: Characterize surfaces S ⊂ P3
R (or equations R) which are pro-

jections of complex curves in (C2, 0).

If the surface is algebraic of degree 1 or 2, then it is easy. When S is a cubic
surface, it is already non-trivial (cf. §7).

1.2 Hopf map

The Hopf map is

H : C2 ⊃ S3 = {(u, v) | |u|2 + |v|2 = 1} ∋ (u, v) 7−→ u : v ∈ P1
C.

A Hopf fiber is the inverse image of a point u : v given as{
1√

|u|2 + |v|2
(eitu, eitv) | 0 ≤ t < 2π

}
,

a circle. The inverse image of a circle |u/v| = r:

z = u/v = reis, 0 ≤ s < 2π

is a torus

Tr =

{
1√

1 + r2

(
rei(s+t), eit

)}
=

{
|u|2 =

r2

1 + r2

}
, 0 ≤ r ≤ ∞
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which degenerates to cores of the torus when r = 0,∞.

The projective Hopf map pH : P3
R → P1

C is defined by an obvious manner.
The inverse image of the circle |v/u| = r is again a torus

Tr/± =
{(

rei(s+t/2) : eit/2
)}

, 0 ≤ s, t < 2π.

2 Simplest case – cusps

Consider a cusp

C ∋ z 7−→ (u, v) = (zp, zq) ∈ (C2, 0), (p, q) = 1.

This can be considered as the affine Schwarz map of a very degenerate hypergeo-
metric equation

u′′ − α(α− 1)

x2
u = 0.

Indeed, this has solutions
u = xα, v = x1−α.

If we set
α = p/r, r − p = q, z = ur,

then the affine Schwarz map x 7→ (u, v) gives the above map.

2.1 Cusp of type (2, 3)

For simplicity, we consider the simplest case (p, q) = (2, 3), so

F = u3 − v2.

Since the cusp map followed by the projection

C− {0} −→ (C2, 0) −→ P1
C

z 7−→ (z2, z3) 7−→ z

is the identity, you might think that the surface S ⊂ P3
R should be like a sphere.

Let us see. Substituting u = u1 + iu2, v = v1 + iv2 into F , we have

u3 − v2 = u3
1 − 3u1u

2
2 + v21 − v22 + i(3u2

1u2 − u3
2 + 2v1v2).

Thus the curve F = 0 in (C2, 0) is defined by the system

G = u3
1 − 3u1u

2
2 + v21 − v22 = 0, H = 3u2

1u2 − u3
2 + 2v1v2 = 0

in (R4, 0). Since each is the sum of terms of degree 3 and 2, it is easy to eliminate
k from G(k) and H(k):

R = (u3
1 − 3u1u

2
2)2v1v2 − (3u2

1u2 − u3
2)(v

2
1 − v22).

Thus we have
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Proposition 2 The surface S is defined by the quintic polynomial R, and is sin-
gular along two (non-intersecting but linked) lines

u1 = u2 = 0 and v1 = v2 = 0,

which are projective Hopf fibers of z = 0 and ∞, respectively.

• Along the line u1 = u2 = 0, three leaves of S cross normally and turn by
2π/3.

• Along the line v1 = v2 = 0, two leaves of S cross normally and turn by 3π/2.

The latter assertions can be seen as follows: The intersection of S and the plane
v1/v2 =constant is the union of the three lines in the (u1, u2)-plane intersecting
at the origin (u1, u2) = (0, 0). So the surface S is weaved by trefoil knots on the
tori Tr/± added by the two cores of the tori.

2.2 A family of trefoil knots

Projecting the affine Schwarz map to the sphere, we have

reit 7−→ 1√
1 + r2

(cos 2t, sin 2t, r cos 3t, r sin 3t).

For a fixed r > 0, the image of the circle is a trefoil knot (knot of type (2, 3)) on
the torus Tr (see Figure 1 left). As r tends to 0, three leaves come together to a
core of the torus winding twice; and as r tends to ∞, two leaves come together to
the other core of the torus winding three times.

Projecting further to the projective space, the image curve is a (4, 3)-curve on
the torus Tr/± (see Figure 1 right).

