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Abstract. In this paper we will apply the stability of doubly Feller property
of resolvent with multiplicative functionals in our previous paper [10] to

generalized Feynman-Kac functionals.

1 Introduction

Let (E,d) be a locally compact separable metric space, Fy := EU{0} its one point
compactification, B(FE) its Borel o-field on E, and B(Ej) Borel o-field on Ey. It is
well-known that B(Ey) = B(E)U{BU{90} | B € B(E)}. Any function f defined
on E is extended to Ey by setting f(9) = 0. Denote by By(E) (resp. by Cy(E),
the family of bounded Borel functions on E (resp. the family of bounded contin-
uous functions on E), and by Co(E) (resp. by Coo(F)), the family of continuous
functions on F with compact support (resp. the family of continuous functions on
E vanishing at infinity).

We consider a Hunt process X = (Q,F;, Foo, Xt,(, Py)zcr, defined on Ey
and denote by (P;)i>0 (resp. (Ra)a>0) its transition semigroup (resp. its resol-
vent kernel), that is, P, f(z) = E,[f(X})] = [, [(X¢(w))Po(dw) (resp. Rof(x) =
IS e P, f(x)dt) for f € By(Ep). Here ¢ := inf{t > 0| X; = 9} is the life time
of X and 0 is a cemetery point of X, that is, X; = 0 for all ¢t > ¢ under P, for
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x € E. The transition semigroup (P;)¢>o of X is said to have the Feller property

if the following two conditions are satisfied:
(i) For each t > 0 and f € C(E), we have P,f € C(E).
(ii) For each f € C(F) and x € E, we have lim;_,¢ P, f(z) = f(x).

The resolvent (R, )a>0 of X is said to have the Feller property if the following two

conditions are satisfied:
(i) For each a > 0 and f € C(E), we have R, f € Coo(E).
(ii)” For each f € Co(FE) and z € E, we have limy—, 00 @Ry f(2) = f(2).
It is known that (i) and (ii) together imply
(iii) For each f € Coo(E), we have lim;_,¢ || P.f — f]loo = 0.

Since

(t

Rsgf = /000 e PP fdt and P.f = Bli_)ngoe_wz Z)n (BRp)"f, [€Cx(E)

n=0

hold in (Coo(E), || || ), the condition (i) is equivalent to (i)’. It is easy to see that
(ii) implies (ii)’. Conversely, the conditions (i)" and (ii)’ imply (ii). Indeed, it is

known that these conditions together imply
(iii)” For each f € Coo(E), we have limg_, o [|[BRsf — f|loo = 0.
From (iii)’, we have

IPf ()~ 1)

< |Pif(z) = BR P f(2)| + [BRs P f (x) — f(2)]

< 2BRsf — fllow + 8| (7 1) / " 5, f(2)ds — / 5P, f(z)ds

Hence, limsup,_,o | P f(x) — f(2)] < 2||BRaf — flloc = 0 as 8 — oco. Consequently,

the Feller property of (P;):>0 is equivalent to the Feller property of (Ra)a>0. S0

we can say that X has the Feller property if (i) and (ii), or (i)’ and (ii)’ hold.
The semigroup (P;);>o is said to have the strong Feller property if

(iv) For each f € By(E) and t > 0, we have P, f € Cy(E).
The resolvent (R )a>0 is said to have the strong Feller property if

(iv)” For each f € By(E) and o > 0, we have R, f € Cy(E).
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When E is compact, 0 is an isolated point of Ey, hence any function f on Fy with
f(9) = 0, which is continuous on E, belongs to C,(E). In this case, the strong

Feller property of semigroup (resp. resolvent) implies (i) (resp. (i)’).

Remark 1.1 It is well-known that the strong Feller property of (Py)i>o implies the
strong Feller property of (Ry)a>0, but the converse assertion is not true. Indeed,
the following semigroups are not strong Feller, but their resolvents enjoy strong
Feller:

(1) The shift semigroup (P;);>0 on R defined by P,f(z) := f(x +tl), x e R, L €
R\ {0} does not enjoy the strong Feller property, but the resolvent strong
Feller property in view of Rof(z) = %4~ L e~ f(y)dy (resp. Rof(x) =

ax
e ¢

= o e 7 f(y)dy) for f € By(R) and £ >0 (resp. £ <0).

