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Abstract. The twisted relative simplicial homology and the twisted rela-
tive singular homology of the configuration space with coefficients in a local
system are investigated systematically. An exterior power structure of the
relative homology group of the complement of hyperplanes in a projective
space associated with the general hypergeometric integral is established.

1 Introduction

The generalized confluent hypergeometric function was introduced in the paper
[14] as a ”Radon transform” of characters of maximal abelian subgroup Hλ of
GL(N) indexed by a partition λ of N . In the case λ = (1, 1, ..., 1), the confluent
hypergeometric function is called Aomoto-Gelfand hypergeometric function. The
Aomoto-Gelfand hypergeometric functions are interpreted as the pairing between
the twisted homology and the twisted cohomology of the complement of hyper-
planes in a complex projective space. In this paper, we shall consider a general
hypergeometric integral which includes the integral for the confluent hypergeomet-
ric function.

In the paper [9], the author considered the homology theory associated with the
general hypergeometric integral, that is the homology group on the complement of
hyperplanes in a complex projective space with coefficients in a local system and
the family of supports. A fact is given in [9] that the homology group associated
with general hypergeometric integral is isomorphic to a relative twisted homology
group with coefficients in the local system.

In this paper, we shall investigate an exterior power structure associated with a
general hypergeometric integral and make systematic investigation of the twisted
relative simplicial homology and the twisted relative singular homology of the
configuration space with coefficients in a local system. This kind of study will be
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important for further study, for example, the study of dimension of the homol-
ogy group and of intersection theory associated with the general hypergeometric
integral.

This paper consists of three parts, Part I(§2-3), Part II(§4-13) and Part III(§14-
17). In Part I, we recall the twisted homology theory on the complement of hyper-
planes in a complex projective spaces associated with the general hypergeometric
integral. We shall establish the exterior power structure of the relative homology
group of the complement of hyperplanes in a projective space associated with the
general hypergeometric integral. This result will be stated in Theorem 3.1.7 - the
main theorem of Part I. Theorem 3.2.1 gives a motivation to Part II and Part III.

In Part II and Part III, we give a discussion on a relative simplicial theory
and a relative singular theory for the configuration spaces of n-points in detail,
respectively. The main theorems of Part II and Part III are Theorem 12.2.2 and
Theorem 17.2.3, respectively.

2 The general hypergeometric integrals

2.1 Definition of the integral

We recall briefly the definition of general hypergeometric functions (integrals) on
the Grassmannian. Let N be a positive integer and λ = (l0, l1, . . . , lm) be a
partition of N , namely, lk are positive integers satisfying l0 ≥ · · · ≥ lm and∑m
k=0 lk = N . The partition λ is identified with the Young diagram which is

obtained by arraying N boxes, l0 boxes in the first row, l1 boxes in the second
row, and so on where the first boxes in each row are arrayed in the same column.
The number of boxes N in the diagram is called the weight of λ and is denoted
by |λ|. With the partition λ, we associate the maximal abelian subgroup Hλ of
GL(N) of the form

Hλ = J(l0)× · · · × J(lm),

where

J(l) :=

h =
∑

0≤i<l

hiΛ
i ; hi ∈ C, h0 ̸= 0

 ⊂ GL(l),

Λ = (δi+1,j)1≤i,j≤l being the shift matrix of size l. The group J(l) is a maximal
abelian subgroup of GL(l) and is called the Jordan group since it is a centralizer of
an element of the Jordan normal form aI+Λ ∈ GL(l). Note that J(l) is isomorphic
to the group of units of the quotient ring C[X]/(X l) by an obvious correspondence∑

0≤i<l

hiΛ
i 7→

∑
0≤i<l

hiX
i

We describe the characters of unversal covering group H̃λ of Hλ. Let x =
(x0, x1, x2, . . . ) be a sequence of variables and let θk(x) (k ≥ 0) be the funciton
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defined by ∑
0≤k<∞

θk(x)T
k = log(x0 + x1T + x2T

2 + · · · ) (2.1)

= log x0 + log

(
1 +

x1
x0
T +

x2
x0
T 2 + · · ·

)
. (2.2)

Here θ0(x) = log x0, and θk(x) (k ≥ 1) is a quasihomogeneous polynomial of
x1/x0, . . . , xk/x0 of weight k if the weight of xi/x0 is defined to be i which is
written explicitly as

θk(x) =
∑

(−1)i1+···+ik−1 (i1 + · · ·+ ik − 1)!

i1! · · · ik!

(
x1
x0

)i1
· · ·

(
xk
x0

)ik
,

where the sum is taken over the indices (i1, . . . , ik) ∈ Zk≥0 such that i1+2i2+ · · ·+
kik = k.

Lemma 2.1.1. [5] We have the isomorphism J(l) ≃ C× ×Cl−1 by the correspon-
dence

h =
∑

0≤i<l

hiΛ
i 7→ (h0, θ1(h), . . . , θl−1(h)).

It follows that the character χl : J̃(l) → C×is given by

χl(h;α) = exp

 ∑
0≤i<l

αiθi(h)

 = hα0
0 exp

 ∑
1≤i<l

αiθi(h)

 ,

where α = (α0, . . . , αl−1) are arbitrary complex constants. Noting the fact that
Hλ is a product of J(lk), we have the following.

Lemma 2.1.2. A character χ : H̃λ → C× is given, for some α = (α(0), . . . , α(m)) ∈
CN , α(k) = (α

(k)
0 , α

(k)
1 , . . . , α

(k)
lk−1) ∈ Clk , by

χ(h;α) =
∏

0≤k≤m

χlk(h
(k);α(k)) =

∏
0≤k≤m

(h
(k)
0 )α

(k)
0 exp

 ∑
1≤i<lk

α
(k)
i θi(h

(k))

 ,

(2.3)
where h = (h(0), · · · , h(m)) ∈ H̃λ, h

(k) ∈ J̃(lk).

Next we consider the “Radon transform” of the character χ. Roughly speaking
we substitute homogeneous polynomials of degree 1 in the homogeneous coordi-
nates t = (t0, t1, . . . , tn) of Pn into the character and integrate. We first define
the space of coefficients of these polynomials which is a Zariski open subset of the
space M(n+ 1, N) of (n+ 1)×N complex matrices.

For λ = (l0, l1, . . . , lm), a sequence µ = (i0, . . . , im) ∈ Zm+1
≥0 is called a sub-

diagram of λ of weight |µ| =
∑
k ik if it satisfies 0 ≤ ik ≤ mk (0 ≤ k ≤ m)
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and is denoted as µ ⊂ λ. For z = (z(0), . . . , z(m)) ∈ Mat(n + 1, N) with z(k) =

(z
(k)
0 , . . . , z

(k)
mk−1) and for any subdiagram µ ⊂ λ, |µ| = n+ 1, we put

zµ = (z
(0)
0 , . . . , z

(0)
i0−1, . . . , z

(m)
0 , . . . , z

(m)
im−1) ∈ Mat(n+ 1).

Definition 2.1.3. The generic stratum Zn,λ ⊂ Mat(n+ 1, N) with respect to Hλ

is defined by

Zn,λ = {z ∈ Mat(n+ 1, N) ; det zµ ̸= 0 for any µ ⊂ λ, |µ| = n+ 1}.

Define a biholomorphic map

ι : Hλ →
∏

0≤k≤m

(
C× × Clk−1

)
⊂ CN

by

ι(h) = (h
(0)
0 , . . . , h

(0)
l0−1, . . . , h

(m)
0 , . . . , h

(m)
lm−1)

for h = (h(0), · · · , h(m)) ∈ Hλ. The map ι can be lifted to that from H̃l to∏
0≤k≤m

(
C̃× × Clk−1

)
. This lift is also denoted by ι.

Definition 2.1.4. For the character χ(· ;α) given in (2.3), we assume∑
0≤k≤m

α
(k)
0 = −n− 1, (2.4)

α
(k)
lk−1 ̸= 0 if lk ≥ 2. (2.5)

The general hypergeometric integral of type λ (GHI of type λ, for short) is defined,
for z ∈ Zn,l, by ∫

∆

χ(ι−1(tz), α) · τ, (2.6)

where

τ =

n∑
i=0

(−1)idt0 ∧ · · · ∧ dti−1 ∧ dti+1 ∧ · · · ∧ dtn

and ∆z is an n-dimensional cycle in Pn \ ∪0≤k≤m{tz(k)0 = 0} of the homology
group defined by the integrand χ(ι−1(tz), α) (see also Section 2.2).

The integral (2.6) can be written in an affine coordinates of Pn. For example,
in the affine chart {t ∈ Pn | t0 ̸= 0}, we take an affine coordinates (s1, . . . , sn) by

si = ti/t0. Noting τ = tn+1
0 d

(
t1
t0

)
∧ · · · ∧ d

(
tn
t0

)
and using the condition (2.4), we

have ∫
∆

χ(ι−1(tz), α) · τ =

∫
∆

χ(ι−1(sz), α)ds1 ∧ · · · ∧ dsn

where s = (1, s1, . . . , sn).
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Let us write χ(ι−1(tz), α) = P (t) exp f(t) with

P (t) =
m∏
k=0

(t · z(k)0 )α
(k)
0 , f(t) =

m∑
k=0

lk−1∑
i=1

α
(k)
i θi(t · z(k)).

The multivalued n-form P (t) · τ defines a local system L of C-vector space of rank
1 on X := Pn \

∪m
k=0Dk, Dk := {t ∈ Pn | t · z(k)0 = 0} such that each branch of

P (t) · τ determines a horizontal local section of L, and f(t) is the rational function
on Pn with poles Dk of order lk − 1. Here we used the assumption (2.5). In the
following we fix a z ∈ Zn,λand consider the integral∫

∆

P (t) exp f(t) · τ (2.7)

2.2 Twisted homology with the family of supports

We recall the definition of the homology group associated with the general hyper-
geometric integral ([9] Section 2). For f defined as above, the family of supports
Φ is the family of closed subsets A of X, such that for any τ ∈ R, A∩f−1(ℜw ≥ τ)
is compact.

Let L e the local system as in Section 2.1. For any singular q-simplex σ : ∆q →
X, let σ∗L be the pull-back of L by σ. We define a q-chain SΦ

q (X;L) with the
local system L and with the family of supports Φ.