0 2ππ

π

2π

0 π 2π

π

Figure 1: (2, 3)-curve on Tr and (4, 3)-curve on Tr/±
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2.3 Cusps in general

The above statements for (2, 3)-cusp are word to word valid for a cusp

F = up − vq, (p, q) = 1,

if we read p for 3, and q for 2. The polynomial R is of degree p+ q.

3 Hypergeometric equations with polyhedral mon-
odromy groups

When the hypergeometric equation has polyhedral monodromy group G and the
inverse of the original Schwarz map

Sori : X = C− {0, 1} ∋ x 7→ z = u(x)/v(x) ∈ P1
C

is single valued, following holds (see for example [SYY]): The inverse is given by

x = A0
f0(z)

k0

f∞(z)k∞
,

which leads to

1− x = A1
f1(z)

k1

f∞(z)k∞
,

dx

dz
= A

f0(z)
k0−1f1(z)

k1−1

f∞(z)k∞+1
.

We write the hypergeometric equation in the SL-form:

u′′ − q(x)u = 0, q =
a quadratic polynomial in x

x2(1− x)2
.

Then the affine Schwarz map with z as variable is given by

z 7−→ (u, v) = (z
√

dx/dz,
√
dx/dz).

Notation used above is given as follows:

Dihedral (k0, k1, k∞) = (2, 2, n), N = 2n,

A0 = 1
4 , A1 = − 1

4 , A = n/4,
f0 = zn + 1, f1 = zn − 1, f∞ = z.

Tetrahedral (k0, k1, k∞) = (2, 3, 3), N = 12,

A0 = −12
√
3, A1 = 1, A = 24

√
3,

f0 = z(z4 + 1),

f1 = z4 + 2
√
3z2 − 1 = (z2 − 2 +

√
3)(z2 + 2 +

√
3),

f∞ = z4 − 2
√
3z2 − 1 = (z2 − 2−

√
3)(z2 + 2−

√
3).
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Octahedral (k0, k1, k∞) = (3, 2, 4), N = 24,

A0 = 1/108, A1 = −1/108, A = 1/27,
f0 = z8 + 14z4 + 1 = (z4 + 2z3 + 2z2 − 2z + 1)(z4 − 2z3 + 2z2 + 2z + 1),
f1 = z12 − 33z8 − 33z4 + 1 = (z4 + 1)(z2 + 2z − 1)(z2 − 2z − 1)(z4 + 6z2 + 1),
f∞ = z(z4 − 1) = z(z2 + 1)(z2 − 1).

Icosahedral (k0, k1, k∞) = (3, 2, 5), N = 60,

A0 = −1/1728, A1 = 1/1728, A = −5/1728,
f0 = z20 − 228z15 + 494z10 + 228z5 + 1

= (z4 − 3z3 − z2 + 3z + 1)(z8 − z7 + 7z6 + 7z5 − 7z3 + 7z2 + z + 1)
× (z8 + 4z7 + 7z6 + 2z5 + 15z4 − 2z3 + 7z2 − 4z + 1),

f1 = z30 + 522z25 − 10005z20 − 10005z10 − 522z5 + 1
= (z2 + 1)(z8 − z6 + z4 − z2 + 1)(z4 + 2z3 − 6z2 − 2z + 1)
× (z8 + 4z7 + 17z6 + 22z5 + 5z4 − 22z3 + 17z2 − 4z + 1)
× (z8 − 6z7 + 17z6 − 18z5 + 25z4 + 18z3 + 17z2 + 6z + 1),

f∞ = z(z10 + 11z5 − 1)
= z(z2 + z − 1)(z4 + 2z3 + 4z2 + 3z + 1)(z4 − 3z3 + 4z2 − 2z + 1).