(2) The semigroup (P;)i>o of space-time Brownian motion (By,t) under P, -y :=
P’ @ PP for (z,7) € R? defined by

Pf(2,7) = B lf(Bi,0)] = EY @ EP[f(B,, 1)), f € By(R?)

does not enjoy the strong Feller property, but the resolvent strong Feller
property. Here Pg) 1s the law for 1-dimensional Brownian motion starting
from x and P(TZ) 18 the law for uniform motion to the right starting from T
with speed 1, i.e. EY [g(t)] = g(T+t). More generally, the product semigroup
of strong Feller semigroup and the semigroup of uniform motion to the right
18 not a strong Feller semigroup, but its resolvent enjoys the strong Feller

property. Indeed, for x,, — x and 7, — T and f € By(R?), we see
|Raf(xna7—n) - Rozf(xaT)l

[e.¢]
<l = e [ e B o [1(Bunr,9)ds

/ By, o) [f (Boor,,s)]ds — / By 0)[f(Baer, 5)|ds

n

+ e(l/,T

1, ool ()P (f(9)) (@)

el ()P (F () (@) s

o0
< |€aT" _ eom'”‘f”m/a + ear/ e~ as
0

— 0 asn — oo.

Here we use that the strong Feller property of the semigroup (Pt(l))tzo of 1-
dimensional Brownian motion implies the continuity of |0, co[xR > (¢, z) —
Pt(l)g(x) for any g € By(R). On the other hand, P;f(x,7) = Pt(l)fl () fa(T+
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s) for f = f1 ® fa, fi € By(R) (i = 1,2) does not enjoy Pif € Cy(R?) for
f2 & Cp(R).

Under (iv)’, we see that R11 € C(F) implies (i)’. Moreover, under (iv), R11 €
Coo(E) implies (i) (see [1, Proposition 1]). The semigroup (P;);>0 or X is said to
have the doubly Feller property if it enjoys the both of Feller property and strong
Feller property. The Hunt process X is said to have the doubly resolvent Feller
property if its resolvent enjoys the both of Feller property and strong Feller prop-
erty. X is said to be a Feller process (resp. strong Feller process, doubly Feller
process) if it enjoys the Feller property (resp. strong Feller property, doubly Feller
property). X is said to be a resolvent strong Feller process (resp. doubly resol-
vent Feller process) if it enjoys the resolvent strong Feller property (resp. doubly
resolvent Feller property).

In [4], the stability of the doubly Feller property of a semigroup (of a part pro-
cess) with multiplicative functionals was presented, and its stability was discussed
under Feynman-Kac and Girsanov transformations. In [10], the same conditions
as in [4] also remain valid for the stability of the doubly Feller property of the
resolvent of a part process with multiplicative functionals. In this paper, we ap-
ply the stability of the doubly Feller property of the resolvent to the generalized
Feynman-Kac functionals.

Let p1 (resp. po) be smooth measures in the strict sense corresponding to
a positive continuous additive functional A#' (resp. A#2) in the strict sense with
respect to X and let p := py — po be the signed smooth measure in the strict sense.
We denote A by A¥ := AHr — AH2 to emphasize the correspondence between p
and A. Let (£, F) be the Dirichlet form of X on L?(E;m). For a bounded finely
continuous (nearly) Borel function v on E which is strictly £-quasi continuous on
Ey and locally in F, let N* be the continuous additive functional of zero quadratic
variation appeared in the Fukushima decomposition u(X:) — u(Xo) (see (3.2)).
Note that N is not necessarily of bounded variation in general. Let Fy, F5 be
non-negative bounded functions on E X Ey which are symmetric on E x E. F; and
F are extended to Eg X Eg by setting F;(0,x) = Fi(z,0) = Fi(z,z) =0forx € Ey
for each i = 1,2 (actually there is no need to define the value F;(0,z) for x € E,
i=1,2). Weset F:=F| — Fy. Then Af ==Y _._, F(X,—, X,) (whenever it is
summable) is an additive functional of X. It is natural to consider the following
generalized non-local Feynman-Kac transforms by the additive functionals A :=
NU + A* + AF of the form

ea(t) :=exp(4s), t>0, (1.1)
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because the process X admits many continuous additive functionals which do not
have bounded variations, and many discontinuous additive functionals.