Definition 2.2.1. A q-chain c ∈ SΦ
q (X;L) is a formal infinite sum

c =
∑
σ

uσ · σ

where the sum is taken over all singular q-simplexes σ in X, such that

(1) uσ ∈ Γ(∆q, σ
∗L) is a global section of the local system σ∗L;

(2) The summation is locally finite, namely any compact subset in X intersects
with only finite number of σ(∆q) with uσ ̸= 0;

(3) supp(c) ∈ Φ, where supp(c) = ∪uσ ̸=0σ(∆q).

Let ∂ be the boundary map, then we get the chain complex (SΦ
p (X;L), ∂). The

pth homology group of the chain complex (SΦ
p (X;L), ∂) is denoted by HΦ

p (X;L).
For τ ∈ R, we put

Aτ = {t ∈ X;ℜf(t) < τ},

Aτ is a subspace of X. Consider the relative homology of the topological pair
(X,Aτ ) with coefficients in the local system L. Then the following result is known.

Theorem 2.2.2. ([9] Theorem 2.3) For any sufficiently small τ ∈ R, we have an
isomorphism

HΦ
• (X;L) ≃ H•(X,Aτ ;L).
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2.3 P1-case

We consider the integral (2.6) in the case n = 1. In this case the form in the
integral (2.6) is multivalued on X = P1 \ {x0, . . . , xm}, where xk is the zero of

tz
(k)
0 . We may assume x0 = ∞ without loss of generality and then the rational

function f in (2.7) is written as

f =

l0−1∑
i=1

c1,is
i +

m∑
k=1

lk−1∑
i=1

ck,i
(s− xk)i

.

in the affine coordinates s = t1/t0 with ck,lk−1 ̸= 0 for k satisfying lk ≥ 2 by virtue
of the assumption z ∈ Z1,λ and (2.5).

Theorem 2.3.1. ([9],Theorem 3.1) Assume the condition (2.5) and α
(k)
0 /∈ Z (for

k s.t. lk = 1) for α in the integral (2.6), then

(1) HΦ
p (X;L) = 0 if p ̸= 1,

(2) dimCH
Φ
1 (X;L) = N − 2,

where N =
∑m
k=0 lk.

3 The exterior power structure

3.1 The exterior power structure associated with the hy-
pergeometric integral

Let X, f and L be the same as in Section 2.3. By virtue of Theorem 2.2.2, there
exists a sufficiently small τ01 ∈ R such that, for any τ1 ≤ τ01 , the following isomor-
phism holds:

HΦ
1 (X;L) ≃ H1(X,Aτ1 ;L),

where Aτ1 = {t ∈ X;ℜf(t) < τ1}.

Lemma 3.1.1. For any sufficiently large σ̃ ∈ R and any τ1 ≤ τ01 , we have an
isomorphism

H1(X,Aτ1 ;L) ≃ H1(B̃, Aτ1 ;L)

where B̃ = {t ∈ X;ℜf(t) < σ̃}.

To prove the Lemma 3.1.1, we need the following result.

Lemma 3.1.2. ([20], Corollary 5.1) Let X and Y be separated complex algebraic
variety of finite type and let f : X → Y be a morphism. Then there exists a Zariski
open set U ⊂ Y such that f : f−1(U) → U is a locally trivial topological fibration.

Proof of Lemma 3.1.1 Let f be given in Section 2.3. We regard the rational
function f a holomorphic map

f : X → C.
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By virtue of Lemma 3.1.2, there is a finite subset Ω of the target space C such
that

f : X \ f−1(Ω) → C \Ω

defines a locally trivial topological fibration. Let w be the coordinates of the target
space C. Take σ̃0 sufficiently large so that {ℜw ≥ σ̃0} ⊂ C contains no point of
Ω. Since {ℜw ≥ σ̃0} ⊂ C is contractible, then the fibration

f : X \ f−1(Ω) → C \Ω

is trivial over {ℜw ≥ σ̃0} ⊂ C. It follows that, for any parameters σ̃2 > σ̃1 > σ̃0,
the inclusion

iVU : U = f−1({w ∈ C;ℜw < σ̃1}) ↪→ V = f−1({w ∈ C;ℜw < σ̃2})

is a deformation retract. Put U := {U}, U is a directed set for inclusion. Then iVU
induces a chain map

iVU ♯ : S•(U ;L) → S•(V ;L).

On the other hand, an inclusion

iU : U → X

induces a chain map
iU♯ : S•(U ;L) → S•(X : L)

such that
iU♯ = iV ♯ ◦ iVU ♯ (U ⊂ V ).

Then we have a chain map

lim−→ iU♯ : lim−→S•(U ;L) → S•(X;L).

Note that for any compact subset W of X, W is contained in some U ∈ U, then
we have a chain isomorphism

lim−→ iU♯ : lim−→S•(U ;L) ≃ S•(X;L)

which induces a homology isomorphism

lim−→ iU ∗ : lim−→H1(U ;L) ≃ H1(X;L).

We deduce from this fact that, for sufficiently large σ̃,

H1(B̃;L) ≃ H1(X;L)

where B̃ = {t ∈ X;ℜf(t) < σ̃}. By the five-lemma, we have

H1(X,Aτ1 ;L) ≃ H1(B̃, Aτ1 ;L).

This proves the lemma. □
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Consider the n-copies of the pair (X, f), we use the following notation:

Xn =

n times︷ ︸︸ ︷
X ×X × · · · ×X

⊠nL =

n times︷ ︸︸ ︷
L⊠ L⊠ · · ·⊠ L

Let t = (t1, t2, . . . , tn) be the coordinates of Xn, we define a rational function

F = F (t1, t2, . . . , tn) = f(t1) + f(t2) + · · ·+ f(tn).

Let Ψ be a family of supports defined by the function F , we consider the
homology group of Xn with coefficients in the local system ⊠nL and with the
family of supports Ψ. We apply Theorem 2.2.2 to our case. Then, there exists
a sufficiently small τ0 ∈ R such that, for any τ ≤ τ0, the following isomorphism
holds:

HΨ
n (Xn;⊠nL) ≃ Hn(X

n, Aτ ;⊠nL),

where

Aτ = {(t1, t2, . . . , tn) ∈ X;ℜF (t1, t2, ..., tn) < τ}.

We may assume τ0 < nτ01 and for the fixed τ1 < τ01 , we fix τ ≤ nτ1, where τ
0
1 is

that in Lemma 3.1.1.

Take any basis vector [c] ∈ Hn(X
n, Aτ ;⊠nL),

c =
∑

(Xn−Aτ )∩suppσ ̸=∅

aσ · σ ∈ Sn(X
n, Aτ ;⊠nL).

Note that c is a finite sum, then supp(c) is compact. Moreover, the homology
group Hn(X

n, Aτ ;⊠nL) has a finite dimension. It follows that, if we take σ0 ∈ R
sufficiently large and put Bi = {ti ∈ X;ℜf(ti) < σ0}, for which we may assume
Lemma 3.1.1 holds, then Bn := B1×B2×· · ·×Bn contains all the supports of the
representative of the basis vectors of Hn(X

n, Aτ ;⊠nL). Hence the homomorphism

ρ : Hn(B
n, Aτ ∩Bn;⊠nL) → Hn(X

n, Aτ ;⊠nL),

induced from the natural chain map Sn(B
n, Aτ ∩ Bn;⊠nL) → Sn(X

n, Aτ ;⊠nL),
is surjective. Hence we obtain the following:

Lemma 3.1.3. Let τ01 be that in Lemma 3.1.1 and τ0 be as τ0 < nτ01 . Then for
any τ ≤ τ0, there exists a sufficiently large σ0 ∈ R, the homology homomorphism

ρ : Hn(B
n, Aτ ∩Bn;⊠nL) → Hn(X

n, Aτ ;⊠nL)

is surjective, where Bn := B1 × B2 × · · · × Bn and Bi = {ti ∈ X;ℜf(ti) < σ0}
(i = 1, 2, . . . , n).
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For a fixed τ1 < τ01 , using Künneth formula, we have the isomorphisms:

n⊗
H1(X,Aτ1 ;L) ≃ Hn(X

n, A(n)
τ1 ;⊠nL),

where A
(n)
τ1 =

∪n
i=1X × · · · ×

i

Ăτ1 × · · · ×X, and

n⊗
H1(B,Aτ1 ;L) ≃ Hn(B

n, Ã(n)
τ1 ;⊠nL),

where Ã
(n)
τ1 :=

∪n
i=1B × · · · ×

i

Ăτ1 × · · · × B. On the other hand, we can easily
obtain an isomorphism from Lemma 3.1.1:

n⊗
H1(B,Aτ1 ;L) ≃

n⊗
H1(X,Aτ1 ;L).

Hence these isomorphisms induce the following:

Lemma 3.1.4. For any sufficiently small τ1, we have an isomorphism

Hn(B
n, Ã(n)

τ1 ;⊠nL) ≃ Hn(X
n, A(n)

τ1 ;⊠nL).

For the fixed τ and σ0, where τ and σ0 appeared in Lemma 3.1.3, we take
τ ′1 < τ − nσ0 and fix it. Put

Aτ ′
1
:= {t ∈ X;ℜf(t) < τ ′1},

Ã
(n)
τ ′
1

:=
n∪
i=1

B × · · · ×
i

Ăτ ′
1
× · · · ×B.

For the τ0, τ1, τ, τ
′
1 taken as above, we have

Ã
(n)
τ ′
1

⊂ Aτ ∩Bn ⊂ Ã(n)
τ1 ⊂ Aτ0 ∩Bn,

where Ã
(n)
τ ′
1
, Aτ , Ã

(n)
τ1 are defined as above and

Aτ0 := {(t1, . . . , tn) ∈ Xn;ℜf(t1) + · · ·+ ℜf(tn) < τ0}.

Then we obtain the natural inclusion homomorphism diagram:

Hn(B
n, Ã

(n)
τ1′ ;⊠nL)

ζ1−−−−→ Hn(B
n, Aτ ∩Bn;⊠nL)

η1

y yζ
Hn(B

n, Ã
(n)
τ1 ;⊠nL) Hn(B

n, Ã
(n)
τ1 ;⊠nL)

Hn(B
n, Aτ ∩Bn;⊠nL)

ζ−−−−→ Hn(B
n, Ã

(n)
τ1 ;⊠nL)

η2

y yζ2
Hn(B

n, Aτ0 ∩Bn;⊠nL) Hn(B
n, Aτ0 ∩Bn;⊠nL)
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such that η1 = ζ ◦ ζ1, and η2 = ζ2 ◦ ζ. By Künneth formula, the map η1 is an
isomorphism. On the other hand, we consider the homology exact sequence for
(Bn, Aτ ′ ∩Bn, Aτ ′′ ∩Bn):

Hn(Aτ ′ ∩Bn, Aτ ′′ ∩Bn;⊠nL) = 0 → Hn(B
n, Aτ ′′ ∩Bn;⊠nL)

→ Hn(B
n, Aτ ′ ∩Bn;⊠nL) → Hn−1(Aτ ′ ∩Bn, Aτ ′′ ∩Bn;⊠nL) = 0.

where τ ′, τ ′′ are any sufficiently small complex numbers satisfying τ ′′ < τ ′. This
induces η2 is an isomorphism. Hence we have the following:

Lemma 3.1.5. There exists an isomorphism of C-vector space

Hn(B
n, Aτ ∩Bn;⊠nL) ≃ Hn(B

n, Ã(n)
τ1 ;⊠nL).

