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Abstract. In this paper we will apply the stability of doubly Feller property

of resolvent with multiplicative functionals in our previous paper [10] to

generalized Feynman-Kac functionals.

1 Introduction

Let (E, d) be a locally compact separable metric space, E∂ := E∪{∂} its one point

compactification, B(E) its Borel σ-field on E, and B(E∂) Borel σ-field on E∂ . It is

well-known that B(E∂) = B(E) ∪ {B ∪ {∂} | B ∈ B(E)}. Any function f defined

on E is extended to E∂ by setting f(∂) = 0. Denote by Bb(E) (resp. by Cb(E),

the family of bounded Borel functions on E (resp. the family of bounded contin-

uous functions on E), and by C0(E) (resp. by C∞(E)), the family of continuous

functions on E with compact support (resp. the family of continuous functions on

E vanishing at infinity).

We consider a Hunt process X = (Ω,Ft,F∞, Xt, ζ,Px)x∈E∂
defined on E∂

and denote by (Pt)t≥0 (resp. (Rα)α>0) its transition semigroup (resp. its resol-

vent kernel), that is, Ptf(x) = Ex[f(Xt)] =
∫
Ω
f(Xt(ω))Px(dω) (resp. Rαf(x) =∫∞

0
e−αtPtf(x)dt) for f ∈ Bb(E∂). Here ζ := inf{t ≥ 0 | Xt = ∂} is the life time

of X and ∂ is a cemetery point of X, that is, Xt = ∂ for all t ≥ ζ under Px for
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x ∈ E. The transition semigroup (Pt)t≥0 of X is said to have the Feller property

if the following two conditions are satisfied:

(i) For each t > 0 and f ∈ C∞(E), we have Ptf ∈ C∞(E).

(ii) For each f ∈ C∞(E) and x ∈ E, we have limt→0 Ptf(x) = f(x).

The resolvent (Rα)α>0 of X is said to have the Feller property if the following two

conditions are satisfied:

(i)’ For each α > 0 and f ∈ C∞(E), we have Rαf ∈ C∞(E).

(ii)’ For each f ∈ C∞(E) and x ∈ E, we have limα→∞ αRαf(x) = f(x).

It is known that (i) and (ii) together imply

(iii) For each f ∈ C∞(E), we have limt→0 ∥Ptf − f∥∞ = 0.

Since

Rβf =

∫ ∞

0

e−βtPtfdt and Ptf = lim
β→∞

e−tβ
∞∑

n=0

(tβ)n

n!
(βRβ)

nf, f ∈ C∞(E)

hold in (C∞(E), ∥ ·∥∞), the condition (i) is equivalent to (i)’. It is easy to see that

(ii) implies (ii)’. Conversely, the conditions (i)’ and (ii)’ imply (ii). Indeed, it is

known that these conditions together imply

(iii)’ For each f ∈ C∞(E), we have limβ→∞ ∥βRβf − f∥∞ = 0.

From (iii)’, we have

|Ptf(x)− f(x)|

≤ |Ptf(x)− βRβPtf(x)|+ |βRβPtf(x)− f(x)|

≤ 2∥βRβf − f∥∞ + β

∣∣∣∣(eβt − 1)

∫ ∞

t

e−βsPsf(x)ds−
∫ t

0

e−βsPsf(x)ds

∣∣∣∣ .
Hence, lim supt→0 |Ptf(x)−f(x)| ≤ 2∥βRβf−f∥∞ → 0 as β → ∞. Consequently,

the Feller property of (Pt)t≥0 is equivalent to the Feller property of (Rα)α>0. So

we can say that X has the Feller property if (i) and (ii), or (i)’ and (ii)’ hold.

The semigroup (Pt)t≥0 is said to have the strong Feller property if

(iv) For each f ∈ Bb(E) and t > 0, we have Ptf ∈ Cb(E).

The resolvent (Rα)α>0 is said to have the strong Feller property if

(iv)’ For each f ∈ Bb(E) and α > 0, we have Rαf ∈ Cb(E).
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When E is compact, ∂ is an isolated point of E∂ , hence any function f on E∂ with

f(∂) = 0, which is continuous on E, belongs to C∞(E). In this case, the strong

Feller property of semigroup (resp. resolvent) implies (i) (resp. (i)’).

Remark 1.1 It is well-known that the strong Feller property of (Pt)t≥0 implies the

strong Feller property of (Rα)α>0, but the converse assertion is not true. Indeed,

the following semigroups are not strong Feller, but their resolvents enjoy strong

Feller:

(1) The shift semigroup (Pt)t≥0 on R defined by Ptf(x) := f(x+ tℓ), x ∈ R, ℓ ∈
R \ {0} does not enjoy the strong Feller property, but the resolvent strong

Feller property in view of Rαf(x) = e
αx
ℓ

ℓ

∫∞
x

e−
αy
ℓ f(y)dy (resp. Rαf(x) =

e
αx
ℓ

−ℓ

∫ x

−∞ e−
αy
ℓ f(y)dy) for f ∈ Bb(R) and ℓ > 0 (resp. ℓ < 0).