Let us briefly state the constitution of this paper. In Section 2, we give the
stability of doubly Feller property of the resolvent with multiplicative functionals
as [10]. In Section 3, we introduce classes of local potentials and properties of
generalized Feynman-Kac and Girsanov transform. Section 4 includes the main
result of this paper, we show the stability of doubly Feller property of generalized

Feynman-Kac functionals.

2 Doubly Feller property of transformed resol-

vent

In this section, we summarize the content of [10, Section 6]. Let (Z;);>0 be a
multiplicative functional associated with X. Namely, for each x € FE, P, -a.s.:
Zo=1,0<Z; < o0, Z; € F; for t > 0; and

Zt+s = Zs . (Zt o 03), for all t, s> 0. (21)

Throughout this section, we fix a non-empty open set B. The following conditions

are dependent of B:
(a)p For some t > 0, aP :=sup,cp Supseqo, Ez[Zs 1 8 < 78] < 00

(a)% There exists p > 1 such that a?(p) := sup sup E,[ZP : s < 78] < oo for
z€B s€(0,t]
some t > 0.

Note that (a)j implies (a)p. As shown in the previous paper ([10]), we can
deduce that t +— af is submultiplicative under (a)g. This implies that ¢
log(af )/t is decreasing, af < (af)!/* for all t > to with given ¢y > 0, and for

any a > of = infse]om[log(af)l/s >0, [y e aPdt < co. Under (a)}, we
have a similar statement including o > of (p) = inf g0 00flog(aZ(p))'/* > 0,

IS e af (p)dt < oo.

(b)% For each t > 0 and any compact subset K of B, there exists a number

p = p(K,t) > 1 such that sup E, [Z] < .
zeK

(b)%; For each t > 0, there exists a number p = p(¢) > 1 such that sup E, [Z}] <

rEB
Q.
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() For any relatively compact open subset D of B, we have

lim sup E,[|Z; — 1] : t <7p] = 0.
t—=0,eD

(0)% }%222 E,[|Z,—1]:t< 7] =0.

When B = E, we omit B like (a) for (a)g.
Remark 2.1 (1) The condition (b)% (resp., (¢)%) is stronger than (b)% (resp., (¢)).

(2) The condition (c)3 implies the condition (a)p. Indeed, under (c)%, for any
given € > 0, there exists 0 > 0 such that supyc(g 5)SUPep Ex[|Z: — 1] 1 t <
7] < €. Then we have sup,c(g 5 SUP,ep Ex[|Zt] 1 t < 78] < e+ 1 < oo,

which shows (a)p.

(3) In view of [4, Remark 1.6(ii)], the conditions (a)% and (c)% imply the con-

dition (¢)%
Define (QF);>¢ as follows: for f € By(E),
QF f(w) == Byt <7 : Z,f(X4))-

By means of (2.1), we can verify that (QF);>0 forms a semigroup, not necessarily

sub-Markovian. But we have, for each ¢t > 0,

107l < (sup B2t < 751 ) 1l < 111
by (a) 5, so that each QF maps B,(E) into By (E). For a > g := inf¢)g,00[ log al/*
and f € By(E), we set

5210 =B, [ [ e zonal

and call (S2),~q, the resolvent of the transformed process from X by the multi-
plicative functional (Z;);>¢ for B open subset of E.

The following two theorems have been proved in [10].

Theorem 2.1 (cf. [10, Theorem 5.1]) Suppose that X has the resolvent strong
Feller property and condition (a) and (c)* hold. Then, for f € By(E) and o > «o,
Saf € Cy(E).
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Theorem 2.2 (cf. [10, Theorem 6.2]) Let X be a doubly resolvent Feller pro-
cess, and let B be an open subset of E. Suppose that B is regular. Under
(a), (b)%, and ()%, for any a > of = inf,g)o 00 log(al ByUs > 0, we have
SBf e Cu(B) and limy o0 aSE f(x) = f(x) for f € Coo(B) and v € B. Suppose
further that B is relatively compact, and assume (a)% or there exists an open set

C with B C C such that (c)&, holds. Then SBf € C(B) for f € By(B).