4 Affine and sphere Schwarz map

Recall that the affine Schwarz map with variable z ∈ P1
C is given by

Saff : z 7−→ (u, v) =

(
z

√
dx

dz
,

√
dx

dz

)
,

dx

dz
=

f0(z)
k0−1f1(z)

k1−1

f∞(z)k∞+1
,

and
group G k0 k1 k∞ deg f0 deg f1 deg f∞

Dih D2·n 2 2 n n n 1
Tetrah 2 3 3 5 4 4
Octah 3 2 4 8 12 5
Icosah 3 2 5 20 30 11

Substituting z = u/v into

v2 =
f0(z)

k0−1f1(z)
k1−1

f∞(z)k∞+1
,

we get a polynomial F in {u, v} defining the affine Schwarz image curve C. F is
the sum of two homogeneous polynomials Fp of degree p and Fp+2 of p+2, where

p = 2n, 14, 28, 72,

when G is Dihedral D2·n, tetrahedral, octahedral and icosahedral, respectively.
Set

Fp = Gp + iHp, Fp+2 = Gp+2 + iHp+2.
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Since
F (ku, kv) = kp

{
(Gp + k2Gp+2) + i(Hp + k2Hp+2)

}
,

by eliminating k2 from Gp + k2Gp+2 and Hp + k2Hp+2, we get the equation R of
the sphere Schwarz image surface as

R = GpHp+2 −Gp+2Hp,

which is of homogeneous degree 2p+ 2 in {u1, u2, v1, v2}. Since k2 > 0, we have

Proposition 3 The sphere Schwarz image S′ is not the whole surface S defined
by R but a subdomain of S determined by

Gp(u1, u2, v1, v2)Gp+2(u1, u2, v1, v2) < 0.

In particular, when G = D2·n, the affine Schwarz image curve is defined by

Fn := un+1un+1 − u2n + v2n.

Writing
un+1 = U1 + iU2, u2n = U3 + iU4,
vn+1 = V1 + iV2, v2n = V3 + iV4,

the equation of the sphere Schwarz surface is

Rn = (U1V1 − U2V2)(U4 − V4)− (U1V2 + U2V1)(U3 − V3).

5 Local behavior of the sphere Schwarz map around
the vertices of Schwarz triangles

We consider the sphere Schwarz map with variable z ∈ P1
C:

Ssphz : P1
C − V ∋ z 7−→ u1(z) : u2(z) : v1(z) : v2(z) ∈ P3

R,

where V ⊂ P1
C is the set of vertices of Schwarz triangles; V is the union of ∞ and

set of the zeros of f0, f1 and f∞. Let S′ be the image of P1
C − V under Ssphz , and

S the closure of S′ in P3
R.

Theorem 1 The sphere Schwarz map Ssphz is one-to-one from P1
C − V onto S′.

Let z0 be a vertex of a Schwarz triangle, and Cϵ the circle with center z0 of radius
ϵ. Then the image curve Ssphz (Cϵ) tends to a circle, say Ssphz (z0), which is the
projective Hopf fiber of z0. Through the circle Ssphz (z0), several leaves of S pass.
The number of leaves are given in the proof.

Proof: Let z0 be a root of fj (j = 0, 1). Put z = z0 + reit; unless G is Tetrahedral
and j = 0, we have z0 ̸= 0. Then the affine Schwarz image of z around z0 can be
written as (

z
√
(reit)kj−1h(z),

√
(reit)kj−1h(z)

)
,
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where h is a function holomorphic and non-vanishing around z0. If ∼ stands for
‘up to multiplication of real numbers’, we have

∼
(
ze(kj−1)it/2

√
h(z), e(kj−1)it/2

√
h(z)

)
, h(z0) ̸= 0,∞.

Thus kj − 1 leaves pass through Ssph(z0). If G is Tetrahedral and j = 0, then
since we have

∼
(
re(kj+1)it/2

√
h(z), e(kj−1)it/2

√
h(z)

)
,

the result is the same as above.
0 is a root of f∞, if G is not Tetrahedral. The affine Schwarz image of z = reit

around 0 can be written as(
z
√
z−k∞−1h,

√
z−k∞−1h

)
∼
(
z1−(k∞+1)/2

√
h, z−(k∞+1)/2

√
h
)
,

and
∼
(
re−(k∞−1)it/2

√
h, e−(k∞+1)it/2

√
h
)
.