(2) The semigroup (Pt)t≥0 of space-time Brownian motion (Bt, t) under P(x,τ) :=

P
(1)
x ⊗P

(2)
τ for (x, τ) ∈ R2 defined by

Ptf(x, τ) := E(x,τ)[f(Bt, t)] = E(1)
x ⊗E(2)

τ [f(Bt, t)], f ∈ Bb(R2)

does not enjoy the strong Feller property, but the resolvent strong Feller

property. Here P
(1)
x is the law for 1-dimensional Brownian motion starting

from x and P
(2)
τ is the law for uniform motion to the right starting from τ

with speed 1, i.e. E
(2)
τ [g(t)] = g(τ+t). More generally, the product semigroup

of strong Feller semigroup and the semigroup of uniform motion to the right

is not a strong Feller semigroup, but its resolvent enjoys the strong Feller

property. Indeed, for xn → x and τn → τ and f ∈ Bb(R2), we see

|Rαf(xn, τn)−Rαf(x, τ)|

≤ |eατn − eατ |
∫ ∞

τn

e−αsE(xn,0)[|f |(Bs−τn , s)]ds

+ eατ
∣∣∣∣∫ ∞

τn

e−αsE(xn,0)[f(Bs−τn , s)]ds−
∫ ∞

τ

e−αsE(x,0)[f(Bs−τ , s)]ds

∣∣∣∣
≤ |eατn − eατ |∥f∥∞/α+ eατ

∫ ∞

0

e−αs
∣∣∣1]τn,∞[(s)P

(1)
s−τn(f(·, s))(xn)

−1]τ,∞[(s)P
(1)
s−τ (f(·, s))(x)

∣∣∣ds
→ 0 as n → ∞.

Here we use that the strong Feller property of the semigroup (P
(1)
t )t≥0 of 1-

dimensional Brownian motion implies the continuity of ]0,∞[×R ∋ (t, x) 7→
P

(1)
t g(x) for any g ∈ Bb(R). On the other hand, Ptf(x, τ) = P

(1)
t f1(x)f2(τ+
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s) for f = f1 ⊗ f2, fi ∈ Bb(R) (i = 1, 2) does not enjoy Ptf ∈ Cb(R2) for

f2 /∈ Cb(R).

Under (iv)’, we see that R11 ∈ C∞(E) implies (i)’. Moreover, under (iv), R11 ∈
C∞(E) implies (i) (see [1, Proposition 1]). The semigroup (Pt)t≥0 or X is said to

have the doubly Feller property if it enjoys the both of Feller property and strong

Feller property. The Hunt process X is said to have the doubly resolvent Feller

property if its resolvent enjoys the both of Feller property and strong Feller prop-

erty. X is said to be a Feller process (resp. strong Feller process, doubly Feller

process) if it enjoys the Feller property (resp. strong Feller property, doubly Feller

property). X is said to be a resolvent strong Feller process (resp. doubly resol-

vent Feller process) if it enjoys the resolvent strong Feller property (resp. doubly

resolvent Feller property).

In [4], the stability of the doubly Feller property of a semigroup (of a part pro-

cess) with multiplicative functionals was presented, and its stability was discussed

under Feynman-Kac and Girsanov transformations. In [10], the same conditions

as in [4] also remain valid for the stability of the doubly Feller property of the

resolvent of a part process with multiplicative functionals. In this paper, we ap-

ply the stability of the doubly Feller property of the resolvent to the generalized

Feynman-Kac functionals.

Let µ1 (resp. µ2) be smooth measures in the strict sense corresponding to

a positive continuous additive functional Aµ1 (resp. Aµ2) in the strict sense with

respect to X and let µ := µ1−µ2 be the signed smooth measure in the strict sense.

We denote A by Aµ := Aµ1 − Aµ2 to emphasize the correspondence between µ

and A. Let (E ,F) be the Dirichlet form of X on L2(E;m). For a bounded finely

continuous (nearly) Borel function u on E which is strictly E-quasi continuous on
E∂ and locally in F , let Nu be the continuous additive functional of zero quadratic

variation appeared in the Fukushima decomposition u(Xt) − u(X0) (see (3.2)).

Note that Nu is not necessarily of bounded variation in general. Let F1, F2 be

non-negative bounded functions on E×E∂ which are symmetric on E×E. F1 and

F2 are extended to E∂×E∂ by setting Fi(∂, x) = Fi(x, ∂) = Fi(x, x) = 0 for x ∈ E∂

for each i = 1, 2 (actually there is no need to define the value Fi(∂, x) for x ∈ E,

i = 1, 2). We set F := F1 − F2. Then AF
t :=

∑
0<s≤t F (Xs−, Xs) (whenever it is

summable) is an additive functional of X. It is natural to consider the following

generalized non-local Feynman-Kac transforms by the additive functionals A :=

Nu +Aµ +AF of the form

eA(t) := exp(At), t ≥ 0, (1.1)
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because the process X admits many continuous additive functionals which do not

have bounded variations, and many discontinuous additive functionals.

Let us briefly state the constitution of this paper. In Section 2, we give the

stability of doubly Feller property of the resolvent with multiplicative functionals

as [10]. In Section 3, we introduce classes of local potentials and properties of

generalized Feynman-Kac and Girsanov transform. Section 4 includes the main

result of this paper, we show the stability of doubly Feller property of generalized

Feynman-Kac functionals.