3 Feynman-Kac and Girsanov transform

In this section, we summarize the content of [7, Sections 3 and 4]. Let X =
(Q, Foo, Ft,0:, Xi, Py, € Ey) be an m-symmetric Hunt process on E and {JF; }1>0
is the minimal (augmented) admissible filtration and 6;,¢ > 0 is the shift operator
satisfying X (0;) = X4 identically for s,¢ > 0.

An (F;)-adapted process {A;};>¢ with values in [—oo,00] is said to be an

additive functional (AF in abbreviation) if the following conditions hold:
(i) Ai(+) if Fr-measurable for all ¢ > 0,

(ii) there exists a set A € Foo = 0(Ur>0F;) such that P,(A) =1, for all z € X,
0:A C A for all t > 0, and for each w € A, A.(w) is a function satisfying
Ap =0, A¢(w) < oo for t < ((w) for t > 0, and Aqs(w) = Ar(w) + As(Grw)
for s,t > 0.

An AF A is said to be a continuous additive functional (CAF in abbreviation) if
t — A;(w) is continuous on [0, co[ for each w € A. A [0, co[-valued AF is called a
positive additive functional (PAF in abbreviation). If an AF {A4;};>¢ is positive
and continuous with respect to ¢ for each w € A, the AF is called a positive
continuous additive functional (PCAF in abbreviation).

Let S1(X) be the family of positive smooth measures in the strict sense ([6]).
We say that a PCAF in the strict sense A” of X and a positive measure v € S1(X)
are in the Revuz correspondence if they satisfy for any ¢ > 0, f € B, (FE),

/f v(dz) =t lim 1E. Uf dA”}

It is known that the family of equivalence classes of the set of PCAFs in the strict
sense and the family of positive measures belonging to S;(X) are in one to one
correspondence under the Revuz correspondence ([6, Theorem 5.1.4]).

A PAF B; in the classical sense is said to be in the Kato class of X if
lim;_,o sup,cp Ex[Bt] = 0. A PAF B, in the classical sense is said to be in the
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local Kato class if, for any relatively compact open subset G of E, (1¢ * B); :=
fot 1¢(X,)dBs is of Kato class (see [4, Section 2] for the PAF of (local) Kato class).

Corollary 3.1 (cf. [10, Corollary 6.1]) Let X be a doubly resolvent Feller pro-
cess. Let By be a PAF of local Kato class. Then the subprocess killed by e~ B¢ enjoys
the doubly Feller property of the resolvent.

For o > 0, there exists an a-order resolvent kernel R, (z,y) which is defined
for all z,y € E (see Lemma 4.2.4 in [6]). Since o — R, (x,y) is decreasing for
each z,y € E, we can define the 0-order resolvent kernel R(x,y) := Ro(z,y) :=
limy 0 Ro(z,y). R(z,y) is called the Green function of X. For a non-negative
Borel measure v, we write Rov(z) := [, Rq v(dy) and Rv(x) := Rov(x).
Note that R f(z) = Ro(fm)(z ) for any f € TB+( ) or f € Bp(E). A mea-
sure v € S1(X) is said to be in the Dynkin class (resp. Green-bounded) of X if
sup,cp Rav(z) < oo for some o > 0 (resp. sup,cp Rv(z) < o0). We also can
define Kato class and local Kato class in the sense of measures as in AFs. A mea-
sure v € S1(X) is said to be in the Kato class (resp. extended Kato class) with
respect to X if limy_yo0 SUp e Roav(x) = 0 (resp. < 1). A measure v € S1(X)
is said to be in the local Kato class if for any compact subset K of F, 1xv is of
Kato class. Denote by S}, (X) (resp. Sp (X)) the family of measures of Dynkin
class (resp. Green-bounded), and by Sk (X) (resp. Sty (X), St (X)) the family
of measures of Kato class (resp. extended Kato class, local Kato class). Clearly,
SK(X) € Ske(X) © Sh(X), Sk (X) © Sk (X) and 8, (X) < Sh(X).