Thus k∞ + 1 leaves pass through Ssph(0).
Let z0 be a non-zero root of f∞. Put z = z0 + reit. Then since the affine

Schwarz image of z around z0 can be written as(
ze−(k∞+1)it/2

√
h(z), e−(k∞+1)it/2

√
h(z)

)
,

the result is the same as above.
At z0 = ∞, we change coordinate as z = 1/ζ. The affine Schwarz image of

ζ = reit around 0 can be written as

∼
(
ζ−1

√
ζdh,

√
ζdh
)
∼
(
e(d+2)it/2

√
h, redit/2

√
h
)
,

where
d = (k∞ + 1)deg f∞ − (k0 − 1)deg f0 − (k1 − 1)deg f1.

Thus d+ 2 leaves pass through Ssph(∞).

6 Sphere Schwarz surface when G = D2·n

We study the surface Sn defined by Rn.

6.1 Symmetry

Recall that the affine Schwarz image curve Cn is defined by

Fn = un+1vn+1 − u2n + v2n.

The curve is invariant under complex linear transformations

(u, v) 7−→ (iv, iu), (ζu, v/ζ), ζ2n = 1,
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and under (u, v) 7→ (−v, u) when n = 4k, and under (u, v) 7→ (−u, v) when n is
odd. Then the surface Sn is invariant under these transformations, of course.

Moreover, the surface Sn is invariant under complex conjugation:

(u1, u2, v1, v2) 7−→ (u1,−u2, v1,−v2).

The transformation (u, v) 7→ (−u, v) does not keep Cn, but when n is even, since

(U1, U2, U3, U4) 7−→ (−U1,−U2, U3, U4),

it keeps Sn

6.2 Simplest case n = 1

When n = 1, we have

R1 = (U1V1 − U2V2)(U2 − V2)− (U1V2 + U2V1)(U1 − V1),

where

U1 = u2
1 − u2

2, U2 = 2u1u2, V1 = v21 − v22 , V2 = 2v1v2,

and so,

R1 = (u2
1 + u2

2)
2v1v2 − (v21 + v22)

2u1u2.

6.2.1 Symmetry and quarter parts

The space P3
R is divided into eight tetrahedra by the four planes u1 = 0, u2 =

0, v1 = 0, v2 = 0. Though the six edges u1 = v1 = 0, . . . are in the surface S1, it
does not have intersection with the four open chambers satisfying u1u2v1v2 < 0.
Since the surface S1 is invariant under the transformations

(u, v) 7→ (−u, v), (−u1, u2,−v1, v2),

the four parts of S1 in the four chambers u1u2v1v2 > 0 are projectively isomorphic,
and since S1 is invariant also under

(u, v) 7→ (v, u), (u2, u1, v),

the quarter part

S1/4 := S1 ∩ {u1 : u2 : v1 : v2 | u1, u2, v1, v2 ≥ 0}

still admits D2·4-symmetry. The surface S1 ⊂ P3
R is singular only along two lines

u1 = u2 = 0 and v1 = v2 = 0, through each line two leaves pass.
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a

b b

a

c d

dc

Figure 2: A combinatorial model of a quarter part

6.2.2 Models of a quarter part and the whole surface

A topological model of the quarter part S1/4 is shown in Figure 2: cut out the
cross, glue two sides ab (representing half of the line u1 = u2 = 0) above the paper,
and glue two sides cd (representing half of the line v1 = v2 = 0) below the paper.
The remaining sides ac, da, bd, cb represents halves of the lines

u1 = v1 = 0, u2 = v1 = 0, u2 = v2 = 0, u1 = v2 = 0,

respectively. The center of the cross is a saddle point. A picture drawn by Maple
is shown in Figure 3.

To feel whole S1, regard v1 = 0 is the horizontal plane, v2 = 0 is the plane
at infinity, so the line v1 = v2 = 0 is the line at infinity on the horizontal plane,
the line u1 = u2 = 0 is a vertical line. Then arrange four copies of S1/4 in
the even octants. A Maple picture Figure 4 shows the surface around the origin
u1 = u2 = v1 = 0.

