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Abstract. We consider a special map on a finite group. We give a congru-

ence of the cardinality of the inverse image of an element by the map. Also

if the cardinality of the inverse image of the identity element by the map is

greater than the order of the group, then the group is of even order. Also

we give a condition the group to be solvable using the map.

1 Introduction

In [1, 2], Bandman et al. constructed a sequence of words on a finite group with

two variables which gives a criterion for the group to be solvable. Similar sequences

are studied in [5]. With easy modification of some words in [1, 2], we will find the

following map over a finite group G:

f1 : G×G −→ G

∈ ∈

(x, y) 7−→ y−1[xy−1x−1, x−1yx] = y−1[(y−1)x
−1

, yx]

where [a, b] = a−1b−1ab and ab = b−1ab for a, b ∈ G.

In this note, we will study a relation between the set of solutions of an equation

f1(x, y) = a

for a ∈ G and structures of the finite group.

For a map f : G×G → G and a ∈ G, denote the set of solutions of the equation

f(x, y) = a, or the inverse image of a ∈ G by f , by

Sf
G(a) = {(x, y) ∈ G×G | f(x, y) = a}.

Since f1(b, a
−1) = a for a ∈ G and b ∈ CG(a), we see that f1 is surjective,

Sf1
G (a) ⊇ {(b, a−1) | b ∈ CG(a)} and |Sf1

G (a)| ≥ |CG(a)|. First we will give a
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congruence of the number of solutions like a theorem of Frobenius as an application

of the method of Brauer [4]:

Theorem 1.1. Let G be a finite group. For any a ∈ G,

|Sf1
G (a)| ≡ 0 (mod |CG(a)|).

Next we will focus on |Sf1
G (1)|. As mentioned above, Sf1

G (1) ⊇ {(x, 1) | x ∈ G}
and |Sf1

G (1)| ≥ |G| for any finite group G. We will show the following:

Theorem 1.2. If |Sf
G(1)| > |G|, then G is of even order.

After explaining how to get f1 from [1, 2], we will consider a decomposition of

G × G by Sf1
G (a) for a ∈ G. We will prove the following as an application of a

result of [1, 2].

Theorem 1.3. Suppose that |Sf
G(a)| = |G| for any a ∈ G, then G is solvable.

We mention that Theorem 1.3 is proved by using the classification theorem of

finite simple groups.

2 Congruence of the number of solutions

For a subgroup H of a group G, we say that g1, g2 ∈ G are weakly equivalent

with respect to H if there exists h ∈ H such that g−r
1 hgr2 ∈ H for any r ∈ Z. We

denote by g1 ≈
H

g2 if g1 is weakly equivalent to g2 with respect to H. For x ∈ G,

set Hx = ∩r∈ZH
xr

.

In [4], Brauer proved the following:

Proposition 2.1 ([4]). For a subgroup H of a group G and x ∈ G,

(1) {g ∈ G | g ≈
H

x} = {h−1xkh | h ∈ H, k ∈ Hx}, and

(2) |{g ∈ G | g ≈
H

x}| = |H|.

Proof. See the paragraph after Proposition 3 of [4] for (1) and Proposition 5

of [4] for (2).

For a, y ∈ G, set Sf1
G (a, y) = {x ∈ G | f1(x, y) = a}.

Proposition 2.2. |Sf1
G (a, y)| ≡ 0 (mod |CG(a) ∩ CG(y)|) for a, y ∈ G.

Proof. Suppose that Sf1
G (a, y) ̸= ∅. Take x ∈ Sf1

G (a, y). Set H = CG(a) ∩
CG(y). For b ∈ G with b ≈

H
x, there exists h ∈ H and k ∈ Hx such that b = h−1xkh

by Proposition 2.1 (1). Then

by−1b−1 = (h−1xkh)y−1(h−1k−1x−1h) = (xy−1x−1)h, and

b−1yb = (h−1k−1x−1h)y(h−1xkh) = h−1x−1(xk−1x−1)y(xkx−1)xh

= (x−1yx)h
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since h, k ∈ CG(y) and xk−1x−1 ∈ Hx ⊆ CG(y). We have

[by−1b−1, b−1yb] = [xy−1x−1, x−1yx]h = (ya)h = ya.

Thus b ∈ Sf1
G (a, y). This implies that Sf1

G (a, y) is a union of some ≈
H
-classes of G.

By Proposition 2.1 (2), we have the result.