By Lemma 3.1.3, Lemma 3.1.4, Lemma 3.1.5, we obtain the homomorphism
diagram:

Hn(B
n, Aτ ∩Bn;⊠nL)

ζ−−−−→ Hn(B
n, Ã

(n)
τ1 ;⊠nL)

ρ

y y≀

Hn(X
n, Aτ ;⊠nL) −−−−→

η
Hn(X

n, A
(n)
τ1 ;⊠nL)

where η is a natural homomorphism. We can easily check that ρ is injective
homomorphism. By Lemma 3.1.3, ρ is bijective. We have proved the following
theorem.

Theorem 3.1.6. There exists an isomorphism of C-vector space:

Hn(X
n, Aτ ;⊠nL) ≃ Hn(X

n, A(n)
τ1 ;⊠nL).

Let Sn be the symmetric group. Sn acts on Xn:

σ · (t1, t2, ..., tn) = (tσ(1), tσ(2), . . . , tσ(n)).

for any σ ∈ Sn. We can easily see that the action of Sn on Xn induces the action

of Sn on Aτ and A
(n)
τ1 , respectively. Let Xn := Xn/Sn be the configuration space

of n-points (see Section 16), M a local system on Xn. There exists a canonical
topological projection

π : Xn −→ Xn/Sn.

We assume π∗M = ⊠nL, then we have an isomorphism

Hn(X
n/Sn, Aτ/Sn;M) ≃ Hn(⊗nS•(X,Aτ1 ;L))

Sn .

By Künneth formula, we have an isomorphism

Hn(⊗nS•(X,Aτ1 ;L))
Sn ≃ {⊗nH1(X,Aτ1 ;L)}Sn .

Hence we have the main theorem as follows.
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Theorem 3.1.7. Let L, M be the local systems of 1-dimension C-vector space on
X, Xn/Sn , respectively. Assume π∗M = ⊠nL. Then for any sufficiently small
τ1, there exists an isomorphism of C-vector space

Hn(X
n/Sn, Aτ/Sn;M) ≃ ∧nH1(X,Aτ1 ;L),

where τ < nτ1.

This result has previously been obtained by K.Iwasaki and M.Kita in the case
of λ = (1, 1, ..., 1), i.e., the case of Aomoto-Gel’fand hypergeometric functions,
(see [7]). In their paper, the Wronskian determinant formula given by T.Terasoma
(see [18]) was understood in the sense of homology theory. Theorem 3.1.7 is an
extension of the result given by [7].

3.2 Application of the twisted relative homology theory

The subspace of Aτ1 of X can be decomposed into connected components

Aτ1 = ∪mk=0 ∪
nk−1
j=1 Ajk,

where A1,k,A2,k,...,Ank−1,k are components each of which contains the point xk in
its closure in P1. Note that each Ajk is contractible and we assume Ajk contract to
a point ajk. We take a simplicial pair (K,K0), whereK is a bouquet Bm with extra
edges which is constructed in Section 13.1, K0 is a subcomplex of Bm only contains
0-simplexes aij . Then the inclusion map ν : |K| ↪→ X is a homotopy equivalence
between |K| and X so that the restriction of mapping ν||K0| : |K0| → Aτ1 is a
homotopy equivalence between |K0| and Aτ1 . So (X,Aτ1) is a polyhedral pair
with underlying simplicial structure ((K,K0), ν). Let LK = Le, where Le is the
simplicial local system defined in Section 13.2, then by Theorem 3.1.7 and Theorem
17.2.3, we have the following:

Theorem 3.2.1. Let L, M be the singular local systems of 1-dimension C-vector
space on X, Xn/Sn, respectively. Assume that π∗M = ⊠nL, where π : Xn →
Xn/Sn is the canonical projection. Then there exists a canonical isomorphism of
C-vector space:

Hn(X
n/Sn, Aτ/Sn;M) ≃ ∧nH1(K,K0;LK),

where LK = Le is the simplicial local system defined in Section 13.2 with ei =
exp(2π

√
−1αi), (i = 1, 2, ...,m).

4 Relative simplicial homology with local systems

4.1 Simplicial pair

Let us briefly recall some notions of simplicial local systems, and establish some
notational conventions following those of [7] and [17]. By a simplicial complex
K we mean an abstract simplicial complex. Namely, K is a collection of finite
nonempty subsets of a set V such that the following conditions hold:
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1. for any a ∈ V , {a} ∈ K,

2. if σ ∈ K, then any nonempty subset of σ belongs to K.

An element σ of K is called a simplex of K. A nonempty subset of a simplex
is called a face. For σ ∈ K, its dimension ♯σ is one less than the number of its
elements. The i-th skeleton of K is denoted by Ki, i.e.

Ki = {σ ∈ K; ♯σ ≤ i+ 1} (i = 0, 1, ...)

The vertex set of K is denoted by VK . A q-simplex (q ≥ 0) with vertices
a0, a1, ..., aq ∈ VK is denoted by {a0, a1, ..., aq}. A subcollection of K, which itself
is a complex, is called a subcomplex of K. (K,K0) is called simplicial pair, where
K0 is a subcomplex of K. We have VK0 ⊂ VK .

Let K,L be two simplicial complexes. A simplicial map is a map of the set
of vertices f : VK → VL such that, for any simplex σ ∈ K, f(σ) ∈ L, where
f(σ) = {f(a); a ∈ σ}. A simplicial map f : (K,K0) → (L,L0) is a simplicial map
K → L, such that f(K0) ⊂ L0.

4.2 Subdivision

There is a barycentric subdivision associated with a simplicial complex K, is de-
noted by SdK, whose vertices are the simplexes of K, i.e VSdK = K, and whose
simplexes are the sets {σ0, σ1, ..., σq}, where σi ∈ VSdK , such that

σ0 ⊂ σ1 ⊂ · · · ⊂ σq.

The iterated barycentric subdivision SdK are defined for n ≥ 0 inductively, so
that

Sd0K = K, (4.1)

SdnK = Sd(Sdn−1K), n ≥ 1. (4.2)

If K0 is a subcomplex of K, SdK0 := SdK|K0 is a subcomplex of SdK.
(SdK, SdK0) is called the barycentric subdivision of the simplicial pair (K,K0).

Lemma 4.2.1. If K0 is a subcomplex of K, then SdK0 is a full subcomplex of
SdK.

4.3 Local systems on simplicial complexes

We defined a local system L = (La, ξba) of C-vector spaces on K.

Definition 4.3.1. A local system L = (La, ξba) of C-vector space on K is an
assignment:

(1) VK ∋ a 7−→ La : C vector space,
(2) K(1) ∋ {a, b} 7−→ ξba : La −→ Lb : isomorphism,

such that
(i) for any a ∈ VK , ξaa is the identify map on La,
(ii) for any {a, b, c} ∈ K(2), ξcb ◦ ξba = ξca.
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Remark 4.3.2. For K0 ⊂ K, the restriction of the local system L on K to K0

gives a local system L|K0 on K0. The pair (K0,L|K0) is also denoted by (K0,L).
So the simplicial pair (K,K0) with local system L is denoted by (K,K0;L).

Definition 4.3.3. For any simplex σ of K, a section of L on σ is a map

u : σ ∋ a 7−→ u(a) ∈ L

such that
u(b) = ξbau(a), for any {a, b} ∈ σ.

The set of all sections of L on σ is denoted by Lσ.

4.4 Pull-back of local systems

Let (K,K0), (L,L0) be the simplicial pairs, f : (K,K0) → (L,L0) a simplicial
map, i.e. f is a simplicial map K → L such chat f(K0) ⊂ L0. Let L,M be the
local systems on K and L, respectively.

Definition 4.4.1. A local system map over f is a pair

(f, φ) : (K,K0;L) −→ (L,L0;M),

where φ = {φa} is a collection of homomorphism of C-vector space

φa : La −→ Mf(a), (a ∈ VK)

such that, for each {a, b} ∈ K(1), the following diagram is commutative:

La
φa−−−−→ Mf(a)

ξba

y yηf(b)f(a)

Lb −−−−→
φb

Mf(b)

There is a category of simplicial pairs (K,K0) and local system maps (f, φ).
This category is called the category of local systems and is denoted by L. A
simplicial map f : K → L induces a covariant functor f∗ : L(L) → L(K) called
pull back functor, where L(L),L(K) are the categories of local systems on the
simplicial complex L,K, respectively.

Definition 4.4.2. Given a local system L = {La, ξba} on L, put

(f∗L)a = Lf(a) (a ∈ VK)

(f∗ξ)ba = ξf(b)f(a) ({a, b} ∈ K(1)).

Then f∗L = {(f∗L)a, (f∗ξ)ba} becomes a local system on K, called the pull-back
of L by f .

Remark 4.4.3. A local system map

(f, φ) : (K,K0; f
∗L) −→ (L,L0;L)

where φ = {φa}, φa : (f∗L)a → Lf(a) (a ∈ VK) is well-defined.
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5 Polyhedra

5.1 The topological realization

For a simplicial complex K, let |K| be the set of all functions α : VK −→ [0, 1]
such that

(1) For any α, suppα is a simplex σ of K,
(2) For any α ,

∑
a∈σ α(a) = 1,

where suppα := {a ∈ VK ;α(a) ̸= 0}.
We provide the set |K| with the coherent topology ([17] Chapter 3 §2 ). Then

|K| is a topological space of K.

Remark 5.1.1. (1) For any subcomplex K0 of simplicial complex K, |K0| is a
closed subset of |K|.

(2)If {K0j}j∈J is a collection of subcomplexes of K, then ∪|K0j | = | ∪ K0j |
and ∩|K0j | = | ∩K0j |.