6.2.3 Section with the planes v1 = constant (v2 = 1)

Recall a curve in the real (x, y)-plane defined by

(x2 + y2)2 − kxy = 0

is called a lemniscate; it has crossing at the origin, and has axes x ± y = 0.
Set v2 = 1, the intersection of the surface S1 and the plane v1 = constant is a
lemniscate. In this sense, this surface should be called a double lemniscate surface,
if it has no name yet. See Figure 5.
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Figure 3: The surface in the quadrant u1, u2, v1, v2 ≥ 0

6.2.4 Relation between the original, affine and sphere Schwarz images

Let X̃ be the monodromy cover (in this case, just the double cover) of X =
C− {0, 1}. Then the composed map (the original Schwarz map)

X̃ → (C2, 0) → P3
R → P1

C

z 7−→ (u, v) 7−→ u1 : u2 : v1 : v2 7−→ z = u/v

is a one-to-one map from X̃ onto Z = P1
C − {0,±1,∞}. On the other hand, the

projection pH : S1 → P1
C is generically two-to-one. This somewhat contradictional

fact can be explained as follows: For z ∈ Z, there are two points in S1 which project
to z. If we write one of them as (u, v), then the other is (iu, iv). Only one of them
comes from the affine Schwarz curve through the identification (R4, 0) = (C2, 0);
that is, for one of them, no real multiple of it is on the affine Schwarz curve.

This is what Proposition 3 says: the part S′
1 of S1 coming from the affine

Schwarz curve is given by (U1V1 − U2V2)(U3 − V3) > 0, when n = 1 it is

(u2v1 + u1v1 + u1v2 − u2v2)(u1v1 − u2v1 − u2v2 − u1v2)(u
2
1 − u2

2 − v21 + v22) > 0.

6.2.5 Image of a Schwarz triangle

As a Schwarz triangle, choose the upper half part of the unit disc in the complex
z-plane; the three vertices are {1̄, 0, 1} (1̄ = −1).
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Figure 4: S1 around the origin u1 = u2 = v1 = 0

Proposition 4 The corresponding part of the sphere Schwarz surface S1 is given
as:

side (0, 1) −→ segment u1 = v1 = 0 0 : 0 : 0 : 1→ 0 : 1 : 0 : 1
vertex {1} −→ Hopf fiber u1 = v1, u2 = v2 0 : 1 : 0 : 1→ 1 : 1 : 1 : 1
arc 1→ 1̄ −→ segment u1 = v2, u2 = v1 1 : 1 : 1 : 1→ 1̄ : 1 : 1 : 1̄
vertex {1̄} −→ Hopf fiber u1 = −v1, u2 = −v2 1̄ : 1 : 1 : 1̄→ 0 : 0 : 0 : 1
side (1̄, 0) −→ segment u1 = v1 = 0 0 : 1̄ : 0 : 1→ 0 : 0 : 0 : 1
vertex {0} −→ Hopf fiber u1 = u2 = 0 0 : 0 : 0 : 1→ 0 : 0 : 0 : 1

Sketch of a proof: Since

(u, v) = (
√

z2 − 1,
√
z2 − 1/z),

when z is real, we have only to note |z| < 1. On the unit circle, set z = cos t+i sin t.
Then we have

z2 − 1 = cos2 t− sin2 t+ 2i sin t cos t− 1
= 2i sin t(cos t+ i sin t),√

z2 − 1 = (1 + i)
√
sin t(cos t/2 + i sin t/2),

u : v ∼ (1 + i)(cos t/2 + i sin t/2) : (1 + i)(cos t/2− i sin t/2).

The image of the origin z = 0 is not a point but a hemi-circle. When z comes near
to the origin from above, setting z = eiθs (0 ≤ θ ≤ π), and let s→ 0, and we have

u : v ∼ s
√
z2 − 1 :

√
z2 − 1e−iθ −→ 0 : ie−iθ = 0 : 0 : sin θ : cos θ.
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v1 = −5 -2.5 -1 -0.05 0

v1 = 0.05 1 2.5 5

Figure 5: n = 1 Sections v1 = constant

6.3 Intersection with the torus Tr, and the singular locus of
Sn

Parameterize the torus Tr by setting

u1 = r cos s, u2 = r sin s, v1 = cos t, v2 = sin t.