Now we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Take a set {yi | i = 1, · · · , r} of representatives of CG(a)-

conjugacy classes of G. Since |Sf1
G (a, y)| = |Sf1

G (a, g−1yg)| for g ∈ CG(a), we

have

|Sf1
G (a)| =

∑
y∈G

|Sf1
G (a, y)| =

r∑
i=1

|CG(a)|
|CG(a) ∩ CG(yi)|

|Sf1
G (a, yi)|

= |CG(a)|
r∑

i=1

|Sf1
G (a, yi)|

|CG(a) ∩ CG(yi)|
.

By Proposition 2.2, we have the result.

3 Solutions of f1(x, y) = 1

In this section, we focus on |Sf1
G (1)|. The following lemma is easy but fundamental.

Lemma 3.1. The following hold:

(1) f1(x, y) = ((y−1)x[y, x][y,x
−1])[x

−1,y].

(2) f1(x, y) = (y−1[x, y][x
2,y])y

−1[y,x2]x−1

.

Proof. Although it is just a direct calculation, it is somewhat tricky. So we

give a detailed calculation.

(1) We have

f1(x, y) = y−1[xy−1x−1, x−1yx]

= y−1(xyx−1)(x−1y−1x)(xy−1x−1)(x−1yx)

= (y−1xyx−2)y−1(x2y−1x−1y)(y−1x−1yx)

= (y−1)x[x
−1,y][y, x] = ((y−1)x[y, x][y,x

−1])[x
−1,y].

(2) We have

f1(x, y) = y−1[xy−1x−1, x−1yx]

= y−1(xyx−1)(x−1y−1x)(xy−1x−1)(x−1yx)

= x(x−1y−1xy)(x−2y−1x2y)y−1(y−1x−2yx2)x−1

= ([x, y](y−1)[y,x
2])x

−1

= ([x, y][x
2,y]y−1)[y,x

2]x−1

= (y−1[x, y][x
2,y])y

−1[y,x2]x−1

,
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which is required.

We prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that |Sf
G(1)| > |G|. There exists (x, y) ∈ G × G

with y ̸= 1 such that f1(x, y) = 1. We have [y, x] = yx[x
−1,y] by Lemma 3.1 (1),

and we have [y, x] = (y−1)[y,x
2] by Lemma 3.1 (2). This implies that yx[x

−1,y] =

(y−1)[y,x
2], or equivalently,

yx[x
−1,y][x2,y] = y−1.

Set t = x[x−1, y][x2, y]. Then t ∈ NG(⟨y⟩) \ CG(y) and t2 ∈ CG(y). Thus

|NG(⟨y⟩)/CG(y)| is even and the result follows.

The following is a restatement of Theorem 1.2

Corollary 3.2. If G is of odd order, then |Sf1
G (1)| = |G|.

Easy observation gives the following:

Proposition 3.3. If G is solvable, then |Sf1
G (1)| = |G|.

Proof. Suppose that G is solvable and that there exists (x, y) ∈ Sf1
G (1) with

y ̸= 1. Then y = [xy−1x−1, x−1yx]. Consider the derived series G = G0 ⊃
G1 ⊃ G2 ⊃ · · · ⊃ Gr = 1, where Gi+1 = [Gi, Gi] for i = 0, · · · , r − 1. There

is j < r such that y ∈ Gj and y /∈ Gj+1. Then xy−1x−1 and x−1yx ∈ Gj and

therefore y = [xy−1x−1, x−1yx] ∈ Gj+1, a contradiction. This yields that y = 1

and Sf1
G (1) = {(x, 1) | x ∈ G}.

The following is a restatement of Proposition 3.3.

Corollary 3.4. If |Sf1
G (1)| > |G|, then G is non-solvable.

Remark 3.5. There is a non-solvable group G such that |Sf1
G (1)| = |G|. For

example, let G = 24.SL(2, 5), a non-split extension. A direct calculation shows

that |Sf1
G (1)| = |G|. Thus the converse of Proposition 3.3 does not hold in general.

4 Some variations of f1

We define fj : G×G → G (j = 2, 3, 4) by

f2(x, y) = (y−1)x[y, x][y,x
−1],

f3(x, y) = (yx)−1[y, x][y,x
−1], and

f4(x, y) = y−1[x, y][x
2,y].