Remark 5.1.2. For a simplicial map f : K → L, let |f | : |K| → |L| be the map
defined by

|f |(α) :=
∑
a∈VK

α(a)⟨f(a)⟩,

where for a, b ∈ VK ,

⟨a⟩(b) :=

{
1 (b = a)

0 (b ̸= a)

Then |K| → |L| becomes a continuous map.

5.2 The polyhedral pair

Let (K,K0) be the simplicial pair, we call the topological realization associated
with (K,K0) a topological space pair (|K|, |K0|).

Definition 5.2.1. Let (X,A) be a topological space pair. (X,A) is said to be an
polyhedral pair if there exists a simplicial complex pair (K,K0) and a continuous
map f : |K| → X such that f is a homotopy equivalence between |K| and X,
and f ||K0| : |K0| → A is homotopy equivalence between |K0| and A. We call
((K,K0); f) an underlying simplicial structure of (X,A).

Remark 5.2.2. In the usual definition of polyhedral pair, the above condition on
f is replaced by the one that f : (|K|, |K0|) → (X,A) is a homeomorphism.

6 Group action

6.1 Group action on simplicial complexes

Let K be a simplicial complex and G be a group. Let AutK be the group of all
simplicial automorphisms of K. A group action of G on K is a group homomor-
phism ρ : G → AutK. For g ∈ G and a ∈ VK , we simply write ρ(g)a = ga. Then



Twisted relative homology of the configuration spaces 79

for any simplex σ = {a0, a1, ..., aq} ∈ K, gσ = {ga0, ga1, ..., gaq} becomes another
simplex of K.

If G acts on K, we define a simplicial complex of K/G as follows. The vertices
of K/G are just the orbits [a] = Ga of the action of G on the vertices of K, i.e.
VK/G = {Ga; a ∈ VK}, and we take the simplexes of K/G to be those simplexes of
the form {[a0], [a1], ..., [aq]}, where {a0, a1, ..., aq} is a simplex of K. The simplex
{a0, a1, ..., aq} is said to be over the simplex {[a0], [a1], ..., [aq]} of K/G. We have
a natural projection

π : VK −→ VK/G, a 7−→ [a],

then the projection

π : K −→ K/G, {a0, a1, ..., aq} 7−→ {[a0], [a1], ..., [aq]}

is a simplicial map.

6.2 The regular action

Given a simplex σ of K/G, we put

O(σ) = {σ̃ ∈ K;π(σ̃) = σ}.

O(σ) is called the set of all simplexes of K over σ. The action of G on K leads to
that on O(σ).

Definition 6.2.1. If G acts on O(σ) transitively for any simplex σ of K/G, then
the action of G on K is said to be regular.

Remark 6.2.2. If G acts on K regularly, then for any σ ∈ K/G, O(σ) forms an
orbit of the action of G on the simplexes of K.

Let (K,K0) be a simplicial pair, G a group. Then we consider the restriction
of the action to K0. If K0 is invariant under the action of G, i.e. G(K0) = K0,
where

G(K0) := {gσ; g ∈ G, σ ∈ K0},
then for any σ ∈ K0 and g ∈ G, we have gσ ∈ K0. Hence we obtain a subcomplex
K0/G of K/G, so that a simplex of K/G is a simplex of K0/G if and only if there
exists a simplex σ̃ of K0 such that π(σ̃) = σ. For σ ∈ K0/G, we put

O(σ) = {σ̃ ∈ K0;π(σ̃) = σ},

O(σ) forms an orbit of K. Hence the regular action of G on K implies that on K0

and π : (K,K0) → (K/G,K0/G) is a simplicial map.

6.3 Group action on the subdivision SdK

Let SdK be the subdivision of the simplicial complex K, G a group. The action
of G on K induces an action of G on SdK in a natural manner:

G× VSdK −→ VSdK , (g, σ) 7−→ gσ.

We have the following:
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Lemma 6.3.1. Let K0 be a subcomplex of K. If K0 is invariant under the action
of G, then SdK0 is also invariant under the action of G.

Proof. For any g ∈ G and δ = {σ0, σ1, ..., σq} ∈ SdK0, we have

gδ = {gσ0, gσ1, ..., gσq} ∈ SdK

and for σi ∈ K0(i = 0, 1, . . . , q), K0 is G-invariant, then gσ0 ∈ K0. On the other
hand, SdK0 is full subcomplex of SdK and gσi ∈ VSdK0 = K0 (i = 0, 1, ...q),
then gδ ∈ SdK0. Hence G(SdK0) = {gδ; g ∈ G, δ ∈ SdK0} = SdK0.

The following theorem is important:

Theorem 6.3.2. ([7] Theorem 8.3.2) If G acts on K, then G acts on Sd2K
regularly.

7 External product

7.1 The external product of simplicial pair local system

Let K1,K2, ...,Kn be ordered simplicial complexes, K01,K02, ...,K0n the subcom-
plex of K1,K2, ...,Kn, respectively. Let Li, (i = 1, 2, ..., n) be the local systems on
Ki, (i = 1, 2, ..., n). The direct product of K1,K2, ...,Kn was described explicitly
in [7]. We refer to the Definition 7.1.3 and Definition 7.2.1 in [7]. We can define
the direct product of the simplicial pairs (K1,K01), (K2,K02), ..., (Kn,K0n) in the
same way.

We use the following notation.

• K = K1 ×K2 × · · · ×Kn : the direct product of K1,K2, . . . ,Kn,

• K [i] = K1 × · · · ×K0i × · · · ×Kn: the direct product of K1, ...,K0i, ...,Kn,

• (K,M) = (K1,K01)× (K2,K02)× · · · × (Kn,K0n)

= (K1×K2×· · ·×Kn,K
[1]∪K [2]∪· · ·∪K [n]): the direct product of simplicial

pairs (K1,K01), ..., (Kn,K0n),

• VK = VK1 × VK2 × · · · × VKn : the vertices of K,

• L = (La, ξba) : the external product of L1, ...,Ln, where for each vertex
a = a1 × a2 × · · · × an, b = b1 × b2 × · · · × bn ∈ VK , and {a, b} ∈ K(1),

La = (L1)a1 ⊗ · · · ⊗ (Ln)an

ξba = (ξ1)b1,a1 ⊗ · · · ⊗ (ξn)bn,an .

(K,M ;L) is denoted as ⊠ni=1(Ki,K0i;Li) and is called the external product of
(K1,K01;L1), ... , (Kn,K0n;Ln).We write L = L1⊠ · · ·⊠Ln. The partial order on
VK is the lexicographic order, i.e., for a = a1×a2×· · ·×an and b = b1×b2×· · ·×bn,
we put a < b if and only if aj = bj (j < i)) and ai < bi for some i ∈ {1, 2, . . . , n}.
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• q = (q1, q2, . . . , qn) : an n-tuple of nonnegative integers,

• ri = q1 + q2 + · · ·+ qi, (i = 1, 2, . . . , n),

• ji = (ji1, ji2, . . . , jiqi) : a qi-tuple of integers such that

1 ≤ ji1 ≤ ji2 ≤ · · · ≤ jiqi ≤ r,

• j = (j1, j2, . . . , jn) : the map from {1, 2, . . . , r} into itself defined by

j =

(
1 · · · r1 r1 + 1 · · · r2 · · · rn−1 + 1 · · · rn
j11 · · · j1q1 j21 · · · j2q2 · · · jn1 · · · jnqn

)
,

• J(q): the set of all j’s such that j ∈ Sr,

• σi = {ai0, ai1, . . . , aiqi}: a qi-simplex of Ki such that ai0 < ai1 < · · · < aiqi ,

• Σ(q) = {σ = (σ1, σ2, . . . , σn) : σi is a qi-simplex of Ki} .

• ⟨σ; j⟩: the simplices of K, for any σ ∈ Σ(q) and j ∈ J(q), is defined as
follows. For i = 1, 2, . . . , n, we put

(bi0, bi1, . . . , bir) = (
0

ăi0, . . . , ai0,
ji1
ăi1, . . . , ai1, . . . ,

jiqi
˘aiqi , . . . ,

r

˘aiqi).

For k = 0, 1, . . . , r, we define a vertex ck of K by ck = b1k × b2k × · · · × bnk.
Since j ∈ J(q), we have c0 < c1 < · · · < cr in the lexicographic order.
Now we define ⟨σ; j⟩ = ⟨σ1, . . . , σn; j1, . . . , jn⟩ by ⟨σ; j⟩ = {c0, c1, . . . , cr}. A
simplex of K is, by definition, a nonempty subset of ⟨σ; j⟩ for some σ ∈ Σ(q)
and j ∈ J(q). Clearly, the partial order on VK induces a total order on every
simplices of K.

7.2 The symmetric group acts on the external product

Let (Ki,K0i), (i = 1, 2, ..., n) be the simplicial pairs, Li, (i = 1, 2, ..., n) the lo-
cal systems on Ki(i = 1, 2, ..., n). Let Sn be the group of all permutation of
{1, 2, ..., n}.

For τ ∈ Sn, we use the following notation.

τK =Kτ(1) ×Kτ(2) × · · · ×Kτ(n),

τK [i] =Kτ(1) × · · · ×K0τ(i) × · · · ×Kτ(n),

τL =Lτ(1) ⊠ Lτ(2) ⊠ · · ·⊠ Lτ(n),

τ(K,M) =(τK, τM) = (τK, τK [1] ∪ τK [2] ∪ · · · ∪ τK [n]).

For each vertex a = a1 × a2 × · · · × an ∈ VK , we define

τ : VK −→ VτK , a1 × a2 × · · · × an 7−→ aτ(1) × aτ(2) × · · · × aτ(n),

τ : La −→ (τL)τ(a), u1 ⊗ u2 ⊗ · · · ⊗ un 7−→ uτ(1) ⊗ uτ(2) ⊗ · · · ⊗ uτ(n).
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Then τ : (K,M ;L) → (τK, τM ; τL) is an isomorphism of the category L of local
systems.

We shall consider the following special case:

(K,K0;L) := (K1,K01;L1) = (K2,K02;L2) = · · · = (Kn,K0n;Ln)

In this case, we write

Kn =

n times︷ ︸︸ ︷
K ×K × · · · ×K,

K
[i]
0 = K × · · · ×

i

K̆0 × · · · ×K,

M = ∪ni=1K
[i]
0 ,

⊠nL =

n times︷ ︸︸ ︷
L⊠ L⊠ · · ·⊠ L .