Since

(u1 + iu2)
n+1 = rn+1 cos(n+ 1)s+ irn+1 sin(n+ 1)s, . . . ,

and so

U1 = rn+1 cos(n+ 1)s, U2 = rn+1 sin(n+ 1)s, . . . ,

we have

Rn =

∣∣∣∣∣ cos(s+ t) r2n cos(2ns)− cos(2nt)

sin(s+ t) r2n sin(2ns)− sin(2nt)

∣∣∣∣∣
= rn+1

{
r2n sin (2ns− (n+ 1)(s+ t))− sin (2nt− (n+ 1)(s+ t))

}
= rn+1

{
r2n sin ((n− 1)s− (n+ 1)t)− sin ((n− 1)t− (n+ 1)s)

}
.

When r = 0, we have Rn = 0 if and only if (n− 1)t− (n+ 1)s = πk (k ∈ Z),
that is,

s = πk
2 n = 1,

t = n+ 1
n− 1s+

k
n− 1π n ≥ 2

k ∈ Z.
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This implies that on the torus Tr, where r is very small, Sn ∩ Tr can be approxi-
mated by

four curves of type
(
n+ 1
2 , n− 1

2

)
n : odd,

two curves of type (n+ 1, n− 1) n : even.

When r = 1, Rn = 0 if and only if

(n− 1)s− (n+ 1)t = (n− 1)t− (n+ 1)s+ 2πk, or

(n− 1)s− (n+ 1)t = −(n− 1)t+ (n+ 1)s+ π + 2πk,

equivalently

t = s+ kπ/n or t = −s+ πk + π/2.

If 0 < r ̸= 1, then Sn ∩ Tr consists of zigzag non-singular curves (see Figures 6, 7,
8). In fact, differentiating

R′ = Rn/r
n+1 = r2n sin(n−s− n+t)− sin(n−t− n+s),

where n− = n− 1, n+ = n+ 1, we have

R′
s = r2nn− cos(n−s− n+t) + n+ cos(n−t− n+s),

R′
t = −r2nn+ cos(n−s− n+t)− n− cos(n−t− n+s).

Since n2
− − n2

+ never vanishes, R′
s = R′

t = 0 implies

cos(n−s− n+t) = cos(n−t− n+s) = 0,

and so R′ = r2n − 1. Thus if r ̸= 1, the curve Sn ∩ Tr is non-singular.
This also implies that the crossing points on Sn ∩T1 are saddles. Therefore we

get

Theorem 2 the surface Sn has singularities only along the two lines u1 = u2 = 0
and v1 = v2 = 0.

Several pictures of the intersections Sn ∩ Tr are shown in Figures 6 - 8.

r = 0.5 0.9 1 1.1 1.5

Figure 6: n = 1 Intersection with the tori Tr : 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π　
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r = 0.5 0.9 1 1.1 1.5

Figure 7: n = 2 Intersection with the tori Tr : 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π

r = 0.5 0.9 1 1.1 1.5

Figure 8: n = 3 Intersection with the tori Tr : 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π

6.4 Section with the planes v1 = constant (v2 = 1)

We study the surface Sn around the singular line u1 = u2 = 0.

Proposition 5 Set v2 = 1.

• The intersection of Sn and the plane v1 = 0: through the origin u1 = u2 = 0,
n + 1 curves pass, their tangents are given by U1(u1, u2) = 0 (n even),
U2(u1, u2) = 0 (n odd).

• The intersection of Sn and the plane v1 = M : When M tends to ±∞, it
tends to the union of n+ 1 lines U2(u1, u2) = 0.

Proof: Recall the equation of the sphere Schwarz surface Sn:

Rn = (U1V1 − U2V2)(U4 − V4)− (U1V2 + U2V1)(U3 − V3),

where un+1 = U1 + iU2, u
2n = U3 + iU4, v

n+1 = · · ·. Since, when n is even or odd,

V2|v1=0,v2=1 = V4|v1=0,v2=1 = 0, V1|v1=0,v2=1 = V3|v1=0,v2=1 = 0,

respectively, the least degree term of Rn|v1=0,v2=1 is a constant multiple of U1 or
U2, respectively.