2 Doubly Feller property of transformed resol-

vent

In this section, we summarize the content of [10, Section 6]. Let (Zt)t≥0 be a

multiplicative functional associated with X. Namely, for each x ∈ E, Px-a.s.:

Z0 = 1, 0 ≤ Zt < ∞, Zt ∈ Ft for t ≥ 0; and

Zt+s = Zs · (Zt ◦ θs), for all t, s ≥ 0. (2.1)

Throughout this section, we fix a non-empty open set B. The following conditions

are dependent of B:

(a)B For some t > 0, aBt := supx∈B sups∈[0,t] Ex[Zs : s < τB ] < ∞.

(a)∗B There exists p > 1 such that aBt (p) := sup
x∈B

sup
s∈[0,t]

Ex[Z
p
s : s < τB ] < ∞ for

some t > 0.

Note that (a)∗B implies (a)B . As shown in the previous paper ([10]), we can

deduce that t 7→ aBt is submultiplicative under (a)B . This implies that t 7→
log(aBt )

1/t is decreasing, aBt ≤ (aBt0)
t/t0 for all t ≥ t0 with given t0 > 0, and for

any α > αB
0 := infs∈]0,∞[ log(a

B
s )

1/s ≥ 0,
∫∞
0

e−αtaBt dt < ∞. Under (a)∗B , we

have a similar statement including α > αB
0 (p) := infs∈]0,∞[ log(a

B
s (p))

1/s ≥ 0,∫∞
0

e−αtaBt (p)dt < ∞.

(b)wB For each t > 0 and any compact subset K of B, there exists a number

p = p(K, t) > 1 such that sup
x∈K

Ex [Z
p
t ] < ∞.

(b)sB For each t > 0, there exists a number p = p(t) > 1 such that sup
x∈B

Ex [Z
p
t ] <

∞.
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(c)wB For any relatively compact open subset D of B, we have

lim
t→0

sup
x∈D

Ex[|Zt − 1| : t < τD] = 0.

(c)sB lim
t→0

sup
x∈B

Ex[|Zt − 1| : t < τB ] = 0.

When B = E, we omit B like (a) for (a)E .

Remark 2.1 (1) The condition (b)sB (resp., (c)sB) is stronger than (b)wB (resp., (c)wB).

(2) The condition (c)sB implies the condition (a)B. Indeed, under (c)sB, for any

given ε > 0, there exists δ > 0 such that supt∈[0,δ] supx∈B Ex[|Zt − 1| : t <
τB ] ≤ ε. Then we have supt∈[0,δ] supx∈B Ex[|Zt| : t < τB ] ≤ ε + 1 < ∞,

which shows (a)B.

(3) In view of [4, Remark 1.6(ii)], the conditions (a)∗B and (c)wB imply the con-

dition (c)sB

Define (QB
t )t≥0 as follows: for f ∈ Bb(E),

QB
t f(x) := Ex[t < τB : Ztf(Xt)].

By means of (2.1), we can verify that (QB
t )t≥0 forms a semigroup, not necessarily

sub-Markovian. But we have, for each t > 0,

∥QB
t f∥∞ ≤

(
sup
x∈B

Ex[Zt : t < τB ]

)
∥f∥∞ ≤ aBt ∥f∥∞

by (a)B , so that each QB
t maps Bb(E) into Bb(E). For α > α0 := infs∈]0,∞[ log a

1/s
s

and f ∈ Bb(E), we set

SB
α f(x) := Ex

[∫ τB

0

e−αtZtf(Xt)dt

]
and call (SB

α )α>α0 the resolvent of the transformed process from X by the multi-

plicative functional (Zt)t≥0 for B open subset of E.

The following two theorems have been proved in [10].

Theorem 2.1 (cf. [10, Theorem 5.1]) Suppose that X has the resolvent strong

Feller property and condition (a) and (c)w hold. Then, for f ∈ Bb(E) and α > α0,

Sαf ∈ Cb(E).
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Theorem 2.2 (cf. [10, Theorem 6.2]) Let X be a doubly resolvent Feller pro-

cess, and let B be an open subset of E. Suppose that B is regular. Under

(a)B, (b)sB, and (c)sB, for any α > αB
0 := infs∈]0,∞[ log(a

B
s )

1/s ≥ 0, we have

SB
α f ∈ C∞(B) and limα→∞ αSB

α f(x) = f(x) for f ∈ C∞(B) and x ∈ B. Suppose

further that B is relatively compact, and assume (a)∗B or there exists an open set

C with B ⊂ C such that (c)sC holds. Then SB
α f ∈ C∞(B) for f ∈ Bb(B).

3 Feynman-Kac and Girsanov transform

In this section, we summarize the content of [7, Sections 3 and 4]. Let X =

(Ω,F∞,Ft, θt, Xt,Px, x ∈ E∂) be an m-symmetric Hunt process on E and {Ft}t≥0

is the minimal (augmented) admissible filtration and θt, t ≥ 0 is the shift operator

satisfying Xs(θt) = Xs+t identically for s, t ≥ 0.

An (Ft)-adapted process {At}t≥0 with values in [−∞,∞] is said to be an

additive functional (AF in abbreviation) if the following conditions hold:

(i) At(·) if Ft-measurable for all t ≥ 0,

(ii) there exists a set Λ ∈ F∞ = σ(∪t≥0Ft) such that Px(Λ) = 1, for all x ∈ X,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A.(ω) is a function satisfying

A0 = 0, At(ω) < ∞ for t < ζ(ω) for t ≥ 0, and At+s(ω) = At(ω) + As(θtω)

for s, t ≥ 0.