Then there is a natural action of Sn on (Kn;⊠nL). We obtain the following:

Lemma 7.2.1. ∪ni=1K
[i]
0 is an Sn-invariant subcomplex of Kn.

8 Relative chain complexe with a local system

8.1 Chain complex with a local system

Let K be a simplicial complex, we let Kord denote a set of all ordered simplexes
of K (see [7] Definition 9.1.1) and Kori a set of all oriented simplexes of K (see
[7] Definition 9.1.3). If ϕ is an ordered simplex of σ, where σ is a q-simplex of K,
then σ is said to be the simplex under ϕ. We put σ = ⟨ϕ⟩. Let ϕ be an ordered
simplex over a q-simplex σ and [ϕ] the equivalence class determinded by ϕ. We
have a sequence of forgetting maps:

Kord → Kori → K, ϕ 7→ [ϕ] 7→ ⟨ϕ⟩.

Let K be a simplicial complex. An ordering of K is a right-inverse K →
Kord, σ 7→ ϕσ of forgetting map Kord → K. Similarly, an orientation of K is a
right-inverse K → Kori, σ 7→ σ̂ of the forgetting map Kori → K. An ordering
σ 7→ ϕσ induces an orientation σ 7→ σ̂ = [ϕσ], called the associated orientization.
If K is an ordered simplicial complex , then the associated orientization is called
the natural orientization of K . In the case of K is an ordered simplicial complex,
the natural orientization will be chosen unless otherwise is stated explicitly.

Let K be the simplicial complex, L a local system on K. Given an orientization

K → Kori, σ := {a0, a1, ..., aq} 7→ [a0, a1, ..., aq] =: σ̂,

then any oriented chain c ∈ C•(K,L) is uniquely expressed in the formal form

c =
∑
σ∈K

uσσ̂
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such that

(1) for each σ̂ ∈ Kori, uσ ∈ Lσ,

(2) supp(c) := {σ ∈ K;uσ ̸= 0} is a finite set .

We shall often express an oriented chain c by

c =
∑
σ∈K

uσσ

for simplicity of notation.

For c1 =
∑
σ uσσ, c2 =

∑
σ vσσ ∈ C•(K,L), we define c1+c2 =

∑
σ(uσ+vσ)σ ∈

C•(K,L), then C•(K,L) becomes a C-vector space. The boundary operator is a
homomorphism of C-vector space

∂p : Cp(K,L) −→ Cq−1(K,L)

defined by

∂pc =
∑
σ∈K

∑
τ∈K

[σ̂ : τ̂ ](uσ|τ )τ̂

where τ is a principal face of σ (see [7] Definition 9.2.1) and, [σ̂ : τ̂ ] is the incidence
number (see [7] Definition 9.7.1). We can easily check that ∂2 = 0.

8.2 Relative chain complex with a local system

Let (K,K0) be a simplicial pair, L a local system on K. Then the chain complex
C•(K0,L) can be considered as a C-vector subspace of the chain complex C•(K,L)
in the natural way. We have the following:

Definition 8.2.1. Let (K,K0) be a complex pair, L a local system on K. The
quotient C-vector space C•(K,L)/C•(K0,L) is called the relative chain complex of
(K,K0;L) and is denoted by C•(K,K0;L).

The element of C•(K,K0;L) = C•(K,L)/C•(K0,L) is residual class c+C•(K0,L),
(c ∈ C•(K,L)). Then C•(K,K0;L) with the boundary operator

∂(c+ Cq(K0,L)) = ∂c+ Cq−1(K0,L), (c ∈ Cq(K,L))

becomes a chain complex. Note that the boundary operator

∂ : Cq(K0,L) → Cq−1(K0,L)

is just the restriction of the boundary operator on Cq(K,L).

Remark 8.2.2. (1) A relative q-chain c+Cq(K0,L) is a relative cycle if and only
if ∂c ∈ Cq−1(K0,L).

(2) A relative q-chain c + Cq(K0,L) is a relative boundary if and only if c =
∂d+ c′ (d ∈ Cq+1(K,L), c

′ ∈ Cq(K0,L)).
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8.3 The subdivision isomorphism

Let SdK be the subdivision of simplicial complex K, SdL = {(SdL)σ, (Sdξ)τσ}
the local system on SdK. There exists a natural chain map

(Sd : C•(K,K0;L) → C•((SdK, (SdK0; (SdL).

For any subcomplex K0 of K, we let SdK0 denote the induced subdivision of K0.
Then we have the following:

Lemma 8.3.1. The subdivision

Sd : C•(K,K0;L) −→ C•(SdK, SdK0; SdL)

is a chain homotopy equivalence.

As in the classical case where the local system L is trivial, the method of
acyclic models works out to prove this lemma. So the proof is omitted. Lemma
8.3.1 immediately imply the following:

Theorem 8.3.2. There exists an isomorphism of C-vector space:

Sd : H•(K,K0;L) −→ H•(SdK, SdK0; SdL).

9 The isomorphic relative chain complex

9.1 Group actions on relative chain complexes

Let K be a simplicial complex, G a finite group, G act on K regularly. Assume
K0 is a G-invariant subcomplex of K.

Let π : K → K/G be the canonical simplicial map, then

π : (K,K0) → (K/G,K0/G)

is a canonical simplicial map.

Let L be a local system on K. An action of G on (K,K0;L) induces an action
of G on the chain complex C•(K,K0;L). For any c ∈ C•(K;L), c =

∑
σ∈K uσσ,

the action of g ∈ G on c is given explicitly by

gc = g
∑
σ∈K

uσσ =
∑
σ∈K

(guσ)(gσ),

where uσ ∈ Lσ is defined in Definition 4.3.3, and g : Lσ → Lgσ, u 7→ gu is defined
by

(gu)(a) = g · u(g−1a), a ∈ gσ.

Hence we have the following :
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Lemma 9.1.1. Let L be a local system on K/G, then the canonical simplicial
map π : (K,K0) → (K/G,K0/G) induces a chain map

π : C•(K,K0;π
∗L) → C•(K/G,K0/G;L),

c+ C•(K0;π
∗L) 7→ πc+ C•(K0/G;L)

where πc =
∑
σ πσ(uσ)π(σ)

and π : (π∗L)σ → Lπ(σ), uσ 7→ πσ(uσ) is defined by

(πσ(uσ))(a) = (π(π|σ)−1(a) ◦ uσ ◦ (π|σ)−1)(a), a ∈ π(σ),

π|σ : σ → π(σ) being a restriction of π to σ ∈ K.

9.2 The transfer

Let C•(K,K0;π
∗L)G be the G-invariant part of C•(K,K0;π

∗L), i.e.

C•(K,K0;π
∗L)G

= {c+ C•(K0;π
∗L) ∈ C•(K,K0;π

∗L);hc ≡ c mod C•(K0;π
∗L) for any h ∈ G}.

Then the inclusion map C•(K,K0;π
∗L)G ↪→ C•(K,K0;π

∗L) induces a natural
chain map

π : C•(K,K0;π
∗L)G → C•(K/G,K0/G;L).

We shall prove that the chain map π is an isomorphism. To see this, we construct
its inverse chain map, called the transfer.

Definition 9.2.1. Assume G is a finite group and G acts on K regularly. Let K0

be a G-invariant subcomplex of K. The transfer

tf : C•(K/G,K0/G;L) −→ C•(K,K0;π
∗L)G

is defined by

tf(uσ + C•(K0/G;L)) 7→
1

♯G

∑
g∈G

(π∗u|gσ̃)(gσ̃) + C•(K0;π
∗L),

where σ ∈ K/G, u ∈ Lσ and σ̃ ∈ O(σ) = {σ̃ ∈ K;π(σ̃) = σ}.

By assumption, G acts on O(σ) transitively. So the sum is independent of
the choice of σ̃ ∈ O(σ). Moreover, for any σ′ ∈ K0/G and σ̃′ ∈ O(σ′), we have
gσ̃′ ∈ K0 since K0 is G-invariant. This implies that 1

♯G

∑
g∈G(π

∗u|gσ̃′)(gσ̃′) ∈
C•(K0;π

∗L). So this definition is well-defined.

Lemma 9.2.2. tf(uσ + C•(K0/G;L)) ∈ C•(K,K0;π
∗L)G.

Proof. By Definition 9.2.1, for h ∈ G and c = uσ + C•(K0/G;L),

tf(c) =
1

♯G

∑
g∈G

(π∗u|gσ̃) · (gσ̃) + C•(K0;π
∗L).
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For any h ∈ G,

h · 1

♯G

∑
g∈G

(π∗u|gσ̃) · (gσ̃) =
1

♯G

∑
g∈G

h(π∗u|gσ̃) · (hgσ̃).

On the other hand, for any σ̃ ∈ O(σ) and any a ∈ hσ̃,

(h · (π∗u|σ̃))(a) = (π∗u|σ̃)(h−1(a))

= u(π(h−1(a)) = u(π(a)) = (π∗u|hσ̃)(a),

this implies that h · (π∗u|σ̃) = π∗u|hσ̃. Then h · tf(uσ) = tf(uσ). Hence for any
h ∈ G,

h · tf(uσ) ≡ tf(uσ) mod C•(K0;L).

This establishes the lemma.

Lemma 9.2.3. The transfer is the inverse of the natural chain map π, i.e.

π ◦ tf = id|C•(K/G,K0/G;L)

tf ◦ π = id|C•(K,K0;π∗L)G .

Proof. For any g ∈ G and σ̃ ∈ O(σ), we have πσ̃(gσ̃) = σ, where πσ̃ :
(π∗L)σ̃ → Lπ(σ̃) = Lσ. Then πσ(π

∗u|gσ̃) = u|πσ(gσ̃) = u|σ = uσ ∈ Lσ. Hence

πσ ◦ tf(c+ C•(K0/G;L)) =π · tf(
∑

σ∈K/G

uσ · σ + C•(K0/G;L))

=π(
1

♯G

∑
g∈G

∑
σ∈K/G

(π∗u|gσ̃) · gσ̃ + C•(K0;π
∗L))

=
1

♯G

∑
g∈G

∑
σ∈K/G

π(π∗u|gσ̃) · π(gσ̃) + C•(K0/G;L)

=
1

♯G

∑
g∈G

∑
σ∈K/G

uσ · σ + C•(K0/G;L)

=
∑

σ∈K/G

uσ · σ + C•(K0/G;L).