Let (N(z,dy), H:) be a Lévy system for X, that is, N(z,dy) is a kernel on
(Es,B(Es)) and H; is a PCAF with bounded 1-potential such that for any non-
negative Borel function ¢ on Ey x Ey vanishing on the diagonal and any x € Ejp,

non-negative Borel function g on [0, oo[ and (JF)-stopping time T,

E:c Zg(s)¢(Xs,,X =

s<T

//Ea (X5, y)N(X,,dy)dHs | (3.1)

(see [3, A.3.33]). To simplify notation, we will write

No(x) := [ ¢z, y)N(z,dy).

Ey

Let pg be the Revuz measure of the PCAF H. Then the jumping measure J

and the killing measure x of X are given by

J(dzdy) = %N(aady)uH(dx) and k(dz) = N(z,{0})pm (dz).



Doubly resolvent Feller property of generalized Feynman-Kac functionals 57

These measures feature in the Beurling-Deny decomposition of &£:

9=+ [ (@)~ f)ole) - 90)I(dedy) + [ falg(ops(dn)
(Ex E)\diag E

for f,g € F.. Here £¢ is the strongly local part of £ and diag be the diagonal set

in E x E defined by diag := {(z,y) € EX E | z = y}.

A function f on F is said to be locally in F in the broad sense if there exists a
nest {G,} of finely open (nearly) Borel sets and a sequence {f,} of elements in F
such that f = f, m-a.e. on G,. Let Floe be the family of functions on FE locally
in F in the broad sense. It is known that any f € Fioe admits E-quasi continuous
m-version.

An increasing sequence {Fj} of closed sets is said to be a strict £-nest if
P,(limy 0o 0p\p, = 00) = 1 m-ae. @ € E. A function f defined on Ep is said
to be strictly €-quasi continuous if there exists a strict E-nest {F}} of closed sets
such that f|p, Loy is continuous for each k& € N. Denote by QC(Ejy) the totality
of strictly £-quasi continuous functions on Fy. We consider a bounded finely
continuous (nearly) Borel function u € Fi,c NQC (Ep) satisfying fiy € SH(X). In
[9, Theorem 6.2(2)], we proved that the additive functional u(X;) — u(Xy) admits

the following strict decomposition:
w(Xy) —u(Xo) = M+ N te[0,00] Pgas. foralxeFE, (3.2)

where M* is a square integrable martingale additive functional in the strict sense,
and N* is a CAF in the strict sense which is locally of zero energy. M*" can be

decomposed as
M = M+ M7 + M;"", (3.3)

where M;“, M{"" and M;“ are the jumping, killing and continuous part of M
respectively. Those are defined P -a.s. for all x € E by [9, Theorem 6.2(2)].
The strict decompositions (3.2) and (3.3) on [0,00] guarantee the extension of
the supermartingale multiplicative functional Y; on [0, up to [0,00[ (see [8,
Proposition 3.1]). Let iy, iy uzm and pf,, be the smooth Revuz measures in
the strict sense associated with the quadratic variational processes (or the sharp
bracket PCAFs in the strict sense) (M%), (M®<), (M"J) and (M™“"*) respectively.
Then

gy (d2) = pyy (do) + pil, (da) + pfy (da).

Note that E(f, f) = 2v(s)(E) with v gy := iy + ﬂ{ﬁ + 2u7y provided f € Fe.
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Let F' be a bounded symmetric function on E x E, which is extended to a
function F' defined on Ey x Ey by setting F(z,0) = F(0,z) = F(x,x) = 0 for
x € Ey (actually there is no need to define the value F(9,y) for y € E). We say
that F in the class J1(X) if N(|F|)pm belongs to S1(X). For a bounded finely
continuous (nearly) Borel function u € Fioc N QC(Ep) satisfying Puy € S1(X), we
set

Ulz,y) = u(r) — u(y)-

Since

U, < 2 (u(z) —uly))”

one can see that the relation N(|U(x,y)|*)pn < pi(uy implies U? € J1(X). On the
other hand, since |eV — 1 — U| < 2ellVll=|U(z, y)|? and

U]Vl
1P = (P 0+ e 1)

Ul elU@w)l 2
< (P 10) o

imply eV — 1 —U € J1(X) and (eV —1)? € J;(X) respectively. Therefore, there

2

e

exists a purely discontinuous locally square integrable local martingale additive
functional M¢” 1 on [0, (] such that AMfU_l = (¥ = 1)(X;—, Xy) , t € [0,¢]
P,-as. for all z € E (see the proof of Lemma 3.2(i) in [2]). Mfol is given by