An AF A is said to be a continuous additive functional (CAF in abbreviation) if

t 7→ At(ω) is continuous on [0,∞[ for each ω ∈ Λ. A [0,∞[-valued AF is called a

positive additive functional (PAF in abbreviation). If an AF {At}t≥0 is positive

and continuous with respect to t for each ω ∈ Λ, the AF is called a positive

continuous additive functional (PCAF in abbreviation).

Let S1(X) be the family of positive smooth measures in the strict sense ([6]).

We say that a PCAF in the strict sense Aν of X and a positive measure ν ∈ S1(X)

are in the Revuz correspondence if they satisfy for any t > 0, f ∈ B+(E),∫
E

f(x)ν(dx) =↑ lim
t↓0

1

t
Em

[∫ t

0

f(Xs)dA
ν
s

]
.

It is known that the family of equivalence classes of the set of PCAFs in the strict

sense and the family of positive measures belonging to S1(X) are in one to one

correspondence under the Revuz correspondence ([6, Theorem 5.1.4]).

A PAF Bt in the classical sense is said to be in the Kato class of X if

limt→0 supx∈E Ex[Bt] = 0. A PAF Bt in the classical sense is said to be in the
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local Kato class if, for any relatively compact open subset G of E, (1G ∗ B)t :=∫ t

0
1G(Xs)dBs is of Kato class (see [4, Section 2] for the PAF of (local) Kato class).

Corollary 3.1 (cf. [10, Corollary 6.1]) Let X be a doubly resolvent Feller pro-

cess. Let Bt be a PAF of local Kato class. Then the subprocess killed by e−Bt enjoys

the doubly Feller property of the resolvent.

For α > 0, there exists an α-order resolvent kernel Rα(x, y) which is defined

for all x, y ∈ E (see Lemma 4.2.4 in [6]). Since α 7→ Rα(x, y) is decreasing for

each x, y ∈ E, we can define the 0-order resolvent kernel R(x, y) := R0(x, y) :=

limα→0 Rα(x, y). R(x, y) is called the Green function of X. For a non-negative

Borel measure ν, we write Rαν(x) :=
∫
E
Rα(x, y)ν(dy) and Rν(x) := R0ν(x).

Note that Rαf(x) = Rα(fm)(x) for any f ∈ B+(E) or f ∈ Bb(E). A mea-

sure ν ∈ S1(X) is said to be in the Dynkin class (resp. Green-bounded) of X if

supx∈E Rαν(x) < ∞ for some α > 0 (resp. supx∈E Rν(x) < ∞). We also can

define Kato class and local Kato class in the sense of measures as in AFs. A mea-

sure ν ∈ S1(X) is said to be in the Kato class (resp. extended Kato class) with

respect to X if limα→∞ supx∈E Rαν(x) = 0 (resp. < 1). A measure ν ∈ S1(X)

is said to be in the local Kato class if for any compact subset K of E, 1Kν is of

Kato class. Denote by S1
D(X) (resp. S1

D0
(X)) the family of measures of Dynkin

class (resp. Green-bounded), and by S1
K(X) (resp. S1

EK(X), S1
LK(X)) the family

of measures of Kato class (resp. extended Kato class, local Kato class). Clearly,

S1
K(X) ⊂ S1

EK(X) ⊂ S1
D(X), S1

K(X) ⊂ S1
LK(X) and S1

D0
(X) ⊂ S1

D(X).

Let (N(x, dy),Ht) be a Lévy system for X, that is, N(x, dy) is a kernel on

(E∂ ,B(E∂)) and Ht is a PCAF with bounded 1-potential such that for any non-

negative Borel function ϕ on E∂ ×E∂ vanishing on the diagonal and any x ∈ E∂ ,

non-negative Borel function g on [0,∞[ and (Ft)-stopping time T ,

Ex

∑
s≤T

g(s)ϕ(Xs−, Xs)

 = Ex

[∫ T

0

∫
E∂

g(s)ϕ(Xs, y)N(Xs,dy)dHs

]
(3.1)

(see [3, A.3.33]). To simplify notation, we will write

Nϕ(x) :=

∫
E∂

ϕ(x, y)N(x, dy).

Let µH be the Revuz measure of the PCAF H. Then the jumping measure J

and the killing measure κ of X are given by

J(dxdy) =
1

2
N(x, dy)µH(dx) and κ(dx) = N(x, {∂})µH(dx).
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These measures feature in the Beurling-Deny decomposition of E :

E(f, g) = Ec(f, g) +

∫
(E×E)\diag

(f(x)− f(y))(g(x)− g(y))J(dxdy) +

∫
E

f(x)g(x)κ(dx)

for f, g ∈ Fe. Here Ec is the strongly local part of E and diag be the diagonal set

in E × E defined by diag := {(x, y) ∈ E × E | x = y}.
A function f on E is said to be locally in F in the broad sense if there exists a

nest {Gn} of finely open (nearly) Borel sets and a sequence {fn} of elements in F
such that f = fn m-a.e. on Gn. Let Ḟloc be the family of functions on E locally

in F in the broad sense. It is known that any f ∈ Ḟloc admits E-quasi continuous
m-version.