Set v2 = 1. Then V1V3 includes the maximal degree term v3n+1
1 in v1. Thus the

principal term of Rn when v1 tends to infinity is a constant multiple of U2.
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6.4.1 n = 2

Set v2 = 1. We show sections of the surface S2 with the plane v1 = constant in
the (u1, u2)-plane (Figure 9). In the picture v1 = 0, we name the six branches:
1 to the vertical one to the top, and number the others 2, 3, 4, 5, 6 anti-clockwise.
Six branches intersects always transversely, so the order does not change. When
two branches j and j + 1 form a loop, we write (j, j + 1); for example, in cane
v1 = 0 we express as 1(23)4(56), and between v1 = 0.4 and 0.45 the very moment
when the curve 1 touches the leaf (56), and the curve 4 touches the leaf (23), we
express (234)(561). Then the deformation of the sections when v1 changes from 0
to ∞ can be described as

1(23)4(56)→ (234)(561)→ 2(34)5(61)→ (345)(612)→ (12)3(45)6→ 123456,

and that when v1 changes from 0 to −∞ can be described as

1(23)4(56)→ (123)(456)→ (12)3(45)6→ (345)(612)→ 2(34)5(61)→ 123456.

We abbreviate these, without loosing information, as

(23)(56) −→ (34)(61) −→ (45)(12) −→ 123456.

v1=0 0.3 0.4 0.45 0.5

v1 = 1 1.8 2 3 20

Figure 9: n = 2 Sections v1 = constant

6.4.2 n ≥ 3

As we did in the previous section when n = 2, we describe the deformation of
n+ 2 branches when v1 changes from o to ∞. When n = 3, there are eight rays,
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and v1 = 0 is the very moment that changes from (23)(67) to (34)(78), so write
(234)(678). Then, we have

(234)(678) −→ (34)(78) −→ (45)(81) −→ (56)(12) −→ 12345678.

When n = 4, name the ten rays as 1, . . . , 9, j:

(34)(89)→ (45)(9j)→ (56)(j1)→ (67)(12)→ (78)(23)→ 123456789j

When n = 5, name the twelve rays as 1, . . . , 9, j, q, k:

(345)(9jq)→ (45)(jq)→ (56)(qk)→ (67)(k1)→ (78)(89)→ (89)(23)→ 123456789jqk.

7 Appendix: cubic surfaces coming from quadratic
curves

Let a quadratic curve C is defined by the sum F of a quadratic form F2 and a
linear form F1. Generically, the roots of F2 and that of F1 are different; so we
assume F is of the form

uv − a(u− v), a ∈ C.

The projection S is a cubic surface defined by

R = (y1y3−y2y4)(a1(y2−y4)+a2(y1−y3))−(y2y3+y1y4)(a1(y1−y3)−a2(y2−y4)),

where we set u = y1 + iy2, v = y3 + iy4, a = a1 + ia2. Though this real cubic
surface has no singularity at the real valued points, it is singular at four points

0 : 0 : 1 : ±i, 1 : ±i : 0 : 0.

On the surface there are five real lines:

• y1 = y2 = 0, y3 = y4 = 0,

• y1 − y3 = y2 − y4 = 0, a1y2 − a2y1 = a1y4 − a2y3 = 0,

• y3 = {(a22 − a21)y1 − 2a1a2y2}/|a|2, y4 = {−2a1a2y1 + (a21 − a22)y2}/|a|2,
and the four imaginary ones:

y1 = ±iy2, y3 = ±iy4.

By the way, Cayley’s nodal cubic is

z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4 = 0;

it has four nodal singular points at 0 : 0 : 0 : 1 and its permutations. When
a1 = 1, a2 = 0,

R = (y23 + y24)y2 − (y21 + y22)y4.

So, this surface is isomorphic to the Cayley’s nodal cubic if we admit an imaginary
transformation: z1 = y2 + iy1, z2 = y2 − iy1, z3 = −y4 + iy3, z4 = −y4 − iy3.

Acknowledgement: Remark 1 is due to F. Apéry, and §6.2.2 is due to B. Morin,
to whom author is thankful.
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