M = MU Z U_1-U)(X,_,X,) /N —1-U)(X,)dH,
0<s<t
where MY = M; "7 + M ™",
Let U = (9, 5’00, f}t, X;,PU () be the Girsanov transformed process of X by
U, := Exp(M¢~! + M),

U, is the Doléans-Dade exponential of (MP‘U_1 + M~%¢),. Tt is easy to see that

U; = exp (—Mt“ - /Ot N (eV —U —1) (X,)ds — ;<M“’C>t> . (3.4)

The relation between X and U is given by EV[f(X;)] = E.[U,f(X,)] for f €
By(E).
The following has been proved in [5].

Lemma 3.1 (cf. [5, Lemma 3.3]) Assume p,y € Sk (X). Then the following
hold:
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(1) Forv e SL(X), e7?*v € SL(U).
(2) Forv e SL(X), e v € SL,(U).

(3) Forve Sl (X), e ?*v e Si(U).

4 Main Result

Consider the non-local Feynman-Kac transforms by the additive functionals A :=
N* + A# + AF of the form (1.1). By (3.4), we see that

ealt) = Upe(Xe)=u(Xo) gxpy (At'7 + Af) ,

where v = Uy — Uy and 71 := 1 + phy = 1 + N(eU —U - 1ug + %uﬁw and

Uy := po. In this section we define

Zy =eult)
= "X 7uXO T, exp (A7 + Af)
= ¢ (X)), exp (Atpl + Afl) exp (—Af2 - A?)
_ culX-u(Xo) 71 £(2) 7 3)

where Zt(l) = exp (—Af2 —Afz) ,Zt(Q) = U; = exp(—MP — AY™) and Zt(g) =
exp (Afl —|—Afl). Let

Rgf(.’l?) = Ea: |:/0OO e_atth(Xt)dt , f € 'Bb<E)

Then (R})a>a, the resolvent of the transformed process from X by the multi-
plicative functional (Z;)¢>o.

The main result of this paper is the following.

Theorem 4.1 Suppose that X has the doubly resolvent Feller property. Assume
Puy € SL(X) for u € Fioe N Cy(E), p = p1 — p2 and F = Fy — Fy with py +
N(ef = Dy € Sk (X) NS (X), po+ N(Fo)un € Stp(X). Then there exists
g > 0 such that the resolvent (R2)a>a, has the doubly resolvent Feller property.

Here oy is the positive constant defined in the Section 2.

M2

Recall that X* = (Q, X;, P}) is the subprocess killed by e~ —47”  Note that
if po+N(Fo)pum € St (X) and X has the doubly resolvent Feller property, we can
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see by Corollary 3.1 that the subprocess X* also has the doubly resolvent Feller
property. Note that the Lévy system (N*, H) of X* is given by

N*(z,dy) = e 2@V N (2, dy).

For the proof of Theorem 4.1, we need the following two lemmas.

Lemma 4.1 Suppose X* has the doubly resolvent Feller property and suppose
Huy € SL(X*) foru € FiocNCy(E). Then there exists ag > 0 such that {R5Y Yo aq
defined by

RV f(z) = B [ | ez oo
0

has the doubly resolvent Feller property.

Proof. By Theorems 2.1 and 2.2, it suffices to check the conditions (a)*, (b)*
and (c)® for Zt(Q) hold under X*.

First we check (a)*. Since eV —U—1 < %e”UHOOUQ, fy = N* (eU -U — 1) w+
% ?u> € Sk(X*). Take p > 1 and ¢ > 1 with pg €]1,2]. From the inequality
(1+2)" —1<rz+(r—1)2% for z > —1 and r € [1,2], we see

N* (equ —1—pgU) pp = N* ((1+ eV — 1))pq -1 quU) 1574

< N* (pq (¥ —1) + (pg— 1) (¥ = 1)? —qu) s

§ Cp,q,uN* (UQ)/’LH

which yields that N* (equ —-1- qu) pE € Sk (X*). Here Cp 4, is the positive
constant depending on p,q and u. Let M "1 he 4 locally square integrable

martingale additive functional of X* defined by

t
M- => (quU (XomnXo) —/ N* (er?V —1) (X,)dH,, t <.
0

s<t
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Set MP? .= M =1 + pgM; ™, t < (. Then
Zt(pQ) = Exp (M(pq)>
t