Proposition 4.1. For any finite group G and a ∈ G, |Sfi
G (a)| = |Sf1

G (a)| for

i = 2, 3, 4.
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Proof. By Lemma 3.1, we have |Sf1
G (a)| = |Sf2

G (a)| = |Sf4
G (a)|. Since

((xy)−1)x = (yx)−1, [xy, x] = [y, x], and [xy, x−1] = [y, x−1],

we have f2(x, xy) = f3(x, y). Thus we have |Sf2
G (a)| = |Sf3

G (a)|.
Consider two maps f : G × G → G and f ′ : G × G → G. We say f ∼ f ′ if

|Sf
G(a)| = |Sf ′

G (a)| for each finite group G and for any a ∈ G. We have proved

f1 ∼ f2 ∼ f3 ∼ f4 by Proposition 4.1. Of course, there are many maps f with

f ∼ f1. We have listed some of them which looks simple.

5 A theorem of Bandman et. al.

Define u1(x, y) = x−2y−1x and inductively

un+1(x, y) = [xun(x, y)
−1x−1, yun(x, y)

−1y−1].

The following is proved in [1, 2]:

Theorem 5.1 ([1, 2, Theorem 1.1]). A finite group G is solvable if and only if

for some n the identity un(x, y) ≡ 1 holds in G.

Note that a commutator is defined by [a, b] = aba−1b−1 in [1, 2]. We rewrite

the definition of the sequence un by using our notation [a, b] = a−1b−1ab.

A non-abelian simple group is called minimal simple if all of its proper sub-

groups are solvable. Minimal simple groups are classified by Thompson [6].

Theorem 5.2 ([2, Theorem 1.2]). Let G be a minimal simple group. Then there

are x, y ∈ G such that u1(x, y) ̸= 1 and u1(x, y) = u2(x, y).

The following theorem is proved by using the classification theorem of finite

simple groups.

Theorem 5.3 ([3]). If G is a non-abelian simple group, then G contains a subgroup

which is a minimal simple group.

Combining Theorems 5.2 and 5.3, the following holds:

Corollary 5.4 ([2, Corollary 1.3]). Let G be a non-abelian simple group. Then

there are x, y ∈ G such that u1(x, y) ̸= 1 and u1(x, y) = u2(x, y).

Set z = yx. Then

u1(x, y) = x−1z−1x, and

u2(x, y) = [x(x−1zx)x−1, (zx−1)(x−1z)x)(zx−1)−1] = [z, zx−2zx2z−1]

= z−1(zx−2z−1x2z−1)z(zx−2zx2z−1) = [x−2zx2, z−1].
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Thus the condition u1(x, y) ̸= 1 is equivalent to z ̸= 1 and the condition u1(x, y) =

u2(x, y) is equivalent to

z = [xz−1x−1, x−1zx],

or equivalently f1(x, z) = 1.

In our situation, we can rewrite Corollary 5.4 as follows:

Corollary 5.5. If G is a non-abelian simple group, then |Sf1
G (1)| > |G|.

6 A decomposition of G×G

We consider the decomposition of G × G by Sf1
G (a) for a ∈ G. By using the

classification theorem of finite simple groups, we have Theorem 1.3

Proof of Theorem 1.3. Suppose that G is a counterexample of minimal possible

order. By Corollary 5.5, G is not a non-abelian simple group since |Sf1
G (1)| = |G|.

Take a minimal normal subgroup N of G. If N is a direct product of r-copies of

non-abelian simple group S for some r, then there exists (x, y) ∈ Sf1
S (1) ⊆ Sf1

G (1)

with y ̸= 1. This is not our case because |Sf1
G (1)| = |G|. Thus N is an elementary

abelian subgroup.

For any a ∈ G, |{(x, y) | f1(x, y) ∈ aN}| = |G| × |N | because |Sf1
G (an)| = |G|

for n ∈ N . For (x, y) with f1(x, y) ∈ aN and for any n,m ∈ N , we see that

f1(xn, ym) ∈ aN . This yields that

|{(xN, yN) | f1(xN, yN) = aN}| = |G| × |N |
|N | × |N |

= |G/N |.

Thus |Sf1
G/N (aN)| = |G/N | for any aN ∈ G/N . Since G is a minimal counterexam-

ple, we have G/N is solvable. This implies that G is also solvable, a contradiction.

Remark 6.1. There is a solvable group G such that |Sf1
G (a)| ̸= |G| for some

a ∈ G. The group 32 : SL(2, 3) with trivial center is an example of smallest order.

The second smallest one is A4 ≀ Z2. Thus the converse of Theorem 1.3 does not

hold in general.
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