An increasing sequence {Fk} of closed sets is said to be a strict E-nest if

Px(limk→∞ σE\Fk
= ∞) = 1 m-a.e. x ∈ E. A function f defined on E∂ is said

to be strictly E-quasi continuous if there exists a strict E-nest {Fk} of closed sets

such that f |Fk∪{∂} is continuous for each k ∈ N. Denote by QC(E∂) the totality

of strictly E-quasi continuous functions on E∂ . We consider a bounded finely

continuous (nearly) Borel function u ∈ Ḟloc∩QC(E∂) satisfying µ⟨u⟩ ∈ S1
D(X). In

[9, Theorem 6.2(2)], we proved that the additive functional u(Xt)− u(X0) admits

the following strict decomposition:

u(Xt)− u(X0) = Mu
t +Nu

t t ∈ [0,∞[ Px-a.s. for all x ∈ E, (3.2)

where Mu is a square integrable martingale additive functional in the strict sense,

and Nu is a CAF in the strict sense which is locally of zero energy. Mu can be

decomposed as

Mu
t = Mu,c

t +Mu,j
t +Mu,κ

t , (3.3)

where Mu,j
t , Mu,κ

t and Mu,c
t are the jumping, killing and continuous part of Mu

respectively. Those are defined Px-a.s. for all x ∈ E by [9, Theorem 6.2(2)].

The strict decompositions (3.2) and (3.3) on [0,∞[ guarantee the extension of

the supermartingale multiplicative functional Yt on [[0, ζ[[ up to [0,∞[ (see [8,

Proposition 3.1]). Let µ⟨u⟩, µ
c
⟨u⟩, µ

j
⟨u⟩ and µκ

⟨u⟩ be the smooth Revuz measures in

the strict sense associated with the quadratic variational processes (or the sharp

bracket PCAFs in the strict sense) ⟨Mu⟩, ⟨Mu,c⟩, ⟨Mu,j⟩ and ⟨Mu,κ⟩ respectively.
Then

µ⟨u⟩(dx) = µc
⟨u⟩(dx) + µj

⟨u⟩(dx) + µκ
⟨u⟩(dx).

Note that E(f, f) = 1
2ν⟨f⟩(E) with ν⟨f⟩ := µc

⟨f⟩ + µj
⟨f⟩ + 2µκ

⟨f⟩ provided f ∈ Fe.
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Let F be a bounded symmetric function on E × E, which is extended to a

function F defined on E∂ × E∂ by setting F (x, ∂) = F (∂, x) = F (x, x) = 0 for

x ∈ E∂ (actually there is no need to define the value F (∂, y) for y ∈ E). We say

that F in the class J1(X) if N(|F |)µH belongs to S1(X). For a bounded finely

continuous (nearly) Borel function u ∈ Ḟloc ∩QC(E∂) satisfying µ⟨u⟩ ∈ S1(X), we

set

U(x, y) := u(x)− u(y).

Since

|U(x, y)|2 ≤ 2 (u(x)− u(y))
2
,

one can see that the relation N(|U(x, y)|2)µH ≤ µ⟨u⟩ implies U2 ∈ J1(X). On the

other hand, since |eU − 1− U | ≤ 1
2e

||U ||∞ |U(x, y)|2 and

|eU − 1|2 ≤
(
||U ||∞e|U(x,y)|

2
|U(x, y)|+ |U(x, y)|

)2

≤
(
||U ||∞e|U(x,y)|

2
+ 1

)2

|U(x, y)|2

imply eU − 1 − U ∈ J1(X) and (eU − 1)2 ∈ J1(X) respectively. Therefore, there

exists a purely discontinuous locally square integrable local martingale additive

functional MeU−1 on [[0, ζ[[ such that ∆MeU−1
t = (eU − 1)(Xt−, Xt) , t ∈ [0, ζ[

Px-a.s. for all x ∈ E (see the proof of Lemma 3.2(i) in [2]). MeU−1
t is given by

MeU−1
t = MU

t +
∑

0<s≤t

(eU − 1− U)(Xs−, Xs)−
∫ t

0

N(eU − 1− U)(Xs)dHs

where MU
t = M−u,j

t +M−u,κ
t .

Let U = (Ω, F̃∞, F̃t, Xt,P
U
x , ζ) be the Girsanov transformed process of X by

Ut := Exp(MeU−1 +M−u,c)t.

Ut is the Doléans-Dade exponential of (MeU−1 +M−u,c)t. It is easy to see that

Ut = exp

(
−Mu

t −
∫ t

0

N
(
eU − U − 1

)
(Xs)ds−

1

2
⟨Mu,c⟩t

)
. (3.4)

The relation between X and U is given by EU
x [f(Xt)] = Ex[Utf(Xt)] for f ∈

Bb(E).

The following has been proved in [5].

Lemma 3.1 (cf. [5, Lemma 3.3]) Assume µ⟨u⟩ ∈ S1
K(X). Then the following

hold:
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(1) For ν ∈ S1
K(X), e−2uν ∈ S1

K(U).

(2) For ν ∈ S1
EK(X), e−2uν ∈ S1

EK(U).

(3) For ν ∈ S1
LK(X), e−2uν ∈ S1

LK(U).