This shows π ◦ tf = id|C•(K/G,K0/G;L). On the other hand, let

c+ C•(K0;π
∗L) =

∑
σ∈K

uσ · σ + C•(K0;π
∗L)

be any element of C•(K,K0;π
∗L)G, where uσ ∈ (π∗L)σ. Similarly we have

π∗πσ(uσ)|σ = uσ for πσ : (π∗L)σ → Lπ(σ). Then

π(c+ C•(K0;π
∗L)) =

∑
σ∈K

πσ(uσ) · π(σ) + C•(K0/G;L)
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and hence

(tf ◦ π)(c+ C•(K0;π
∗L)) =

1

♯G

∑
g∈G

∑
σ∈K

(π∗πσ(uσ)|gσ) · (gσ) + C•(K0, π
∗L)

=
1

♯G

∑
g∈G

∑
σ∈K

g(π∗πσ(uσ)|σ) · (gσ) + C•(K0;π
∗L)

=
1

♯G

∑
g∈G

∑
σ∈K

(guσ) · (gσ) + C•(K0;π
∗L)

=
1

♯G
g
∑
g∈G

∑
σ∈K

uσ · σ) + C•(K0;π
∗L)

=
1

♯G

∑
g∈G

gc+ C•(K0;π
∗L)

=
1

♯G

∑
g∈G

c+ C•(K0;π
∗L)

=c+ C•(K0;π
∗L).

This shows tf ◦ π = id|C•(K,K0;π∗L)G . Hence the lemma is established.

Lemma 9.2.2 and Lemma 9.2.3 induce the following:

Theorem 9.2.4. Let G be a finite group, G act on K regularly and K0 be G-
invariant. Then the chain map

π : C•(K,K0;π
∗L)G −→ C•(K/G,K0/G;L)

is an isomorphism.

Corollary 9.2.5. If G is a finite group, G acts on K regularly and K0 is G-
invariant, then the transfer induces an isomorphism

tf : H•(K/G,K0/G;L) −→ H•(C•(K,K0;π
∗L)G).

Moreover, we have the following:

Theorem 9.2.6. ([7] Theorem 12.3.2) There exists a natural equivalence i∗ in-
duces an isomorphism

i∗ = (i∗)C• : H•(C
G
• ) −→ H•(C•)

G.

Composing these isomorphisms in Corollary 9.2.5 and Theorem 9.2.6, we obtain
the following:

Corollary 9.2.7. Let G be a finite group, G act on K regularly and K0 be G-
invariant. Then there exists an isomorphism of C-vector space:

tf : H•(K/G,K0/G;L) −→ H•(K,K0;L)
G.
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10 The relative chain complex of external prod-
ucts

10.1 The cross product

Let (Ki,K0i) be the ordered simplicial pairs, Li the local systems on Ki (i =
1, 2, , ..., n). The external product of (Ki,K0i;Li), (j ∈ J(q)) is defined in Section
7.1 and let σ = (σ1, . . . , σn) ∈ Σ(q), and j = (j1, . . . , jn) ∈ J(q). We denote by
⟨σ; j⟩ a simplex of K (see Section 7.1). We put L = L1 ⊠ L2 ⊠ · · ·⊠ Ln.

Definition 10.1.1. The cross product

C•(K1,K01;L1)⊗ · · · ⊗ C•(Kn,K0n;Ln) −→ C•(K,M ;L)

(u1σ1+C•(K01;L1))⊗· · ·⊗(unσn+C•(K0n;Ln)) 7→ u1σ1×· · ·×unσn+C•(M ;L)

is a chain map defined by

u1σ1 × u2σ2 × · · · × unσn =
∑
j∈J(q)

(sgnj)u⟨σ;j⟩ · ⟨σ; j⟩

where ui ∈ Li, σi ∈ Ki (i = 1, 2, ..., n) and u⟨σ;j⟩ ∈ L⟨σ;j⟩ is defined by

u⟨σ;j⟩(a) = u1(a1)⊗ u2(a2)⊗ · · · ⊗ un(an)

for a1 × a2 × · · · × an ∈ ⟨σ; j⟩.

10.2 Sn-equivariance of the cross product

We shall give an Sn-equivariance of the cross product. To see this, we define a
chain isomorphism for any τ ∈ Sn as follows.

(i) For a weight (q1, . . . , qn), put

∆(x1, . . . , xn; q1, . . . , qn) =
∏
i<j

(xi − xj)
qiqj .

(ii) For τ ∈ Sn, the weight signature of τ with weight q is the number sgnqτ ∈
{±1} defined by

∆(xτ(1), xτ(2), . . . , xτ(n); qτ(1), qτ(2), . . . , qτ(n)) = (sgnqτ)∆(x1, . . . , xn; q1, . . . , qn).

For any τ ∈ Sn, define

τ : C•(K1,K01;L1)⊗ · · · ⊗ C•(Kn,K0n;Ln)

→ C•(Kτ(1),K0τ(1);Lτ(1))⊗ · · · ⊗ C•(Kτ(n),K0τ(n);Lτ(n))

by

(τ(u1σ1 + C•(K01;L1))⊗ · · · ⊗ (unσn + C•(K0n;Ln)))

= sgnq(τ)((uτ(1)στ(1) + C•(K0τ(1);Lτ(1)))⊗ · · · ⊗ (uτ(n)στ(n) + C•(K0τ(n);Lτ(n))),
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where σ = (σ1, . . . , σn) ∈ Σ(q) and ui ∈ Lσi (i = 1, . . . , n).

Note that

τ : (K,M ;L) → (τK, τM ; τL)

is an isomorphism (see Section 7.2). By Definition 10.1.1 and the chain isomor-
phism defined above, we can easily show the following:

Lemma 10.2.1. For any τ ∈ Sn, there is a commutative diagram of chain com-
plexes:

C•(K1,K01;L1)⊗ · · · ⊗ C•(Kn,K0n;Ln) −−−−→ C•(K,M ;L)

τ

y yτ
C•(Kτ(1),K0τ(1);Lτ(1))⊗ · · · ⊗ C•(Kτ(n),K0τ(n);Lτ(n)) −−−−→ C•(τK, τM ; τL)

10.3 The special case

Let us consider the special case where

(K,K0;L) = (K1,K01;L1) = · · · = (Kn,K0n;Ln),

we put

n⊗
C•(K,K0;L) := C•(K,K0;L)⊗ · · · ⊗ C•(K,K0;L).

C•(K
n,M ;⊠nL) := C•((K,K0;L)× · · · × (K,K0;L)).

Lemma 10.3.1. The cross product

n⊗
C•(K,K0;L) → C•(K

n,M ;⊠nL)

is a chain homotopy equivalence.

We can use the method of acyclic models to prove this lemma as the classical
case where the local system is trivial. So we omit the proof here.

The group Sn acts on the chain complex ⊗nC•(K,K0;L), C•(K
n,M ;⊠nL),

and hence on the homology groups H•(⊗nC•(K,K0;L)), H•(C•(K
n,M ;⊠nL)).

Using Lemma 10.2.1 and Lemma 10.3.1, we obtain the following:

Lemma 10.3.2. The cross product

H•(⊗nC•(K,K0;L)) −→ H•(C•(K
n,M ;⊠nL))

is an Sn-equivariant isomorphism.
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11 The Künneth formulae

In the paper, any local system is a local system of C-vector space. Then the
Künneth theorem simplifies considerably in this case:

Theorem 11.1. (The Künneth formula) Suppose the chain complexes C• and
D• ar those of C-vector spaces, and the boundary operators are vector space ho-
momorphisms. Then Hp(C•) and Hq(D•) are C-vector spaces, and there is a
natural isomorphism of C-vector spaces⊗

p+q=m

Hp(C•)⊗Hq(D•) −→ Hm(C• ⊗D•).

As an application of the Künneth formula, we obtain the following:

Theorem 11.2. Let C• be a chain complex of C-vector space such that Hq(C•) = 0
if q ̸= r. Then we have

(1) Hq(⊗nC•) = 0 if q ̸= nr, and
(2) there exists a natural isomorphism of C-vector space:

ζ :

n⊗
Hr(C•) −→ Hnr(⊗nC•)

where ζ is induced from the inclusion map

n⊗
Zr(C•) −→ Znr(⊗nC•).

Proof. We show this theorem by induction on n. If n = 1, there is nothing to
show. Assume that the theorem holds for n − 1 with n ≥ 2. Put D• = ⊗n−1C•,
by virtue of theorem 11.1, there exists an isomorphism⊗

p+q=m

Hp(C•)⊗Hq(⊗n−1C•) −→ Hm(⊗mC•).

Since Hp(C•) = 0 (p ̸= r), we have an isomorphism

ηm,n : Hr(C•)⊗Hm−r(⊗n−1C•) −→ Hm(⊗nC•),

where ηm,n is induced from the inclusion map

Zr(C•)⊗ Zm−r(⊗n−1C•) −→ Zm(⊗nC•).

If m ̸= nr, then by induction assumption, Hm−r(⊗n−1C•) = 0. So we have
Hm(⊗nC•) = 0. This establishes (1) of Theorem.

To prove (2), we consider a commutative diagram of C-vector space:⊗n
Hr(C•)

1⊗ζn−1−−−−−→ Hr(C•)⊗H(n−1)r(⊗n−1C•)∥∥∥ yη⊗n
Hr(C•) −−−−→

ζn
Hnr(⊗nC•)
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where ζn is induced from the inclusion map

n⊗
Zr(C•) −→ Znr(⊗nC•)

By induction assumption, ζn−1 is C-vector space isomorphism. Since Hr(C•) is
C-vector space, 1⊗ ζn−1 is also an isomorphism. Moreover, the isomorphism ηm,n
implies that ηnr,n is an isomorphism. Hence ζn is an isomorphism.

12 Twisted relative homology associated with the
configuration space

12.1 The configuration space of n-points

Let K be a order simplicial complex, L a local system of C-vector space on K. In
the paper [7], the configuration space of n-points in K is defined by the quotient
simplicial complex

Kn := Sd2Kn/Sn.

Note that the natural action of Sn on Sd2Kn is regular.
Let K0 be a subcomplex of K. The external product of n-factors (K,K0;L)

is denoted by (Kn,M ;⊠nL), see Section 7.2. By Lemma 6.3.1 and Lemma 7.2.1,
we obtain the following:

Lemma 12.1.1. Sd2M is a subcomplex of M which is invariant under the action
of Sn. We denote Sd2M/Sn by Mn.

12.2 Twisted homology of the configuration space

Let L , M be the local systems of C-vector spaces on K, Kn, respectively, SdL
the local system on SdK. We obtain a local system Sd2 ⊠n L on Sd2Kn. We let
π : Sd2Kn → Kn denote a canonical projection.