2 2
ePal —u,c pq u,c
= exp (Mt Y4 pgM — - (M™ >t>

<1 (1 + (epqwxs_,xs) _ 1)) exp (_ (emU(Xs_,Xs) _ 1))

s<t

2.2
= exp (prqu_l +pgMy " — qu <M“’C>t>

t
x exp | pgM; “’ +pq/ N*(U)(X,)dH, — Z (equ(XS"XS) — 1)
0

s<t

¢ 2 2
= oxp (qut‘“ - / N* (e —1 - pgU) (X,)dH, — qu<Mu’c>t)
0

(raq)
= exp (qut_" — AR ) ,

(pa)
where Af“p = fot N* (erV — 1 —pqU) (X,)dH, + #(M“’Cﬁ. We then see by
Holder inequality that

B; [(27)"] =B [exp (oM — pAy)]
e[ () o ()|

a1 1 0 (e-1)/q
<E; 2] E; {exp ( A P qlAf“)]
L - q-—

- t
< E} |exp <q ! N* ((equ—l)—pq (eU—l)) (Xs)dH,
L 0

paq
—_— — 1){(M™° . 4.1
Fls o= D0r )] )
By applying the inequality (1 + z)" —1—rz < (r — 1)2% for z > —1 and r €
[1,2] again, one can see that (eP%V —1) —pg (e —1) = (14 (¥ —1))" —1 -
pq(e¥ —1) < (pg—1) (¥ — 1)2. Then the right hand side of (4.1) is dominated
by

E {exp (m -1 ( ! /O "N (¢ = 1)) (x.)aH, + ?(M“’%))] o

q—1 \pg

Put I, := sup,ep E [ Oto N* ((eU - 1)2> (Xs)dH; + %(M“ﬂm] < 1 for suffi-
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ciently small ¢y > 0. Now, in view of Khas’miskii’s lemma,

sup E} [(Z,f(f))p} <sup E} {exp (pqq__llpq (1 /Oto N* ((eU - 1)2> (Xs)dH,

zeFE el pq
1 (g—-1)/q
)

1 (¢=1)/q
B i, B .
1 — Bpaly,

Letting p and ¢ be sufficiently close to 1, we can see qull pgly, < 1 and which

P
implies that sup,cpsup,cp E; KZ‘EQ)) } < oo for some (hence for all) t > 0

*

and for some p > 1. It is clear that (a)* implies (b)°.

Next, we check (¢)®. By using Remark 2.1(3), it suffices to check (¢)*. In view

of the proof for (a)*, we can see that for relatively compact D C E,

2 2
E’ [|Z§2> 1t < TD] <E’ [|Z§i>m - 1@

* 2
< Eac [|Zt(/\)7—D - 1‘2}
2
= E; |:(Zt(/2\Z'D) :| - L

By way of the method for obtaining the inequality (4.1), we have for ¢ > 1

E {(Zt(i)mf] <E: [exp (qil /OMTD N* ((€22V = 1) — 2g (¥ — 1)) (X.)dH,

e 1)<M“’C>WD)}

2(¢—1)
<E {exp (2qq_11 /O " N (e =1)") (x,)am,
(a-1)/
b (20— D inr )]

where Cy := 15 (2¢ — 1).
Since CP = [P N* ((eU - 1)2) (X.)dH,+L(Mw),,,, is a PCAF of Kato
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class, we conclude that

(122 _ql. ? (72 Y
sup E;, [|Zt —1]:t< TD} <supE] (ZMTD) -1
xeD EASI )

<supE} [exp(CthDﬂ (a=1)/a _ 1
zeFE

1 (a=1)/q
< 5 -1
1 = Cysup,cp B} [CF]

—0 ast — 0.

The proof is complete.

Let U* = (XhPmU*) be the transformed process of the subprocess X* by Us;.
We note that the Lévy system (NU* , H) of U* is given by

N (2, dy) = "V N* (2, dy) = V@R N (2, dy).