4 Main Result

Consider the non-local Feynman-Kac transforms by the additive functionals A :=

Nu +Aµ +AF of the form (1.1). By (3.4), we see that

eA(t) = Ute
u(Xt)−u(X0) exp

(
Aν̄

t +AF
t

)
,

where ν̄ = ν̄1 − ν̄2 and ν̄1 := µ1 + µu := µ1 + N(eU − U − 1)µH + 1
2µ

c
⟨u⟩ and

ν̄2 := µ2. In this section we define

Zt = eA(t)

= eu(Xt)−u(X0)Ut exp
(
Aν̄

t +AF
t

)
= eu(Xt)−u(X0)Ut exp

(
Aν̄1

t +AF1
t

)
exp

(
−Aµ2

t −AF2
t

)
= eu(Xt)−u(X0)Z

(1)
t Z

(2)
t Z

(3)
t

where Z
(1)
t = exp

(
−Aµ2

t −AF2
t

)
, Z

(2)
t = Ut = exp (−Mu

t −Aµu

t ) and Z
(3)
t =

exp
(
Aν̄1

t +AF1
t

)
. Let

RA
αf(x) := Ex

[∫ ∞

0

e−αtZtf(Xt)dt

]
, f ∈ Bb(E).

Then (RA
α )α>α0 the resolvent of the transformed process from X by the multi-

plicative functional (Zt)t≥0.

The main result of this paper is the following.

Theorem 4.1 Suppose that X has the doubly resolvent Feller property. Assume

µ⟨u⟩ ∈ S1
K(X) for u ∈ Floc ∩ Cb(E), µ = µ1 − µ2 and F = F1 − F2 with µ1 +

N(eF1 − 1)µH ∈ S1
EK(X) ∩ S1

LK(X), µ2 +N(F2)µH ∈ S1
LK(X). Then there exists

α0 > 0 such that the resolvent (RA
α )α>α0

has the doubly resolvent Feller property.

Here α0 is the positive constant defined in the Section 2.

Recall that X∗ = (Ω, Xt,P
∗
x) is the subprocess killed by e−A

µ2
t −A

F2
t . Note that

if µ2+N(F2)µH ∈ S1
LK(X) and X has the doubly resolvent Feller property, we can
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see by Corollary 3.1 that the subprocess X∗ also has the doubly resolvent Feller

property. Note that the Lévy system (N∗,H) of X∗ is given by

N∗(x,dy) = e−F2(x,y)N(x, dy).

For the proof of Theorem 4.1, we need the following two lemmas.

Lemma 4.1 Suppose X∗ has the doubly resolvent Feller property and suppose

µ⟨u⟩ ∈ S1
K(X∗) for u ∈ Floc∩Cb(E).Then there exists α0 > 0 such that {R∗,Ut

α }α>α0

defined by

R∗,Ut
α f(x) = E∗

x

[∫ ∞

0

e−αtZ
(2)
t f(Xt)dt

]

has the doubly resolvent Feller property.

Proof. By Theorems 2.1 and 2.2, it suffices to check the conditions (a)∗, (b)s

and (c)s for Z
(2)
t hold under X∗.

First we check (a)∗. Since eU−U−1 ≤ 1
2e

∥U∥∞U2, µu := N∗ (eU − U − 1
)
µH+

1
2µ

c
⟨u⟩ ∈ S1

K(X∗). Take p > 1 and q > 1 with pq ∈]1, 2]. From the inequality

(1 + x)r − 1 ≤ rx+ (r − 1)x2 for x > −1 and r ∈ [1, 2], we see

N∗ (epqU − 1− pqU
)
µH = N∗

((
1 + (eU − 1)

)pq − 1− pqU
)
µH

≤ N∗
(
pq
(
eU − 1

)
+ (pq − 1)

(
eU − 1

)2 − pqU
)
µH

≤ Cp,q,uN
∗(U2)µH

which yields that N∗ (epqU − 1− pqU
)
µH ∈ S1

K (X∗). Here Cp,q,u is the positive

constant depending on p, q and u. Let MepqU−1 be a locally square integrable

martingale additive functional of X∗ defined by

MepqU−1
t :=

∑
s≤t

(
epqU(Xs−,Xs) − 1

)
−
∫ t

0

N∗ (epqU − 1
)
(Xs)dHs, t < ζ.
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Set M
(pq)
t := MepqU−1

t + pqM−u,c
t , t < ζ. Then

Z
(pq)
t := Exp

(
M (pq)

)
t

= exp

(
MepqU−1

t + pqM−u,c
t − p2q2

2
⟨Mu,c⟩t

)
×
∏
s≤t

(
1 +

(
epqU(Xs−,Xs) − 1

))
exp

(
−
(
epqU(Xs−,Xs) − 1

))
= exp

(
MepqU−1

t + pqM−u,c
t − p2q2

2
⟨Mu,c⟩t

)

× exp

pqM−u,j
t + pq

∫ t

0

N∗(U)(Xs)dHs −
∑
s≤t

(
epqU(Xs−,Xs) − 1

)
= exp

(
pqM−u

t −
∫ t

0

N∗ (epqU − 1− pqU
)
(Xs)dHs −

p2q2

2
⟨Mu,c⟩t

)
= exp

(
pqM−u

t −A
µ(pq)
u

t

)
,

where A
µ(pq)
u

t :=
∫ t

0
N∗ (epqU − 1− pqU

)
(Xs)dHs +

p2q2

2 ⟨Mu,c⟩t. We then see by

Hölder inequality that

E∗
x

[(
Z

(2)
t

)p]
= E∗

x

[
exp

(
pM−u

t − pAµu

t

)]
= E∗

x

[(
Z

(pq)
t

)1/q
exp

(
1

q
A

µ(pq)
u

t − pAµu

t

)]
≤ E∗

x

[
Z

(pq)
t

]1/q
E∗

x

[
exp

(
1

q − 1
A

µ(pq)
u

t − pq

q − 1
Aµu

t

)](q−1)/q

≤ E∗
x

[
exp

(
1

q − 1

∫ t

0

N∗ ((epqU − 1
)
− pq

(
eU − 1

))
(Xs)dHs

+
pq

2(q − 1)
(pq − 1)⟨Mu,c⟩t

)]
. (4.1)