Theorem 12.2.1. Assume π∗M = Sd2⊠nL. Then there exists a natural isomor-
phism of C-vector spaces:

H•(Kn,Mn;M) −→ H•(⊗nC•(K,K0;L))
Sn .

Proof. We can apply Corollary 9.2.4 to obtain an isomorphism

H•(Kn,Mn;M) = H•(Sd
2Kn,Sd2M ;π∗M)Sn

= H•(Sd
2Kn,Sd2M ; Sd2 ⊠n L)Sn .

On the other hand, by Theorem 8.3.2 we have an Sn-equivariant isomorphism

H•(K
n,M ;⊠nL) −→ H•(Sd

2Kn,Sd2M ; Sd2 ⊠n L)

which induces an isomorphism

H•(Sd
2)−1 : H•(Sd

2Kn, Sd2M ; Sd2 ⊠n L)Sn −→ H•(K
n,M ;⊠nL)Sn .
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Hence we have an isomorphism

H•(Kn,Mn;M) −→ H•(K
n,M ;⊠nL)Sn .

Moreover, by Corollary 10.3.2 we have

H•(⊗nC•(K,K0;L))
Sn −→ H•(K

n,M ;⊠nL)Sn .

These isomorphism establish the desired isomorphism.
We have the following main theorem.

Theorem 12.2.2. Assume π∗M = Sd2⊠nL and Hq(K,K0;L) = 0 (q ̸= r). Then
we have

(1) Hq(Kn,Mn;M) = 0 (q ̸= nr),

(2) Hnr(Kn,Mn;M) ≃ {
⊗n

Hr(K,K0;L)}Sn is a canonical isomorphism of C-
vector space.

When r is odd, (2) implies that there is an isomorphism

Hnr(Kn,Mn;M) ≃ ∧nHr(K,K0;L),

where ∧nHr(K,K0;L) denotes n
th exterior power.

Proof. If q ̸= nr, Theorem 11.2 (1) implies that Hq(⊗nC•(K,K0;L)) = 0 and
henceHq(⊗nC•(K,K0;L))

Sn = 0. Using Theorem 12.2.1 we obtainHq(Kn,Mn;M) =
0. Next, we consider the case q = nr. By Theorem 11.2 (2), we have an isomor-
phism

n⊗
Hr(K,K0;L)) ≃ Hnr(⊗nC•(K,K0;L)),

which induce an isomorphism

{
n⊗
Hr(K,K0;L))}Sn ≃ Hnr(⊗nC•(K,K0;L))

Sn .

By Theorem 12.2.1, we obtain an isomorphism

Hnr(Kn,Mn;M) ≃ {
n⊗
Hr(K,K0;L)}Sn .

We have obtained the desired isomorphism.

13 Local systems on a bouquet

13.1 Bouquets

We construct a bouquet Bm as follows. Bm is a 1-dimensional ordered simplicial
complex whose vertices are ak1, ak2,...,ak,lk−1,ck1,ck2 (k = 0, 1, ...,m), c and whose
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ordered 1-simplexes are (c, ak1),...,(c, ak,lk−1), and (c, ck1),(ck1, ck2), (ck2, c), (k =
0, 1, ...,m).

Given m-points x1, x2, ..., xm in C, we take △k = △(c, ck1, ck2) is the triangle
in C with vertices c, ck1, ck2 so that xk is in the interior of △k and xl(k ̸= l) is
in the outside of △k. The orientation of △k is given by −−−−→cck1ck2. We may assume
that this orientation coincides with the anti-clockwise orientation of C.

We take K = Bm with vertices ak1, ..., ak,lk−1, ck1, ck2 (k = 0, 1, . . . ,m) and c,
K0 is a 0-dimensional simplicial complex with vertices ak1, ..., ak,lk−1(k = 0, 1, . . . ,m).
The topological realization |K| of K is the union of m-triangles △k and n-edges
[c, aik] (i = 1, 2, ..., lk − 1)

|K| = (
m∪
k=1

△k) ∪ (
m∪
k=0

lk−1∪
i=1

[c, aki]).

13.2 Local systems on a bouquet

Let e1, e2, ..., em ∈ C×, K = Bm the m-bouquet. Put e = (e1, e2, ..., em). We
define the local system L = Le of C-vector spaces on K by

Lck1
= Lck2

= Lc = C (k = 1, 2, ...,m)

Lak1
= Lak2

= · · · = Lak,lk−1
= C (k = 0, 1, ...,m)

and

ξck1,c : Lc → Lck1
, ξck1,c = idC

ξck2,ck1
: Lck1

→ Lck2
, ξck2,c = idC

ξc,ck2
: Lck2

→ Lc, ξc,ck2
= ek · idC

ξaki,c : Lc → Laki
, ξaki,c = idC.

The chain groups are

C0(K,L) =
m⊕
k=1

(Cck1 ⊕ Cck2)⊕ Cc
m⊕
k=0

lk−1⊕
i=1

Caki,

C1(K,L) =
m⊕
k=1

{C(c, ck1)⊕ C(ck1, ck2)⊕ C(ck2, c)}
m⊕
k=0

lk−1⊕
i=1

C(c, aki).

and the boundary map ∂ : C1(K,L) → C0(K,L) is defined by

∂((

m∑
k=1

uk(c, ck1) + vk(ck1, ck2) + wk(ck2, c)) +

m∑
k=0

lk−1∑
i=1

ski(c, aki))

=
m∑
k=1

{(uk − vk)ck1 + (vk − wk)ck2}+
m∑
k=1

(ekwk − uk)c

+
m∑
k=0

lk−1∑
i=1

ski(aki − c),
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where uk, vk, wk, ski ∈ C. Let

Φ : Cm → C (u1, ..., um) 7→
m∑
k=1

(ek − 1)uk.

The boundary group B0(K;L) consists of elements of the form:

m∑
k=1

(vkck1 + wkck2) +
m∑
k=1

{(ek − 1)uk − ek(vk + wk)}c

+
m∑
k=0

nk−1∑
i=1

ski(aki − c),

where uk, vk, wk, ski ∈ C. The cycle group Z1(K;L) consists of elements of the
form:

m∑
k=1

ukσk,

where σk = (c, ck1) + (ck1, ck2) + (ck2, c), and (u1, u2, ..., um) ∈ kerΦ.

13.3 Homology of (K,K0;L)

Clearly, we have the following:

Lemma 13.3.1. (1) H0(K;L) = 0 if and only if Φ : Cm → C is surjective.
(2) H1(K;L) = Z1(K;L) ≃ kerΦ.

By the lemma, we can easily obtain the following:

Proposition 13.3.2. If Φ : Cm → C is surjective, then

(1) Hq(K;L) = 0 if q ̸= 1,

(2) H1(K;L) ≃ Ve,

where Ve = {(u1, u2, ..., um) ∈ Cm;
∑m
i=1(1− ei)ui} = 0.

Note that

C0(K0;L) =
m⊕
k=0

lk−1⊕
i=1

Caki,

and we have ∂c = 0 for c ∈ C0(K0;L). Hence we have

H0(K0;L) ≃ Cn−m−1,

where n =
∑m
k=0 lk.

From the Lemma 13.3.1 and the homology long exact sequence for the pair
(K,K0), we have

Hp(K,K0;L) ≃

{
0 p ̸= 1

Cn−2 p = 1

By Theorem 12.2.2, we obtain the following:
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Theorem 13.3.3. Let π : Sd2Kn → Kn be the canonical projection, M a local
system on K. Assume that π∗M = Sd2⊠nL, where L = Le, and that Φ : Cm → C
is surjective. Then

Hq(Kn,Mn;M) ≃

{
0 q ̸= n

∧nH1(K,K0;L) q = n

14 Relative Singular homology with local systems

14.1 The singular local systems

Let X be a topological space., L a local system of C-vector space on X. Let ∆q

be the standard q-simplex with vertices v0, v1, ..., vq. For any singular q-simplex
σ : ∆q → X, let γσ be the curve in X defined by

γσ(t) := σ((1− t)v0 + tv1) (0 ≤ t ≤ 1).

There is an isomorphism

ξ(γσ) : Lσ(v0) → Lσ(v1).

We define the singular chain complex with coefficients in the local system L as
follows:

Definition 14.1.1. A q-chain c ∈ Sq(X;L) is a formal sum:

c =
∑
σ

uσ · σ

where the sum is taken over all singular q-simplex σ in X, uσ ∈ Lσ(v0) and uσ = 0
except for a finite number of σ’s. The boundary operator

∂ : Sq(X;L) −→ Sq−1(X;L)

is defined by

∂c :=
∑
σ

{ξ(γσ)(uσ) · ∂0σ +

q∑
i=1

(−1)iuσ · ∂iσ},

where ∂iσ is the ordered (q − 1)-simplex defined by ∂iσ = σ ◦ ∆q
i restricted to

{0, 1, . . . , q − 1} for i = 0, 1, . . . , q (see [7] Remark 9.1.4, Definition 9.2.6). For
c′ =

∑
σ u

′
σ · σ, we define

c+ c′ :=
∑
σ

(uσ + u′σ)σ.

If X is a topological space and A is a subspace of X, the local system L on
X restricted to A induces a local system L|A on A, we also denote L|A by L.
There is a natural inclusion map S•(A;L) → S•(A;L). The quotient chain com-
plex S•(X,A;L) := S•(X;L)/S•(A;L) with boundary operator ∂ : Sp(X,A;L) →
Sp−1(X,A;L) is called the singular chain complex of the pair (X,A) and its ho-
mology group H•(X,A;L) is called the singular homology of the pair (X,A) with
coefficients in the local system L.
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14.2 Homology invariance of the singular homology functor

Let (X,A), (Y,B) be the topological space pairs, I a local system on Y . A
continuous map f : X → Y induces a local system f∗I on X, which is called the
pull-back of I by f .

Using the five-lemma, we obtain the following:

Lemma 14.2.1. Let f : (X,A) → (Y,B) be a continuous map, I a local system
on Y . If f : X → Y and f |A : A→ B are homotopy equivalences, then

f∗ : H•(X,A; f
∗I) −→ H•(Y,B; I)

is an isomorphism.