Lemma 4.2 Suppose X* has the doubly resolvent Feller property. Assume i) €
SE(X*) for u € Fioe N Cp(E), p1 + N*(eft — Vuy € S (X*) N Stp(X*). Then
there exists g > 0 such that {RY "1} <, defined by

R f(a) = BY U 2% f(X)dt
0

has the doubly resolvent Feller property.

Proof. Similar to the previous lemma, it suffices to check the conditions
(a)*, (b)* and (¢)* hold.

First, we check (a)*. Note that we see by Lemma 3.1(3) that e *"p,y €
Sk (U*) and e 2"puy + N (V" F2(ef" = 1)) pyr = e72“py + NUT (e —1) pu
€ S (U*). Since (Zt(3))p = AT AT o Exp [Apﬁl + Aeppl’lL, we can show

that there exists p > 1 such that
e 2puy + NV (e —U—1)) pu + ge_%ufw +NYU" (eP™r —1) py € Spy (U™).

Indeed, recall (1 + x)? —1 < (p — 1)z + px for p €]1,2] and for z > —1. By

assumption, there exists T > 0 such that

A:=sup EYV’ (A;1 + AeTF1_1> < 1.
zeE
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For such T > 0, we set | = sup, ¢z EV" [(A‘}Fl _1)2} < oo and take p € } 1,2 A :)L\ill [
Then

sup BV [Agf’l + A?Fl_l}
zeFE

_ U* pUL pF1(Xs—,Xs) _
=supE; |A7" + (e 1)
RIS D) ’ Z

L s<T
* p
— sup EzU AP Z (( (eFr(XamnXo) _ )) — 1)
relE s<T

* = 2
< sup Eg A+ S -1 (eFl(Xsf,Xs) _ 1) +p (eFl(Xsf,Xg _ 1)}
el s<T

* 2
<(p—1)sup ExU Z (eFl(Xs—,Xs) B 1)
2€E =

+ p sup E;EU* Al;’pl + Z (eFl(XS*’XS) - 1)
rzeFE s<T
={p-Dl+pr<l. (4.2)

By Khas'minskii’s lemma,

* p P
sup EY [(Z(Tg)) } =supEYV” [Exp (Apl’l 4 oAt ) ]
z€E z€E T

1
1 —sup,cp EU” [Agf’l + A;f)Fl _1}

IA

< 00.

* 3)\ P
Hence we have sup ¢, 1) SUP,e EY {(Zﬁ‘”) } < 00, that is, we obtain (a)* under
U*. From (4.2) we already checked that A% + A;ﬁp "1 ig of extended Kato class

for some T" > 0. Thus by the Markov property we obtain (b)®. Next, we check
(¢)™. For relatively compact D of E,

BY 12 — 1]t < mp| = BY [JBxp (47 + 4" 1—) — 1]t < 7p]
:EIU* [\Exp (lD * (A”1 + A° 1_1>) —1]:t< TD}
<t [l (1o + (2 + 27 1)) 1]

Since e=2%p; € St (U*)and NV (¥ —U — 1) uH—F%e*Q“,u?w € S5 (U*), e 2y
= e 2y, + NU” (eU -U - 1) WH + %e‘zu,uc

(w)

€ S} (U*) and consequently
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e 2 (7 + NY™ (ef' — 1)) py € S}, (U*). By Khas'miskii’s lemma,

* v el —
- vt [17® swpeep B [Lpx (47 A7)
lim sup E; {|Zt —1]:t< TD} < lim - -
B e oo+ (7 ¢ 7]

=0
which implies (¢)* for Zt(?’) under U*. Hence we obtain the assertion.

Proof of Theorem 4.1. By combining the remark just after Theorem 4.1, Lem-
mas 4.1 and 4.2, we obtain that there exists ag > 0 such that the resolvent
(RUPHE) <4, defined by

RV f(a) = [ et PO (o,
0

has the doubly resolvent Feller property, where PY" ¥ f(x) := EU [exp(AY +AF)
f(X)] =EY" [exp (A;71 + Afl) f(Xt)} for f € By(F). Since u is continuous and

ey —
RAf(x) = / e~ temu@ pUPHE (reuy(p)dt, € B,
0

(R2)a>a, also has the doubly resolvent Feller property.
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