By applying the inequality (1 + x)r − 1 − rx ≤ (r − 1)x2 for x > −1 and r ∈
[1, 2] again, one can see that

(
epqU − 1

)
− pq

(
eU − 1

)
=
(
1 +

(
eU − 1

))pq − 1 −
pq
(
eU − 1

)
≤ (pq − 1)

(
eU − 1

)2
. Then the right hand side of (4.1) is dominated

by

E∗
x

[
exp

(
pq − 1

q − 1

(
1

pq

∫ t

0

N∗
((

eU − 1
)2)

(Xs)dHs +
pq

2
⟨Mu,c⟩t

))](q−1)/q

.

Put lt0 := supx∈E E∗
x

[∫ t0
0

N∗
((

eU − 1
)2)

(Xs)dHs +
1
2 ⟨M

u,c⟩t0
]
< 1 for suffi-
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ciently small t0 > 0. Now, in view of Khas’miskii’s lemma,

sup
x∈E

E∗
x

[(
Z

(2)
t0

)p]
≤ sup

x∈E
E∗

x

[
exp

(
pq − 1

q − 1
pq

(
1

pq

∫ t0

0

N∗
((

eU − 1
)2)

(Xs)dHs

+
1

2
⟨Mu,c⟩t0

))](q−1)/q

≤

{
1

1− pq−1
q−1 pqlt0

}(q−1)/q

.

Letting p and q be sufficiently close to 1, we can see pq−1
q−1 pqlt0 < 1 and which

implies that supx∈E sups∈[0,t] E
∗
x

[(
Z

(2)
s

)p]
< ∞ for some (hence for all) t > 0

and for some p > 1. It is clear that (a)∗ implies (b)s.

Next, we check (c)s. By using Remark 2.1(3), it suffices to check (c)w. In view

of the proof for (a)∗, we can see that for relatively compact D ⊂ E,

E∗
x

[
|Z(2)

t − 1| : t < τD

]2
≤ E∗

x

[
|Z(2)

t∧τD − 1|
]2

≤ E∗
x

[
|Z(2)

t∧τD − 1|2
]

= E∗
x

[(
Z

(2)
t∧τD

)2]
− 1.

By way of the method for obtaining the inequality (4.1), we have for q > 1

E∗
x

[(
Z

(2)
t∧τD

)2]
≤ E∗

x

[
exp

(
1

q − 1

∫ t∧τD

0

N∗ ((e2qU − 1
)
− 2q

(
eU − 1

))
(Xs)dHs

+
2q

2(q − 1)
(2q − 1)⟨Mu,c⟩t∧τD

)]
≤ E∗

x

[
exp

(
2q − 1

q − 1

∫ t∧τD

0

N∗
((

eU − 1
)2)

(Xs)dHs

+
2q

2(q − 1)
(2q − 1)⟨Mu,c⟩t∧τD

)](q−1)/q

≤ E∗
x

[
exp

(
Cq

(∫ t∧τD

0

N∗
((

eU − 1
)2)

(Xs)dHs

+
1

2
⟨Mu,c⟩t∧τD

))](q−1)/q

where Cq := q
q−1 (2q − 1).

Since CD
t :=

∫ t∧τD
0

N∗
((

eU − 1
)2)

(Xs)dHs+
1
2 ⟨M

u,c⟩t∧τD is a PCAF of Kato
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class, we conclude that

sup
x∈D

E∗
x

[
|Z(2)

t − 1| : t < τD

]2
≤ sup

x∈E
E∗

x

[(
Z

(2)
t∧τD

)2]
− 1

≤ sup
x∈E

E∗
x

[
exp(CqC

D
t )
](q−1)/q − 1

≤

(
1

1− Cq supx∈E E∗
x

[
CD

t

])(q−1)/q

− 1

−→ 0 as t → 0.

The proof is complete.

Let U∗ =
(
Xt,P

U∗

x

)
be the transformed process of the subprocess X∗ by Ut.

We note that the Lévy system
(
NU∗

,H
)
of U∗ is given by

NU∗
(x, dy) = eU(x,y)N∗(x, dy) = eU(x,y)−F2(x,y)N(x,dy).

Lemma 4.2 Suppose X∗ has the doubly resolvent Feller property. Assume µ⟨u⟩ ∈
S1
K(X∗) for u ∈ Floc ∩ Cb(E), µ1 +N∗(eF1 − 1)µH ∈ S1

EK(X∗) ∩ S1
LK(X∗). Then

there exists α0 > 0 such that {RU∗,ν̄1+F1
α }α>α0

defined by

RU∗,ν̄1+F1
α f(x) = EU∗

x

[∫ ∞

0

e−αtZ
(3)
t f(Xt)dt

]
has the doubly resolvent Feller property.