15 Comparison theory

15.1 The comparison theorem

Let (K,K0) be a simplicial pair, (|K|, |K0|) a topological pair of (K,K0). Giving
a singular local system L = (L, ξ) on |K|, there exists an induced simplicial local
system θKL = (θKL, θKξ) on K defined by

(1) for any vertex a ∈ VK , (θKL)a := L⟨a⟩, and

(2) for any {a, b} ∈ K(1), (θKξ)ba := ξ(γba) : L⟨a⟩ → L⟨b⟩, here γba(t) := [0, 1] →
|K| is the curve in |K| defined by γba(t) := t⟨a⟩+ (1− t)⟨b⟩ (0 ≤ t ≤ 1).

Definition 15.1.1. The chain map θK : C•(K; θKL) → S•(|K|;L) is defined by

θK(
∑
σ

uσ · σ) :=
∑
σ

ũσ · σ̃,

where for any σ = {a0, a1, ...aq} ∈ K, we define

σ̃ : ∆q → |K|,
q∑
i=0

tivi 7→
q∑
i=0

ti⟨ai⟩ (ti ≥ 0,
∑
i

ti = 1)

and for any u ∈ (θKL)σ, we define

ũ = u(a0) ∈ Lσ̃(v0) = L⟨a0⟩.

For any q-simplex σ of the subcomplex K0 of K, we can define the singular
q-simplex σ̃ : ∆q → |K0|, then θK maps C•(K0; θKL) to S•(|K0|;L). Hence the
chain map θK defined in Definition 15.1.1 induces a chain map

θK : C•(K,K0; θKL) −→ S•(|K|, |K0|;L)

and a homomorphism of C-vector space

θK : H•(K,K0; θKL) −→ H•(|K|, |K0|;L).

Theorem 15.1.2. This homomorphism is an isomorphism of C-vector space.

Proof. Refer to the proof of the classical case where the local system is trivial.
Since we can prove this theorem in an almost similar manner, we omit it.



Twisted relative homology of the configuration spaces 97

15.2 Homology of the polyhedron

Let (X,A) be a polyhedral pair with underlying simplicial structure ((K,K0), f),
L a local system on X. Then we have an isomorphism

f∗ : H•(|K|, |K0|; f∗L) −→ H•(X,A;L).

By Theorem 15.1.2, we have an isomorphism

θK : H•(K,K0; θKf
∗L) −→ H•(|K|, |K0|; f∗L).

Composing these isomorphisms, we obtain the following:

Proposition 15.2.1. There exists an isomorphism:

H•(K,K0; θKf
∗L) ≃ H•(X,A;L).

Remark 15.2.2. Proposition 15.2.1 shows that if (X,A) is a polyhedral pair
(X,A) with underlying simplicial structure ((K,K0), f), then the singular homol-
ogy of (X,A) is computed as the simplicial homology of (K,K0).

16 External product for singular local systems

Let (Xi, Ai) (i = 1, 2, ..., n) be the topological spaces with the local systems Li
on Xi. Then the external product of (X1, A1;L1), (X2, A2;L2), . . . , (Xn, An;Ln)
is defined as follows:

• X := X1 ×X2 × · · · ×Xn,

• A[i] := X1 × · · · ×Ai × · · · ×Xn, A := A[1] ∪A[2] ∪ · · · ∪A[n],

• L = (L, ξ) := L1 ⊠ L2 ⊠ · · ·⊠ Ln = (L1, ξ1)⊠ (L2, ξ2)⊠ · · ·⊠ (Ln, ξn),

• for each point p = (p1, p2, ..., pn) ∈ X

Lp := L1,p1 ⊗ L2,p2 ⊗ · · · ⊗ Ln,pn ,

• for each curve γ : [0, 1] → X with γ(0) = p = (p1, p2, ..., pn), γ(1) = q =
(q1, q2, ..., qn), we define

ξ(γ) = ξ1(γ1)⊗ ξ2(γ2)⊗ · · · ⊗ ξn(γn) : Lp → Lq.

The triple (X,A;L) is denoted by (X1, A1;L1)⊠ · · ·⊠ (Xn, An;Ln).
In particular, when

(X1, A1;L1) = · · · = (Xn, An;Ln),

we denote Xi, Ai,Li as X,A,L, respectively, and write

(Xn, N ;⊠nL) = (X,A;L)⊠ · · ·⊠ (X,A;L),

where N :=
∑n
i=1N

[i] for N [i] = X × · · · ×
i

Ă× · · · ×X (i = 1, 2, ..., n).
The group Sn acts on the product space Xn by permutation of n points which

induces an action on N .
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Definition 16.1. The quotient space

Xn := Xn/Sn

is called the (topological) configuration space of n points in X. Nn := N/Sn is a
subspace of Xn.

17 Twisted singular homology of the configura-
tion space

17.1 Naturality of | · | with respect to a group action

Let (K,K0) be a simplicial pair, G a finite group. G acts on K regularly. Let
π : K → K/G be the canonical simplicial projection, p : |K| → |K|/G the
canonical topological projection, respectively. Then we have the following:

Lemma 17.1.1. If G acts on K regularly, then there exists a homeomorphism
χ : |K/G| → |K|/G such that the following diagram is commutative

|K| |K|

|π|
y yp

|K/G| −−−−→
χ

|K|/G

Proof. See [3] p.117.

Similarly, in the case of simplicial pair, we have the following:

Lemma 17.1.2. Let K0 be a G-invariant subcomplex of K and G act on K
regularly. Then

χ||K0/G| : |K0/G| → |K0|/G

is a homeomorphism.

Proof. In fact, if K0 is G-invariant, a regular action of G on K implies that
on K0. It follows that χ||K0/G| is a homeomorphism.

Lemma 17.1.3. (1) For any simplicial complex K, we have

|K| ∼= |SdK|.

If a group G acts on K, then this homeomorphism is G-equivariant.
(2) For any ordered simplicial complex K,

|Kn| ∼= |K|n

is Sn-equivariant.

Proof. See [7] Lemma 19.1.1 and Lemma 19.2.2.
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By Lemma 17.1.3, we can easily obtain the homeomorphisms φ and ψ as fol-
lows.

φ : (|K|, |K0|) ∼= (|SdK|, |SdK0|),
ψ : (|Kn|, |M |) ∼= (|K|n, ||M ||)

where ||M || := ∪ni=1||K [i]|| = ∪ni=1|K|×· · ·×|K0i|×. . . |K| and ψ is Sn-equivariant
homeomorphism. Note that the homeomorphism φ induces an Sn-equivarian
homeomorphism

φ : (|Sd2Kn|, |Sd2M |) ∼= (|Kn|, |M |).

17.2 Twisted relative singular homology of the configura-
tion space

Let X, Y be the topological spaces. For any continuous map f : X → Y , we define
fn : Xn → Y n by

fn(p1, p2, ..., pn) = (f(p1), f(p2), ..., f(pn)).

This map is Sn-equivariant. Hence it follows that we have a continuous map

fn := fn/Sn : Xn := Xn/Sn → Y n/Sn =: Yn.

Let (X,A) be a polyhedral pair with underlying structure ((K,K0), f), (|K|, |K0|)
the topological space pair of (K,K0). Then f : |K| → X and f ||K0| : |K0| → A
are homotopy equivalences. So the following lemma holds:

Lemma 17.2.1. Let f : (|K|, |K0|) → (X,A) be as above. The homotopy equiv-
alences f : |K| → X and f ||K0| : |K0| → A induce the Sn-equivariant homotopy
equivalences

fn : |K|n → Xn

and
f |∪n

i=1||K[i]|| : ∪ni=1||K [i]|| → ∪ni=1A
[i],

where the symbol || · || is same as in Section 17.1.

Here we use the following diagram of continuous maps:

|Sd2Kn| |Sd2Kn| φ−−−−→ |Kn| ψ−−−−→ |K|n fn

−−−−→ Xny|πSd2Kn |
yπSd2Kn

yπ|Kn|

yπ|K|n

yπXn

|Kn| −−−−→
χ

|Sd2Kn|/Sn −−−−→
φ/Sn

|Kn|/Sn −−−−→
ψ/Sn

|K|n −−−−→
fn

Xn

where χ is a homeomorphism obtained by Lemma 17.1.1. Hence, a continuous
map g : |Kn| → Xn defined by

g := fn ◦ (ψ/Sn) ◦ (φ/Sn) ◦ χ

is a homotopy equivalence between |Kn| and Xn and g||M/Sn| : |M/Sn| → Nn
is also a homotopy equivalence between |M/Sn| and Nn. Hence we obtain the
following:
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Lemma 17.2.2. (Xn, Nn) is a polyhedral pair with underlying simplicial structure
((Kn,Mn), g).

Let LX , LXn be the local systems on X, Xn, respectively. We define the
simplicial local systems LK and LKn as follows:

LK := θK ◦ f∗LX , LKn := θKn ◦ g∗LXn .

Put πXn : Xn → Xn. If π
∗
XnLXn = ⊠nLX , then

π∗
Sd2KnLKn = Sd2 ⊠n LK

where π∗
Sd2KnLKn : Sd2Kn → Kn is the canonical projection (see [7] Lemma

21.3.2). We have the following main theorem.

Theorem 17.2.3. Let (X,A) be a polyhedral pair with underlying simplicial struc-
ture ((K,K0), f). Let LX and LXnbe singular local systems of C-vector spaces on
X, Xn, respectively. Assume that π∗

XnLXn = ⊠nLX , where πXn : Xn → Xn is
the canonical projection. Then

(1) there exists an isomorphism

H•(Xn, Nn;LXn) ≃ H•(⊗nC•(K,K0;LK))Sn ,

where LK is the simplicial local system of C-vector space on K defined by LK =
θK ◦ f∗LK .

(2) Assume further that Hq(K,K0;LK) = 0 if q ̸= r, then

Hq(Xn, Nn;LXn) = 0 q ̸= nr

and there exists an isomorphism

Hnr(Xn, Nn;LXn) ≃

{
∧nHr(K,K0;LK) (r : odd)

⊙nHr(K,K0;LK) (r : even)

where the symbol ⊙ means the symmetric power and ∧ means the exterior power.

Proof. By Lemma 17.2.2 and Proposition 15.2.2, we have

H•(Xn, Nn;LXn) ≃ H•(Kn,Mn;LKn),

where LKn = θKn ◦ g∗LXn . By assumption we have π∗
Sd2KnLKn = Sd2 ⊠n LK .

using Theorem 12.2.1, we obtain

H•(Kn,Mn;LKn) ≃ H•(⊗nC•(K,K0;LK))Sn .

Combining the isomorphisms above, we obtain the first assertion (1).
By virtue of Theorem 12.2.2, we obtain the second assertion (2). This completes

the proof of the theorem.
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