Proof. Similar to the previous lemma, it suffices to check the conditions

(a)∗, (b)s and (c)w hold.

First, we check (a)∗. Note that we see by Lemma 3.1(3) that e−2uµ⟨u⟩ ∈
S1
K(U∗) and e−2uµ1 +N

(
eU−F2(eF1 − 1)

)
µH = e−2uµ1 +NU∗ (

eF1 − 1
)
µH

∈ S1
K(U∗). Since

(
Z

(3)
t

)p
= eA

pν̄1
t +A

pF1
t = Exp

[
Apν̄1 +AepF1−1

]
t
, we can show

that there exists p > 1 such that

e−2upµ1 +NU∗ (
eU − U − 1)

)
µH +

p

2
e−2uµc

⟨u⟩ +NU∗ (
epF1 − 1

)
µH ∈ S1

EK(U∗).

Indeed, recall (1 + x)p − 1 ≤ (p − 1)x2 + px for p ∈]1, 2] and for x > −1. By

assumption, there exists T > 0 such that

λ := sup
x∈E

EU∗

x

(
Aν̄1

T +AeF1−1
T

)
< 1.
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For such T > 0, we set l = supx∈E EU∗

x

[
(AeF1−1

T )2
]
< ∞ and take p ∈

]
1, 2 ∧ 1+l

λ+l

[
.

Then

sup
x∈E

EU∗

x

[
Apν̄1

T +AepF1−1
T

]
= sup

x∈E
EU∗

x

Apν̄1

T +
∑
s≤T

(
epF1(Xs−,Xs) − 1

)
= sup

x∈E
EU∗

x

Apν̄1

T +
∑
s≤T

((
1 + (eF1(Xs−,Xs) − 1)

)p
− 1
)

≤ sup
x∈E

EU∗

x

Apν̄1

T +
∑
s≤T

{
(p− 1)

(
eF1(Xs−,Xs) − 1

)2
+ p

(
eF1(Xs−,Xs) − 1

)}
≤ (p− 1) sup

x∈E
EU∗

x

∑
s≤T

(
eF1(Xs−,Xs) − 1

)2
+ p sup

x∈E
EU∗

x

Aν̄1

T +
∑
s≤T

(
eF1(Xs−,Xs) − 1

)
= (p− 1)l + pλ < 1. (4.2)

By Khas’minskii’s lemma,

sup
x∈E

EU∗

x

[(
Z

(3)
T

)p]
= sup

x∈E
EU∗

x

[
Exp

(
Apν̄1 +AepF1−1

)
T

]
≤ 1

1− supx∈E EU∗
x

[
Apν̄1

T +AepF1−1
T

]
< ∞.

Hence we have sups∈[0,T ] supx∈E EU∗

x

[(
Z

(3)
s

)p]
< ∞, that is, we obtain (a)∗ under

U∗. From (4.2) we already checked that Apν̄1

T +AepF1−1
T is of extended Kato class

for some T > 0. Thus by the Markov property we obtain (b)s. Next, we check

(c)w. For relatively compact D of E,

EU∗

x

[
|Z(3)

t − 1| : t < τD

]
= EU∗

x

[
|Exp

(
Aν̄1 +AeF1−1

)
t
− 1| : t < τD

]
= EU∗

x

[
|Exp

(
1D ∗

(
Aν̄1 +AeF1−1

))
t
− 1| : t < τD

]
≤ EU∗

x

[
|Exp

(
1D ∗

(
Aν̄1 +AeF1−1

))
t
− 1|

]
.

Since e−2uµ1 ∈ S1
LK(U∗) andNU∗ (

eU − U − 1
)
µH+ 1

2e
−2uµc

⟨u⟩ ∈ S1
K(U∗), e−2uν̄1

:= e−2uµ1 + NU∗ (
eU − U − 1

)
µH + 1

2e
−2uµc

⟨u⟩ ∈ S1
LK(U∗) and consequently
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e−2u
(
ν̄1 +NU∗ (

eF1 − 1
))

µH ∈ S1
LK(U∗). By Khas’miskii’s lemma,

lim
t↓0

sup
x∈D

EU∗

x

[
|Z(3)

t − 1| : t < τD

]
≤ lim

t↓0

supx∈D EU∗

x

[
1D ∗

(
Aν̄1

t +AeF1−1
t

)]
1− supx∈D EU∗

x

[
1D ∗

(
Aν̄1

t +AeF1−1
t

)]
= 0

which implies (c)w for Z
(3)
t under U∗. Hence we obtain the assertion.

Proof of Theorem 4.1. By combining the remark just after Theorem 4.1, Lem-

mas 4.1 and 4.2, we obtain that there exists α0 > 0 such that the resolvent

(RU,ν̄+F
α )α>α0

defined by

RU,ν̄+F
α f(x) :=

∫ ∞

0

e−αtPU,ν̄+F
t f(x)dt,

has the doubly resolvent Feller property, where PU,ν̄+F
t f(x) := EU

x [exp(Aν̄
t +AF

t )

f(Xt)] = EU∗

x

[
exp

(
Aν̄1

t +AF1
t

)
f(Xt)

]
for f ∈ Bb(E). Since u is continuous and

RA
αf(x) =

∫ ∞

0

e−αte−u(x)PU,ν̄+F
t (feu)(x)dt, x ∈ E,

(RA
α )α>α0

also has the doubly resolvent Feller property.
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